33
EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 1 EE247 Lecture 12 Administrative issues § Midterm exam Oct. 20th o You can only bring one 8x11 paper with your own written notes (please do not copy) o No books, class or any other kind of handouts/notes, calculators, computers, PDA, cell phones.... o Midterm includes material covered to end of lecture 14 EE247 final exam date has changed to: December 13th, 12:30-3:30 pm (group 2)- please check your other class finals to ensure no conflict EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 2 EE247 Lecture 12 Today: – Summary switched-capacitor filters – Comparison of various filter topologies – Data converters

EE247 Lecture 12 - inst.eecs.berkeley.edu

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 1

EE247Lecture 12

• Administrative issues§ Midterm exam Oct. 20th

o You can only bring one 8x11 paper with your own written notes (please do not copy)

o No books, class or any other kind of handouts/notes, calculators, computers, PDA, cell phones....

o Midterm includes material covered to end of lecture 14

– EE247 final exam date has changed to: December 13th, 12:30-3:30 pm (group 2)- please check your other class finals to ensure no conflict

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 2

EE247Lecture 12

Today:– Summary switched-capacitor filters– Comparison of various filter

topologies– Data converters

Page 2: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 3

SC Filter Summary

ü Pole and zero frequencies proportional to – Sampling frequency fs– Capacitor ratiosØ High accuracy and stability in responseØ Long time constants realizable without large R, C

ü Compatible with transconductance amplifiers– Reduced circuit complexity, power dissipation

ü Amplifier bandwidth requirements less stringent compared to CT filters (low frequencies only)

L Issue: Sampled-data filters à require anti-aliasing prefiltering

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 4

SummaryFilter Performance versus Filter Topology

_

1-5%

1-5%

1-5%

1-5%

Freq. tolerance+ tuning

<<1%40-90dB~ 10MHzSwitched Capacitor

+-40-60%40-70dB~ 100MHzGm-C

+-30-50%50-90dB~ 5MHzOpamp-MOSFET-RC

+-30-50%40-60dB~ 5MHzOpamp-MOSFET-C

+-30-50%60-90dB~10MHzOpamp-RC

Freq. tolerance w/o tuning

SNDRMax. Usable Bandwidth

Page 3: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 5

Data Converters

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 6

Material Covered in EE247ü Filters

– Continuous-time filters• Biquads & ladder type filters• Opamp-RC, Opamp-MOSFET-C, gm-C filters• Automatic frequency tuning

– Switched capacitor (SC) filters• Data Converters

– D/A converter architectures– A/D converter

• Nyquist rate ADC- Flash, Pipeline ADCs,….• Oversampled converters• Self-calibration techniques

• Systems utilizing analog/digital interfaces– Wireline communication systems- ISDN, XDSL…– Wireless communication systems- Wireless LAN, Cellular

telephone,…– Disk drive electronics– Fiber-optics systems

Page 4: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 7

Data Converter Topics• Basic Operation of Data Converters

– Uniform sampling and reconstruction

– Uniform amplitude quantization

• Characterization and Testing

• Common ADC/DAC Architectures

• Selected Topics in Converter Design– Practical Implementations

– Desensitization to Analog Circuit Non-Idealities

• Figures of Merit and Performance Trends

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 8

Suggested Reference Texts• R. v. d. Plassche, CMOS Integrated Analog-to-Digital and

Digital-to-Analog Converters, 2nd ed., Kluwer, 2003.

• B. Razavi, Data Conversion System Design, IEEE Press, 1995.

• S. Norsworthy et al (eds), Delta-Sigma Data Converters, IEEE Press, 1997.Extensive treatment of oversampled converters including stability, tones, bandpass converters.

• J. G. Proakis, D. G. Manolakis, Digital Signal Processing, Prentice Hall, 1995.

Page 5: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 9

Converter Applications

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 10

Example: Typical Cell PhoneContains in integrated form:• 4 Rx filters• 4 Tx filters

• 4 Rx ADCs• 4 Tx DACs• 3 Auxiliary ADCs• 8 Auxiliary DACs

Total: Filters à 8

ADCs à 7

DACs à 12

Dual Standard, I/Q

Audio, Tx/Rx powercontrol, Battery chargecontrol, display, ...

