20
LSC meeting, Hannover,10/24/2007 1 Fumiko Kawazoe, Shuichi Sato, Volker Leonhardt, Osamu Miyakawa o Morioka, Atsushi Nishizawa, Seiji Kawamura, Akio Sug Ochanomizu University NAOJ/Caltech Tokyo University Experimental Demonstration of a Experimental Demonstration of a control scheme for a tuned RSE control scheme for a tuned RSE interferometer for interferometer for next- next- generation gravitational-wave generation gravitational-wave detectors detectors

Fumiko Kawazoe, Shuichi Sato, Volker Leonhardt, Osamu Miyakawa

  • Upload
    miron

  • View
    47

  • Download
    0

Embed Size (px)

DESCRIPTION

Experimental Demonstration of a control scheme for a tuned RSE interferometer for next-generation gravitational-wave detectors. Fumiko Kawazoe, Shuichi Sato, Volker Leonhardt, Osamu Miyakawa. Tomoko Morioka, Atsushi Nishizawa, Seiji Kawamura, Akio Sugamoto. - PowerPoint PPT Presentation

Citation preview

Page 1: Fumiko Kawazoe,        Shuichi Sato,      Volker Leonhardt,   Osamu Miyakawa

LSC meeting, Hannover,10/24/2007 1

Fumiko Kawazoe, Shuichi Sato, Volker Leonhardt, Osamu Miyakawa

Tomoko Morioka, Atsushi Nishizawa, Seiji Kawamura, Akio Sugamoto

Ochanomizu University NAOJ/Caltech Tokyo University Kyoto University

Experimental Demonstration of a control Experimental Demonstration of a control scheme for a tuned RSE interferometer for scheme for a tuned RSE interferometer for

next-generation gravitational-wave next-generation gravitational-wave detectorsdetectors

Page 2: Fumiko Kawazoe,        Shuichi Sato,      Volker Leonhardt,   Osamu Miyakawa

LSC meeting, Hannover,10/24/2007 2

Motivation

• Plans to use an RSE interferometer in some of the next-

generation interferometers for better sensitivities.– Adv.LIGO…Detuned RSE

– LCGT…Tuned RSE ( = zero detuning or broadband )

• Controlling DOFs is vital for a detector– Control scheme developed for LCGT

– Can be a back-up design for Adv.LIGO(detuned)

• Prototype experiment to verify the control scheme

Page 3: Fumiko Kawazoe,        Shuichi Sato,      Volker Leonhardt,   Osamu Miyakawa

LSC meeting, Hannover,10/24/2007 3

Controlling the RSE

Page 4: Fumiko Kawazoe,        Shuichi Sato,      Volker Leonhardt,   Osamu Miyakawa

LSC meeting, Hannover,10/24/2007 4

Ly

Lxlaser

•L+ = (Lx + Ly) / 2

•L- = (Lx - Ly) / 2 Ly

Lx

•l+ = (lx + ly) / 2

•l- = (lx - ly) / 2

lx

ly

•ls = (lsx + lsy) / 2

lsx

lsy

Fabry-Perot cavity

BS

PRM

SEM

Fabry-Perot cavity

5 degrees of freedoms

A very complicated control system due to the increased number of DOFs

Page 5: Fumiko Kawazoe,        Shuichi Sato,      Volker Leonhardt,   Osamu Miyakawa

LSC meeting, Hannover,10/24/2007 5

Control scheme concepts•Fabry-Perot cavities’ control signal---beat between the carrier and PM sidebands•Central part of the RSE--- beat between the AM and PM sidebands

•Fabry-Perot control signal are bigger by the high finesse

•Can separate FP control signal and the central control signal by not using the carrier for the central part

Page 6: Fumiko Kawazoe,        Shuichi Sato,      Volker Leonhardt,   Osamu Miyakawa

LSC meeting, Hannover,10/24/2007 6

The central part control strategy

Due to the Michelson AsymmetryAM all reflect from the Michelson partPM all transmit though the Michelson part

