45
1 Highly Effective Configurational Assignment Using Bisthioureas as Chiral Solvating Agents in the Presence of DABCO Guangling Bian, Hongjun Fan, Huayin Huang, Shiwei Yang, Hua Zong, Ling Song *,and Genjin Yang *,§ The Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China Tel: +86(591)83720913, Fax +86(591)83722697, E-mail:[email protected] The State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R.China § School of Pharmacy, Second Military Medical University, Shanghai 200433, P.R.China [email protected] Genenal information ...……………………………………………………………………..……………3 CSAs for configurational assignments of carboxylic Acids…...…………………………………….…..3 Figure S1: 1 H NMR (400 MHz,TMS) of (S)-CSA 1, DABCO and carboxylic acid 1 ............................. 4 Figure S2: 1 H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 1 ............................ 4 Figure S3: 1 H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 2............................. 5 Figure S4: 1 H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 2 ............................ 5 Figure S5. 1 H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 3 ............................ 6 Figure S6. 1 H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 3 ............................ 6 Figure S7. 1 H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 4 ............................ 7 Figure S8. 1 H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 4 ............................ 7 Figure S9. 1 H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 5 ............................ 8 Figure S10. 1 H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 5 .......................... 8 Figure S11. 1 H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 6 .......................... 9 Figure S12. 1 H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 6 .......................... 9 Figure S13. 1 H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 7 ........................ 10 Figure S14. 1 H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 7 ........................ 10 Figure S15. 1 H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 8 ........................ 11 Figure S16. 1 H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 8 ........................ 11 Figure S17. 1 H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 9 ........................ 12 Figure S18. 1 H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 9 ........................ 12

Highly Effective Configurational Assignment Using

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

1

Highly Effective Configurational Assignment Using

Bisthioureas as Chiral Solvating Agents in the

Presence of DABCO

Guangling Bian,† Hongjun Fan,‡ Huayin Huang,† Shiwei Yang,† Hua Zong,† Ling Song*,† and

Genjin Yang*,§ †The Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of

Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R.

China

Tel: +86(591)83720913, Fax +86(591)83722697, E-mail:[email protected]

‡The State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese

Academy of Sciences, Dalian, 116023, P.R.China

§School of Pharmacy, Second Military Medical University, Shanghai 200433, P.R.China

[email protected]

Genenal information ...……………………………………………………………………..……………3

CSAs for configurational assignments of carboxylic Acids…...…………………………………….…..3

Figure S1: 1H NMR (400 MHz,TMS) of (S)-CSA 1, DABCO and carboxylic acid 1 ............................. 4

Figure S2: 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 1 ............................ 4

Figure S3: 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 2 ............................. 5

Figure S4: 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 2 ............................ 5

Figure S5. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 3 ............................ 6

Figure S6. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 3 ............................ 6

Figure S7. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 4 ............................ 7

Figure S8. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 4 ............................ 7

Figure S9. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 5 ............................ 8

Figure S10. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 5 .......................... 8

Figure S11. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 6 .......................... 9

Figure S12. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 6 .......................... 9

Figure S13. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 7 ........................ 10

Figure S14. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 7 ........................ 10

Figure S15. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 8 ........................ 11

Figure S16. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 8 ........................ 11

Figure S17. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 9 ........................ 12

Figure S18. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 9 ........................ 12

2

Figure S19. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 10 ...................... 13

Figure S20. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 10 ...................... 13

Figure S21. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 11 ...................... 14

Figure S22. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 11 ...................... 14

Figure S23. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 12 ...................... 15

Figure S24. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 12 ...................... 15

Figure S25. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 13 ...................... 16

Figure S26. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 13 ...................... 16

Figure S27. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 14 ...................... 17

Figure S28. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 14 ...................... 17

Figure S29. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 15 ...................... 18

Figure S30. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 15 ...................... 18

Figure S31. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 16 ...................... 19

Figure S32. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 16 ...................... 19

Figure S33. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 17 ...................... 20

Figure S34. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 17 ...................... 20

Figure S35. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 18 ...................... 21

Figure S36. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 18 ...................... 21

Figure S37. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 19 ...................... 22

Figure S38. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 19 ...................... 22

Figure S39. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 20 ...................... 23

Figure S40. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 20 ...................... 23

Figure S41. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 21 ...................... 24

Figure S42. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 21 ...................... 24