Page 6: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 11

Data Converter Basics

• DSP is wonderful, but...• Real world signals are analog:

– Continuous time– Continuous amplitude

• DSP can only process:– Discrete time– Discrete amplitudeà Need for data conversion from

analog to digital and digital to analog

Analog Postprocessing

D/AConversion

DSP

A/D Conversion

Analog Preprocessing

Analog Input

Analog Output

000...001...

110

Filters

Filters

?

?

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 12

A/D & D/A ConversionA/D Conversion

D/A Conversion

Page 7: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 13

Data Converters

• Stand alone data converters– Used in variety of systems

– Example: Analog Devices AD9235 12bit/ 65Ms/s ADC- Applications:

• Ultrasound equipment

• IF sampling in wireless receivers

• Hand-held scopemeters

• Low cost digital oscilloscopes

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 14

Data Converters• Embedded data converters

– Cost, reliability, and performance à integration of data conversion interfaces along with DSPs

– Main challenges• Feasibility of integrating sensitive analog functions in

technologies optimized for digital performance

• Down scaling of supply voltage

• Interference & spurious signal pick-up from on-chip digital circuitry

• Portable applications dictate low power consumption

Page 8: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 15

D/A Converter Transfer Characteristics

• For an ideal digital-to-analog converter with uniform, binary digital encoding & a unipolar output range from 0 to VFS

N N

0 FSi 1 i 1

N ii

biV V bi 2 , bi 0 or 1

2= =

−= = ∆ × =∑ ∑D/A

……..…b1 b2 b3 bn

V0

( )0 FS

FS N

Note:V Vbi 1,a l l i1

1V2

= −∆= −=

MSB LSB

( )0 2 1 0

Example:N 3

V b1.2 b2.2 b3.2

=

= ∆ + +FS

FSN

where N # of bitsV ful l scale output

LSB step sizeV

2

==

∆ =

∆ =

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 16

Ideal D/A Transfer Characteristic• Ideal DAC

introduces no error!

• One-to-one mapping from input to output

001 010 011 100 101 110 111

Step Height (1LSB=∆)

Ideal Response

Digital InputCode

Analog Output

VFS

VFS /2

VFS /8

Page 9: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 17

A/D Converter Transfer Characteristic

• For an ideal analog-to-digital converter with uniform, binary digital encoding & a unipolar input range for 0 to VFS

……..…b1 b2 b3 bm

Vin

( ) FS

FS m

Note:D Vbi 1,a l l i1

1V2

→ −∆= −→

MSB LSB

A/D

FS

FSm

where m # of bitsV ful l scale output

s tep sizeV

2

==

∆ =

∆ =

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 18

Ideal A/D Transfer Characteristic• Ideal ADC

introduces error àmax error =

(+ -1/2∆)

∆= VFS /2m

m= # of bits

• This error is called ``quantization error``

111

110

101

100

011

010

001

000

1LSB

Digital Output

Analog input

∆ 2∆ 3∆ 4∆ 5∆ 6∆ 7∆

Page 10: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 19

Data Converter Performance Metrics• Data Converters are typically characterized by static, time-domain,

& frequency domain performance metrics :– Static

• Monotonicity• Offset• Full-scale error• Differential nonlinearity (DNL)• Integral nonlinearity (INL)

– Dynamic• Delay, settling time• Aperture uncertainty• Distortion- harmonic content• Signal-to-noise ratio (SNR), Signal-to-(noise+distortion) ratio (SNDR)• Idle channel noise• Dynamic range & spurious-free dynamic range (SFDR)

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 20

What is a discrete time signal?

qA signal that changes only at discrete time instances?

qA continous time signal multiplied with a train of infinitely narrow unit pulses?

qA vector whose element indices correspond to discrete instances in time?

qAll of the above?

[1.2 2.0 2.5 0.1 ...]

time

Page 11: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 21

Discrete Time Signals• A sequence of numbers (or vector) with

discrete index time instants• Intermediate signal values not defined

(not the same as equal to zero!)• Mathematically convenient, non-physical• We will use the term "sampled data" for

related signals that occur in real, physical interface circuits

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 22

Typical Sampling ProcessCT ⇒ SD ⇒ DT

ContinuousTime

Sampled Data(e.g. T/H signal)

Clock

Discrete Time

time

PhysicalSignals

"MemoryContent"

Page 12: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 23

Uniform Sampling

• Samples spaced T seconds in time

• Sampling Period T ⇔ Sampling Frequency fs=1/T

• Problem: Multiple continuous time signals can yield exactly the same discrete time signal (aliasing)

y(kT)=y(k)

t= 1T 2T 3T 4T 5T 6T ...k= 1 2 3 4 5 6 ...

