31
Error estimates with explicit constants for Sinc quadrature and Sinc indefinite integration over infinite intervals Tomoaki OKAYAMA (Hitotsubashi Univ.) September 27, 2012 SCAN’2012

Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

Error estimates with explicit constantsfor Sinc quadrature and Sinc indefinite

integration over infinite intervals

Tomoaki OKAYAMA (Hitotsubashi Univ.)

September 27, 2012

SCAN’2012

Page 2: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

1 Sinc quadrature and Sinc indefinite

integration

Page 3: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

1 Sinc quadrature and Sinc indefinite integration

Base: Sinc approximation on R

F (x) ≈N∑

j=−N

F (jh)Sinc(x/h− j)

Sinc(x) =sin(πx)

πx

-0.2 0

0.2 0.4 0.6 0.8

1 1.2

-10 -5 0 5 10

x

Sinc(x)=sin(πx)/(πx)

By integrating both sides, we can derive approximations for

• definite integrals (Sinc quadrature)∫∞−∞ F (x) dx ≈

∑Nj=−N F (jh)

h︷ ︸︸ ︷∫∞−∞ Sinc(x/h− j) dx

• indefinite integrals (Sinc indefinite integration)∫ τ

−∞ F (x) dx ≈∑N

j=−N F (jh)∫ τ

−∞ Sinc(x/h− j) dx

SCAN’2012 2 / 28

Page 4: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

1 Sinc quadrature and Sinc indefinite integration

Important facts on two-step approximation

Sinc quadrature∫∞−∞ F (x) dx ≈ h

∑Nj=−N F (jh)∫ ∞

−∞F (x) dx ≈ h

∞∑j=−∞

F (jh) discretization

(accurate if the integral is over R)

≈ h

N∑j=−N

F (jh) truncation

(accurate if |F (x)| decays quickly as x→ ±∞)

Question When either the two “if” is NG ...?

SCAN’2012 3 / 28

Page 5: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

1 Sinc quadrature and Sinc indefinite integration

Four typical cases that Stenger [2] consideredLet f be a smooth and bounded function

1. I1 = (−∞, ∞)

∫ ∞

−∞

f(t)

1 + t2dt polynomial decay

2. I2 = (0, ∞)

∫ ∞

0

f(t)

1 + t2dt polynomial decay

3. I3 = (0, ∞)

∫ ∞

0

e−tf(t) dt exponential decay

4. I4 = (a, b)

∫ b

a

f(t) dt (not decay)

SCAN’2012 4 / 28

Page 6: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

1 Sinc quadrature and Sinc indefinite integration

Variable transformations for the 4 casesSingle-Exponential transformation x = ψSEi(x) (Stenger [2])

I1 = (−∞,∞) F (t) =1

1 + t2f(t)

I2 = (0,∞) F (t) =1

1 + t2f(t)

I3 = (0,∞) F (t) = e−tf(t)

I4 = (a, b) F (t) = f(t)

SCAN’2012 5 / 28

Page 7: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

1 Sinc quadrature and Sinc indefinite integration

Variable transformations for the 4 casesSingle-Exponential transformation x = ψSEi(x) (Stenger [2])

I1 = (−∞,∞) F (t) =1

1 + t2f(t)

t = ψSE1(x) = sinh x

I2 = (0,∞) F (t) =1

1 + t2f(t)

t = ψSE2(x) = ex

I3 = (0,∞) F (t) = e−tf(t)

t = ψSE3(x) = arcsinh( ex)

I4 = (a, b) F (t) = f(t)

t = ψSE4(x) =b−a2

tanh(x2) + b+a

2

SCAN’2012 5 / 28

Page 8: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

1 Sinc quadrature and Sinc indefinite integration

SE-Sinc quadrature (case 2)

∫I2

F (t) dt =

∫ ∞

−∞F (ψSE2(x))ψ

′SE2(x) dx SE transformation

≈ h∞∑

j=−∞F (ψSE2(jh))ψ

′SE2(jh) discretization

(accurate because the integral is over R)

≈ h

N∑j=−N

F (ψSE2(jh))ψ′SE2(jh) truncation

(accurate because the integrand decays O( e−|x|))

SCAN’2012 6 / 28

Page 9: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

1 Sinc quadrature and Sinc indefinite integration

To make the truncation error further smallerDouble-Exponential transformation x = ψDEi(x) (Takahasi–Mori [3])