AM resonant inside PRCPM resonant inside PRC+SEC

Contrasting behavior in the Michelson part as little as possible signal coupling

For AM sidebands: 2δl = nλ(n = 1,2,3…)

For PM sidebands: 2δl = (2m+1)/2 λ (m= 0,1,2…)

--- Michelson Asymmetry

Cavity length design

Page 7: Fumiko Kawazoe,        Shuichi Sato,      Volker Leonhardt,   Osamu Miyakawa

LSC meeting, Hannover,10/24/2007 7

The sensing signal matrix

11 8.0 e-6 -2.6 e-2 6.2 e-4 1.3 e-2 8.0 e-6 -2.6 e-2 6.2 e-4 1.3 e-2

-1.5 e-1 -1.2 e-2 1.1 -2.2 e-2 1

-1.0 e-4 7.6 e-2 1.4 e-3 1 1.1 e-5

-4.9 e-2 -1.1 e-4 1 -8.6 e-3 -5.3 e-1

-2.2e-8 1 1.4 e-8 1.3 e-2 2.0 e-8

Fabry-Perot signals are clear from other signals.

Linearly independent matrix.

Theoretical signal matrix (DC)With the prototype parameters

L+ L- l+ l- ls

BP

DP

BP(DD)

DP(DD)

PO(DD)

These 6 are small

Page 8: Fumiko Kawazoe,        Shuichi Sato,      Volker Leonhardt,   Osamu Miyakawa

LSC meeting, Hannover,10/24/2007 8

Prototype RSE experiment

3rd chamber

Built inside NAOJ’s campus in 2005

RSE locked in 2007

ETMiITMp

mm lens

Page 9: Fumiko Kawazoe,        Shuichi Sato,      Volker Leonhardt,   Osamu Miyakawa

LSC meeting, Hannover,10/24/2007 9

PM :17.25MHzAM :103.5MHz

~90mW

∞ 6.0m

Stable cavities5.7m

FP Finesse :~ 100

( specialized for lock

demonstration ) 4.34m

Optical layout, and Parameters

Page 10: Fumiko Kawazoe,        Shuichi Sato,      Volker Leonhardt,   Osamu Miyakawa

LSC meeting, Hannover,10/24/2007 10

Mainly Input table, plus some detection ports

LASER

EOM(AM)

EOM(PM)¼ λ

PBS

TRp PD

MZ PD

l+ PD

L- PDOSA

Page 11: Fumiko Kawazoe,        Shuichi Sato,      Volker Leonhardt,   Osamu Miyakawa

LSC meeting, Hannover,10/24/2007 11

Detection ports

To OSA

l- PD

L- PD

Tri PD

DP monitor

¼ λPBS

ls PD

Page 12: Fumiko Kawazoe,        Shuichi Sato,      Volker Leonhardt,   Osamu Miyakawa

LSC meeting, Hannover,10/24/2007 12

Damping magnets

Copper

Upper mass

Eddy current damping system

Double suspension system

Two loop

Single loop

30cm

Qpitch:3

Qyaw:7

Suspension system

Page 13: Fumiko Kawazoe,        Shuichi Sato,      Volker Leonhardt,   Osamu Miyakawa

LSC meeting, Hannover,10/24/2007 13

Test mass

Actuator magnets x4

Actuator coils x4

Current in

Suspension systemDC alignment

Page 14: Fumiko Kawazoe,        Shuichi Sato,      Volker Leonhardt,   Osamu Miyakawa

LSC meeting, Hannover,10/24/2007 14

LASER

BP

DP

State1: l- lockedState2: l- & l+ lockedState3: l-, l+, & ls lockedState4:RSE locked

  AM  PM

Lock of the tuned RSE: Lock state

State0: Nothing is locked

s

LL

LL

Page 15: Fumiko Kawazoe,        Shuichi Sato,      Volker Leonhardt,   Osamu Miyakawa