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 24

SummaryData Converters

• ADC/DACs need to sample/reconstruct to convert from continuous time to discrete time signals and back

• We distinguish between purely mathematical discrete time signals and "sampled data signals" that carry information in actual circuits

• Question: How do we ensure that sampling/reconstruction fully preserve information?

Page 13: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 25

Aliasing

• The frequencies fx and Nfs ± fx, N integer, are indistinguishable in the discrete time domain

• Undesired frequency interaction and translation due to sampling is called aliasing

• If aliasing occurs, no signal processing operation downstream of the sampling process can recover the original continuous time signal!

• Let's look at this in the frequency domain...

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 26

Sampling Sine Waves

fs = 1/T

y(nT) time

Time domain

fs … f

Am

plitu

de

fin 2fs

fs - fin fs + fin

Vol

tage

Frequency domain

Page 14: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 27

Frequency Domain Interpretation

fs …….. f

Am

plitu

de

fin 2fs

Am

plitu

de

f/fs

Signal scenariobefore sampling

Signal scenarioafter sampling à DT

àSignals @nfS ± fmax__signal fold back into band of interestàAliasing

fs /2

0.5

ContinuousTime

DiscreteTime

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 28

Brick Wall Anti-Aliasing Filter

ContinuousTime

DiscreteTime

0 fs 2fs ... f

Amplitude

0 0.5 f/fs

Filter

Sampling at Nyquist rate (fs=2fsignal) à required brick-wall anti-aliasing filters

Page 15: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 29

How to Avoid Aliasing

• Must obey sampling theorem:fmax_Signal < fs/2

• Two possibilities:1. Sample fast enough to cover all spectral

components, including "parasitic" ones outside band of interest

2. Limit fmax_Signal through filtering

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 30

How to Avoid Aliasing

fs_old …….. f

Am

plitu

de

fin 2fs_old

Frequency domain

fs f

Am

plitu

de

fin 2fs

Frequency domain

1- Push sampling frequency to x2 of the highest freq. à Oversampled converters almost!

2- Pre-filter signal to eliminate signals above 1/2 sampling frequency- then sample

fs /2

fs_new

Page 16: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 31

Practical Anti-Aliasing Filter

• Practical filter: Nonzero "transition band"• In order to make this work, we need to

sample faster than 2x the signal bandwidth• "Oversampling"

ContinuousTime

0 fs 2fs ... f

Amplitude Filter

fs/2

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 32

Practical Anti-Aliasing Filter

ContinuousTime

DiscreteTime

0 fs ... f

DesiredSignal

0 0.5 f/fs

fs/2B fs-B

ParasiticTone

B/fs

Attenuation

Page 17: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 33

Data ConverterClassification

• fs > 2fmax Nyquist Sampling– "Nyquist Converters"– Actually always slightly oversampled

• fs >> 2fmax Oversampling– "Oversampled Converters"– Anti alias filtering is often trivial– Oversampling is also used to reduce quantization noise, see

later in the course...

• fs < 2fmax Undersampling (sub-sampling)

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 34

Sub-Sampling

• Sub-sampling à sampling at a rate less than Nyquist rate à aliasing• For signals centered @ an intermediate frequency à Not destructive!• Sub-sampling can be exploited to mix a narrowband RF or IF signal down to

lower frequencies

ContinuousTime

DiscreteTime

0 fs ... f

Amplitude

0 0.5 f/fs

BP Filter

Page 18: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 35

Where Are We Now?

• We now know how to preserve signal information in CTàDT transition

• How do we go back from DTà CT?

Analog Postprocessing

D/AConversion

DSP

A/D Conversion

Analog Preprocessing

Analog Input

Analog Output

000...001...

110

Anti-AliasingFilter

?

Sampling(+Quantization)

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 36

Ideal Reconstruction

• Unfortunately not all that practical...

∑∞

−∞=

−⋅=k

kTtgkxtx )()()(Bt

Bttg

ππ

2)2sin(

)( =

• The DSP books tell us:

⇒x(k) x(t)

Page 19: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 37

Zero-Order Hold Reconstruction• How about just creating

a staircase, i.e. hold each discrete time value until new information becomes available

• What does this do the frequency content of the signal?