I1 = (−∞,∞) F (t) =1

1 + t2f(t)

t = ψDE1(x) = sinh[(π/2) sinhx]

I2 = (0,∞) F (t) =1

1 + t2f(t)

t = ψDE2(x) = e(π/2) sinhx

I3 = (0,∞) F (t) = e−tf(t)

t = ψDE3(x) = ex−exp(−x)

I4 = (a, b) F (t) = f(t)

t = ψDE4(x) =b−a2

tanh(π sinhx2

) + b+a2

Decay rate: O( e− exp(|x|))

SCAN’2012 7 / 28

Page 10: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

1 Sinc quadrature and Sinc indefinite integration

Error analysis for SE/DE-Sinc quadrature

Case 1

∫ ∞

−∞

√1 + tanh2(arcsinh(t)/2)

1 + t2dt = 4arcsinh(1)

There exists a constant C independent of N such that

|Error (SE)| ≤ C e−√

π2N/2 (Stenger [2])

|Error (DE)| ≤ C e−(π2N/2)/ log(4πN) (Tanaka et al. [4])

Convergence rates are given (C is not estimated explicitly)

SCAN’2012 8 / 28

Page 11: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

1 Sinc quadrature and Sinc indefinite integration

Contribution 1. Explicit estimates of the C’s

Case 1

∫ ∞

−∞

√1 + tanh2(arcsinh(t)/2)

1 + t2dt = 4arcsinh(1)

There exists a constant C independent of N such that

|Error (SE)| ≤ C e−√

π2N/2 (Stenger [2])

where C = 122.6 (New!)

|Error (DE)| ≤ C e−(π2N/2)/ log(4πN) (Tanaka et al. [4])

where C = 2345 (New!)

Now the errors can be estimated by computing the R.H.S.!

SCAN’2012 9 / 28

Page 12: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

1 Sinc quadrature and Sinc indefinite integration

Summary table for the explicit estimates

SE/DE-Sinc quadrature

Case 1 (−∞,∞) New!

Case 2 (0,∞) New!

Case 3 (0,∞) New!

Case 4 (a, b) OK [1]

SE/DE-Sinc indefinite integration

Case 1 (−∞,∞) New!

Case 2 (0,∞) New!

Case 3 (0,∞) New!

Case 4 (a, b) OK [1]

• The desired explicit estimates are already done in Case 4 [1]

• This study extends the result to Case 1–3

SCAN’2012 10 / 28

Page 13: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

1 Sinc quadrature and Sinc indefinite integration

Issue on the DE transformation in Case 3

• Inverse of t = ψDE3(x) = ex−exp(−x) cannot be written

explicitly (in elementary functions)

• For the Sinc indefinite integration, its inverse is needed

(not needed for the Sinc quadrature)

• For the purpose, Muhammad–Mori (2003) proposed

t = ψDE3†(x) = log(1 + e(π/2) sinhx)

SCAN’2012 11 / 28

Page 14: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

1 Sinc quadrature and Sinc indefinite integration

Contribution 2: improving the transformation

• Inverse of t = ψDE3(x) = ex−exp(−x) cannot be written

explicitly (in elementary functions)

• For the Sinc indefinite integration, its inverse is needed

(not needed for the Sinc quadrature)

• For the purpose, Muhammad–Mori (2003) proposed

t = ψDE3†(x) = log(1 + e(π/2) sinhx)

• In this talk, the transformation is improved as

t = ψDE3‡(x) = log(1 + eπ sinhx) (and this is optimal)

SCAN’2012 12 / 28

Page 15: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

Outline of this talk

1 Sinc quadrature and Sinc indefinite integration 1

2 Improving the DE transformation in Case 3 13

3 Error estimates with explicit constants 20

4 Summary and future work 26

Page 16: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

2 Improving the DE transformation in

Case 3

Page 17: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

2 Improving the DE transformation in Case 3

Definition: the strip domain Dd

The integrand should be analytic on the complex domain Dd:

dRe

Im

Dd Dd = {z ∈ C : | Im z| < d}d > 0

Example f(x) =1

1 + x2is analytic on D1

1

Re

Imi

-i

SCAN’2012 14 / 28

Page 18: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

2 Improving the DE transformation in Case 3

Sketch of the existing error analysis [4]