LSC meeting, Hannover,10/24/2007 15

-40 -30 -20 -10 0 10 20 30 400

5

10

15

time[s]

DC

at

DP

- 40 -30 -20 -10 0 10 20 30 40

1234

time[s]

DC

at

BP

- 40 -30 -20 -10 0 10 20 30 400

5

10

time[s]

PR

C g

ain

- 40 -30 -20 -10 0 10 20 30 4002468

time[s]

DC

at

Tri

- 40 -30 -20 -10 0 10 20 30 4002468

time[s]

DC

at

Trp

0: not controlled 1: l- locked 2 : l-, l+ locked 3: l-, l+, ls (central part) locked   4:RSE locked (longest ~15min. disturbed by human activity)

0 0&1 2 3 4

10sec

DP

BP

PR

Cgai

n

FP

iF

Pp

Pow

er

(AU

Pow

er

(AU

Time(sec)

state

Lock of the tuned RSEDC power at various detection portsl- locked

l+ locked ls locked L+ & L- locked

Page 16: Fumiko Kawazoe,        Shuichi Sato,      Volker Leonhardt,   Osamu Miyakawa

16

-100 -50 0 50 1000

0.1

0.2

0.3

0.4

0.5

freqnency[MHz]

Pow

er[

arb.]

-100 -50 0 50 1000

0.1

0.2

0.3

0.4

0.5

freqnency[MHz]-100 -50 0 50 100

0

0.1

0.2

0.3

0.4

0.5

freqnency[MHz]

-100 -50 0 50 1000

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

freqnency[MHz]

Pow

er[

arb.]

-100 -50 0 50 1000

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

freqnency[MHz]-100 -50 0 50 100

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

freqnency[MHz]

  PM

  AM

PO

DP

PM

Optical Spectrum Analyzed at PO, and DP

AM

0&1 2 3

( 1: l-   2: l-, l+   3: central part )

Lock of the tuned RSE:Evaluation of lock

Page 17: Fumiko Kawazoe,        Shuichi Sato,      Volker Leonhardt,   Osamu Miyakawa

LSC meeting, Hannover,10/24/2007 17

L+ L- l+ l- ls

1 5.6 e-2 -5.0 e-2 3.5 e-2 1.1 e-21 5.6 e-2 -5.0 e-2 3.5 e-2 1.1 e-2

-6.5 e-1 3.3 e-1 9.2 e-1 -3.6 1

4.6 e-2 -1.6 e-1 1.6 e-1 1 6.2 e-2

-2.8 e-1 -7.1 e-2 1 -3.6 e-1 -1.5 e-1

4.5e-2 1 1.3 e-2 -8.3 e-2 9.7 e-3

BP

DP

BP(DD)

DP(DD)

PO(DD)

Measured signal matrix ( preliminary )

•Dem. phase set to maximize the desired signal

•Source:3.3kHz

L+ L- l+ l- ls

Needs better lock quality for further discussion..

Page 18: Fumiko Kawazoe,        Shuichi Sato,      Volker Leonhardt,   Osamu Miyakawa

18

Control of a tuned RSE interferometer was successfully demonstrated.    

Results and future work

•FP cavities with L+, and L-.

•Central part with double mod-demod.

Lock acquisition scheme for LCGT is verified with this control scheme.

Future work:•Further investigation of the signal matrix (further diagnolazation, possible application of the delocation scheme, shot noise sensitivity as a detector after the lock is acquired)•Measurement of the optical gain matrix with better lock quality.

Page 19: Fumiko Kawazoe,        Shuichi Sato,      Volker Leonhardt,   Osamu Miyakawa

LSC meeting, Hannover,10/24/2007 19

Delocation scheme

Page 20: Fumiko Kawazoe,        Shuichi Sato,      Volker Leonhardt,   Osamu Miyakawa

LSC meeting, Hannover,10/24/2007 20

Diagnolized signal matrix