• Let's analyze this in two steps...0 1 2 3

x 10-5

-1

-0.6

-0.2

0.2

1

Time

Am

plit

ud

e

sampled dataafter ZOH

0.6

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 38

1) DTà CT: Infinite Zero Padding

DT sequence

f/fs

Time Domain Frequency Domain

......

0.5

Zero paddedDT sequence

......

f/fs0.5/i 1.5/i 2.5/i

InfiniteInterpolation:CT Signal!

......

f0.5fs 1.5fs 2.5fs

Page 20: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 39

2) Effect of Hold Pulse

• Using the Fourier transform of a rectangular impulse we get:

......

Tp

Ts

p

p

s

p

fT

fT

T

TfH

π

π )sin()( =

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 40

Hold Pulse Tp=Ts

0 0.5 1 1.5 2 2.5 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f/fs

abs(

H(f)

)

p

p

s

p

fT

fT

T

TfH

π

π )sin(|)(| =

Page 21: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 41

Hold Pulse Tp=0.5Ts

0 0.5 1 1.5 2 2.5 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f/fs

abs(

H(f)

)p

p

s

p

fT

fT

T

TfH

π

π )sin(|)(| =

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 42

ZOH Spectral DistortionContinuous Time

Pulse Train Spectrum

ZOH Transfer Function

("Sinc Distortion")

ZOH output, Spectrum of

Staircase Approximation

f/fs

0 0.5 1 1.5 2 2.5 30

0.5

1

0 0.5 1 1.5 2 2.5 30

0.5

1

0 0.5 1 1.5 2 2.5 30

0.5

1

X(k)

ZOH

Page 22: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 43

Smoothing FilterAgain:• A brick wall

filter would be nice

• Oversampling helps to reduce filter order

f/fs

0 0.5 1 1.5 2 2.5 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 44

Summary

• Sampling theorem fs > 2fmax, usually dictates anti-aliasing filter

• If theorem is met, CT signal can be recovered from DT without loss of information

• ZOH and smoothing filter reconstruct CT from DT signal

• Oversampling helps reduce order & complexity of anti-aliasing & smoothing filters

Page 23: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 45

Next Topic

• Done with "Quantization in time"

• Next: Quantization in amplitude

Analog Postprocessing

D/AConversion

DSP

A/D Conversion

Analog Preprocessing

Analog Input

Analog Output

000...001...

110

Anti-AliasingFilter

Sampling(+Quantization)

SmoothingFilter

D/A+ZOH

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 46

AmplitudeQuantization

• Amplitude quantizationà quantization “noise”

• Static ADC/DAC performance measures– Offset– Gain– INL– DNL

Page 24: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 47

Ideal ADC ("Quantizer")• Quantization step ∆ (= 1 LSB)

• E.g. N = 3 Bits

• Full-scale input range:-0.5∆ … (2N-0.5)∆

• Quantization error:bounded by –∆/2 … +∆/2for inputs within full-scale range

+

εq (Vin )

Vin Dout

ADC Model

-1 0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

Dig

ital O

utpu

t Cod

e

A/D Characteristics [1]

ADC characteristicsideal converter

-1 0 1 2 3 4 5 6 7 8-1

-0.5

0

0.5

1

Qua

ntiz

atio

n er

ror

[LS

B]

ADC Input Voltage [1/∆]

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 48

Quantization Error PDF

• Uniformly distributed from –∆/2 … +∆/2 provided that– Busy input– Amplitude is many LSBs– No overload

• Not Gaussian!

• Zero mean• Variance

• Spectral density white if the joint pdf of the input at different sample times is smooth

Ref: W. R. Bennett, “Spectra of quantized signals,” Bell Syst. Tech. J., vol. 27, pp. 446-72, July 1988.

B. Widrow, “A study of rough amplitude quantization by means of Nyquist sampling theory,” IRE Trans. Circuit Theory, vol. CT-3, pp. 266-76, 1956.