Point discretization error ED and truncation error ET

Let f(ψDE3†(·)) be analytic and bounded on Ddd

Re

Im

Dd

Integrand FDE3†(x) = e−ψDE3†(x)f(ψDE3†(x))ψ′DE3†(x)∫ ∞

0

e−tf(t) dt ≈ h∞∑

k=−∞

FDE3†(kh) ED = O( e−2πd/h)

≈ h

N∑k=−N

FDE3†(kh) ET = O(e−

π4exp(Nh)

)2πd

h≈ π

4eNh ⇒ h =

log(8dN)

NEDE = O

(exp

{−2πdN

log(8dN)

})SCAN’2012 15 / 28

Page 19: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

2 Improving the DE transformation in Case 3

Improvement of the DE transformation

Point discretization error ED and truncation error ET

Let f(ψDE3†(·)) be analytic and bounded on Ddd

Re

Im

Dd

ψDE3†(t) = log(1 + e(π/2) sinh(t)) → ψDE3‡(t) = log(1 + eπ sinh(t))∫ ∞

0

e−tf(t) dt ≈ h∞∑

k=−∞

FDE3‡(kh) ED = O( e−2πd/h)

≈ hN∑

k=−N

FDE3‡(kh) ET = O(e−

π2exp(Nh)

)2πd

h≈ π

2eNh ⇒ h =

log(4dN)

NEDE = O

(exp

{−2πdN

log(4dN)

})SCAN’2012 16 / 28

Page 20: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

2 Improving the DE transformation in Case 3

Is further improvement possible?

Point discretization error ED and truncation error ET

Let f(ψDE3†(·)) be analytic and bounded on Ddd

Re

Im

Dd

ψDE3‡(t) = log(1 + eπ sinh(t)) → ψDE3∗(t) = log(1 + e2π sinh(t))∫ ∞

0

e−tf(t) dt ≈ h∞∑

k=−∞

FDE3∗(kh) ED = O( e−2πd/h)

≈ hN∑

k=−N

FDE3∗(kh) ET = O(e−

π1exp(Nh)

)2πd

h≈ π

1eNh ⇒ h =

log(2dN)

NEDE = O

(exp

{−2πdN

log(2dN)

})SCAN’2012 17 / 28

Page 21: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

2 Improving the DE transformation in Case 3

Not possible (Sugihara 1998)

Point discretization error ED and truncation error ET

Let f(ψDE3†(·)) be analytic and bounded on Ddd

Re

Im

Dd

ψDE3‡(t) = log(1 + eπ sinh(t)) → ψDE3∗(t) = log(1 + e2π sinh(t))∫ ∞

0

e−tf(t) dt ≈ h∞∑

k=−∞

FDE3∗(kh) ED = O( e−2πd/h)/////////////////////

≈ hN∑

k=−N

FDE3∗(kh) ET = O(e−

π1exp(Nh)

)2πd

h≈ π

1eNh ⇒ h =

log(2dN)

NEDE = O

(exp

{−2πdN

log(2dN)

})SCAN’2012 18 / 28

Page 22: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

2 Improving the DE transformation in Case 3

Numerical Example (C, quadruple precision)∫ ∞

0

e−t√1 + tanh2(log(sinh(t))/2) dt = 4arcsinh(1)−

√2(1 + log 2)

1e-35

1e-30

1e-25

1e-20

1e-15

1e-10

1e-05

1

0 10 20 30 40 50 60 70 80 90 100

Err

or

N

SE3

DE3’’

DE3 DE3’

• Almost no difference between ψDE3(t), ψDE3†(t), ψDE3‡(t)?

• For ψDE3‡(t), we have explicit error estimates (next)

SCAN’2012 19 / 28

Page 23: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

3 Error estimates with explicit

constants

Page 24: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

3 Error estimates with explicit constants

ToDo: Bound the transformed integrand

Case 1

∫ ∞

−∞

f(t)

1 + t2dt =

∫ ∞

−∞

f(ψ(x))

1 + {ψ(x)}2ψ′(x) dx

(ψ(x) = ψSE1(x) or ψDE1(x))

• |f(ψ(z))| ≤ K: Suppose given by users (depends on the problem).

•∣∣∣∣ ψ′(z)

1 + {ψ(z)}2

∣∣∣∣ ≤ ??: Evaluated by this study (always the same)

Existing bound∣∣∣∣ ψ′SE1(z)

1 + {ψSE1(z)}2

∣∣∣∣ ≤ C e−|Re z|,

∣∣∣∣ ψ′DE1(z)

1 + {ψDE1(z)}2

∣∣∣∣ ≤ C e− exp(|Re z|)

The explicit form of C’s is revealed in this study (for Case 1–3), which

enables us to obtain the desired explicit error estimates.SCAN’2012 21 / 28

Page 25: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

3 Error estimates with explicit constants

Error estimates with explicit constants (SE)

Theorem

• f(ψSEi(·)) is analytic on Dd. (i = 1, 2, 3)

• ∀z ∈ Dd, |f(ψSEi(z)| ≤ K. (i = 1, 2, 3)

=⇒|ESE-Sinc quadrature| ≤ KCSECi e

−√2πdN ,

where

CSE = 1 +2

(1− e−√2πd) cos d

, C1 = 22, C2 = 2, C3 = 21/2.

SCAN’2012 22 / 28

Page 26: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

3 Error estimates with explicit constants

Error estimates with explicit constants (DE)

Theorem

• f(ψDEi(·)) is analytic on Dd. (i = 1, 2, 3)

• ∀z ∈ Dd, |f(ψDEi(z)| ≤ K. (i = 1, 2, 3)

=⇒|EDE-Sinc quadrature| ≤ KCDECi e

−2πdN/ log(8dN), (i = 1, 2)

|EDE-Sinc quadrature| ≤ KC ′DECi e

−2πdN/ log(4dN), (i = 3)

where

CDE, C′DE = (only depend on d), C1 = 22, C2 = 2, C5 = 21/2.

SCAN’2012 23 / 28

Page 27: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

3 Error estimates with explicit constants

Numerical Example (C, quadruple precision)

Case 1

∫ ∞

−∞

√1 + tanh2(arcsinh(t)/2)

1 + t2dt = 4arcsinh(1)

1e-35

1e-30

1e-25

1e-20

1e-15

1e-10

1e-05

1

0 10 20 30 40 50 60 70 80 90 100

Err

or

N

DE1

error estimate

SE1

error estimate

• “error estimate” bounds the actual error

• Similar results can be obtained in Cases 2 and 3SCAN’2012 24 / 28

Page 28: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

3 Error estimates with explicit constants

Numerical Example (C, double precision)

Case 1

∫ x

−∞

1

1 + t2dt =

π

2+ arctan(x)

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

1e-04

0.01

1

0 10 20 30 40 50 60 70 80 90 100

Err

or

N

error estimate

error estimate

SE1DE1

• “error estimate” bounds the actual error

• Similar results can be obtained in Cases 2 and 3

SCAN’2012 25 / 28

Page 29: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

4 Summary and future work

Page 30: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

4 Summary and future work

Error estimates with explicit constants

SE/DE-Sinc quadrature

Case 1 (−∞,∞) New!

Case 2 (0,∞) New!

Case 3 (0,∞) New!

Case 4 (a, b) OK [1]

SE/DE-Sinc indefinite integration

Case 1 (−∞,∞) New!

Case 2 (0,∞) New!

Case 3 (0,∞) New!

Case 4 (a, b) OK [1]

t = ψDE3(x) = ex−exp(−x) → t = ψDE3†(x) = log(1 + e(π/2) sinhx)

→ t = ψDE3‡(x) = log(1 + eπ sinhx) (New!)

SCAN’2012 27 / 28

Page 31: Error estimates with explicit constants for Sinc quadrature and …conf.nsc.ru/files/conferences/scan2012/139602/Okayama-scan2012.pdf · 1 Sinc quadrature and Sinc inde nite integration

4 Summary and future work

Future work

SE/DE-Sinc quadrature

Case 1 (−∞,∞) New!

Case 2 (0,∞) New!

Case 3 (0,∞) New!

Case 4 (a, b) OK [1]

SE/DE-Sinc indefinite integration

Case 1 (−∞,∞) New!

Case 2 (0,∞) New!

Case 3 (0,∞) New!

Case 4 (a, b) OK [1]

• Explicit error estimates for the Sinc approximation (almost done)

• Application to the integral equations over the infinite interval

SCAN’2012 28 / 28