-∆/2

Pdf

error

1/∆

+∆/2

2 22

/ 2

/ 2

ee de

12

+∆

−∆

∆= =

∆∫

Page 25: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 49

Signal-to-Quantization Noise Ratio• If certain conditions are met (!) the quantization error can be

viewed as being "random", and is often referred to as “noise”• In this case, we can define a peak “signal-to-quantization noise

ratio”, SQNR, for sinusoidal inputs:

• Actual converters do not quite achieve this performance due to other errors, including

– Electronic noise– Deviations from the ideal quantization levels

2N

2N2

1 2

2 2SQNR 1.5 2

12

6.02N 1.76 dB Accurate for N>3

∆ = = ×

= +

e.g. N SQNR8 50 dB

12 74 dB16 98 dB20 122 dB

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 50

Static, Ideal Macro Models

ADC

+DoutVin

εq

DAC

VoutDin

Page 26: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 51

Cascade of Data Converters

ADC

+Vin

εq

DAC

Vout

ADC

+εq

DAC

DoutDin

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 52

Static Converter Errors

Deviations of characteristic from ideal– Offset– Full scale error– Differential nonlinearity, DNL– Integral nonlinearity, INL

Page 27: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 53

Offset ErrorADC DAC

Ref: “Understanding Data Converters,” Texas Instruments Application Report SLAA013, Mixed-Signal Products, 1995.

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 54

Full Scale ErrorADC DAC

Actual full scale point

Ideal full scale point Ideal full scale

point

Full scale error

Actual full scale

point

Full scale error

Page 28: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 55

Offset and Full Scale Errors

• Alternative specification in % Full Scale = 100% * (LSB value)/ 2N

• Gain error can be extracted from offset & full scale error

• Non-trivial to build a converter with extremely good gain/offset specs

• Typically gain/offset is most easily compensated by the digital pre/post-processor

• More interesting: Linearity àDNL, INL

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 56

Offset and Full-Scale Error

-1 0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

Dig

ital

Ou

tpu

t C

od

e

ADC Input Voltage [LSB]

ADC characteristicsideal converter

Offset error

Full-scale error

Note:à For further

measurements (DNL, INL) connecting the endpoints & deriving ideal codes based on the non-ideal endpoints elliminates offset and full-scale error

Page 29: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 57

-1 0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

ADC characteristicsideal converter

ADC Differential Nonlinearity

DNL = deviation of code width from

∆ (1LSB)

+0.4 LSB DNL error

-0.4 LSB DNL error

à Endpoints connected

à Ideal characteriscticsderived

à DNL measured

0 LSB DNL error

Dig

ital

Ou

tpu

t C

od

e

ADC Input Voltage [∆]

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 58

-1 0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

ADC characteristicsideal converter

ADC Differential NonlinearityExamples

-1 0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

ADC characteristicsideal converter

Non-monotonic(> 1 LSB DNL)

Missing code(+0.5/-1 LSB DNL)

Dig

ital

Ou

tpu

t C

od

e

ADC Input Voltage [∆]

Dig

ital

Ou

tpu

t C

od

e

ADC Input Voltage [∆]

Page 30: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 59

DAC Differential Nonlinearity

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 60

Impact of DNL on Performance

• Same as a somewhat larger quantization error, consequently degrades SQNR

• How much – later in the course...• People sometimes speak of "DNL

noise", i.e. "additional quantization noise due to DNL"

Page 31: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 61

ADC Integral Nonlinearity

• A straight line through the endpoints is usually used as reference,i.e. offset and full scale errors are ignored in INL calculation

• Ideal converter steps is found for the endpoint line, then INL is measured

• Note that INL errors can be much larger than DNL errors and vice-versa

-1 LSB INL

-1 0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

Dig

ital

Ou

tpu

t C

od

e

ADC Input Voltage [∆]

INL = deviation of code transition from its ideal location

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 62

DAC Integral Nonlinearity

Page 32: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 63

DAC DNL and INL

* Ref: “Understanding Data Converters,” Texas Instruments Application Report SLAA013, Mixed-Signal Products, 1995.

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 64

Example: INL & DNL

Large INL & Small DNL Large DNL & Small INL

Page 33: EE247 Lecture 12 - inst.eecs.berkeley.edu

EECS 247 Lecture 12: Data Converters © 2005 H. K. Page 65

Monotonicity• Monotonicity guaranteed if

| INL | = 0.5 LSBThe best fit straight line is taken as the reference for determining the INL.

• This implies| DNL | = 1 LSB

• Note: these conditions are sufficient but not necessary for monotonicity