Figure S43. Chiral HPLC analysis of racemic carboxylic acid 20 ......................................................... 25

Figure S44. Chiral HPLC analysis of carboxylic acid 20 ....................................................................... 25

Figure S45. Chiral HPLC analysis of the carboxylic acid 20’s derivative ............................................. 26

Figure S46. Chiral HPLC analysis of nature product Danshensu (R) ..................................................... 26

Figure S47. 1H NMR (500 MHz, TMS) of 40 mM (S)-CSA 1/40 mM (S)-MA/40 mM DABCO ......... 27

Figure S48. 1D NOESY (500 MHz, TMS) of 40 mM (S)-CSA 1/40 mM (S)-MA/40 mM DABCO .... 27

Figure S49. 1H NMR (500 MHz, TMS) of 40 mM (R)-CSA 1/40 mM (S)-MA/40 mM DABCO ......... 28

Figure S50. 1D NOESY (500 MHz, TMS) of 40 mM (R)-CSA 1/40 mM (S)-MA/40 mM DABCO .... 28

Figure S51. 1H NMR (500 MHz, TMS) of 40 mM (S)-CSA 1/40 mM (R)-MA/40 mM DABCO ......... 29

Figure S52. 1D NOESY (500 MHz, TMS) of 40 mM (S)-CSA 1/40 mM (R)-MA/40 mM DABCO .... 29

Figure S53. 1H NMR (500 MHz, TMS) of 40 mM (R)-CSA 1/40 mM (R)-MA/40 mM DABCO ........ 30

Figure S54. 1D NOESY (500 MHz, TMS) of 40 mM (R)-CSA 1/40 mM (R)-MA/40 mM DABCO ... 30

Figure S55. Contrasted 1D NOESY spectra ........................................................................................... 31

Studies of the stoichiometry of the CSA 1/MA-DABCO complex (Job Plots). ..................................... 31

Determination of association constants by 1H NMR titrations. .............................................................. 32

Computational models of complexes. .................................................................................................... 33

REFERENCES ....................................................................................................................................... 45

3

Genenal information: CSA 1 was prepared from commercial 1,2-diphenylethane-1,2-diamine

and isothiocyanate according to reference1. Carboxylic acid 20 was isolated by Chiralcel OJ

column from racemate and its derivative was obtained by deprotected operation. Other compounds

were purchased from supplier, which were used without further purification. 1H NMR spectra

were recorded on a Bruker Avance 400 MHz spectrometer (Switzerland) and 1D NOESY spectra

were recorded on a Bruker Avance 500 MHz spectrometer, using TMS (δH or δC = 0) or CDCl3

(δH = 7.26, δC = 77.16) as internal standards. Computational modeling studies were performed

with Gaussian09 program2. Geometries of ternary complexes were optimized using molecular

mechanics method initially and then DFT method on b3lyp/6-31+g(d,p) level. All geometry

optimizations were carried out in gas phase.

CSAs for configurational assignments of carboxylic Acids: Carboxylic acids (24 µmol), DABCO

(24 µmol) and (R)-CSA 1 or (S)-CSA 1 (48 µmol) were mixed in a mixed solvent (0.3 mL CDCl3 + 0.3

mL C6D6) and 1H NMR data were collected on a Bruker Avance 400 MHz spectrometer at 25 oC

(Carboxylic acid 20 was tested under the condition of 50 mM CSA 1 / 25 mM Carboxylic acid 20 / 25

mM DABCO). Chemical shifts (ppm) internally referenced to TMS signal (0 ppm) were obtained.

4

Figure S1: 1H NMR (400 MHz,TMS) of (S)-CSA 1, DABCO and carboxylic acid 1

Figure S2: 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 1

11 10 9 8 7 6 5 4 3 2 1 0 ppm

5.320

COOH

OHH

+ (S)-CSA 1 + DABCO

11 10 9 8 7 6 5 4 3 2 1 0 ppm

4.767

COOH

OHH

+ (R)-CSA 1 + DABCO

5

Figure S3: 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 2

Figure S4: 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 2

11 10 9 8 7 6 5 4 3 2 1 0 ppm

4.776

+ (S )-CSA 1 + DABCOCOOH

HHO

11 10 9 8 7 6 5 4 3 2 1 0 ppm

5.316

+ (R)-CSA 1 + DABCOCOOH

HHO

6

Figure S5. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 3

Figure S6. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 3

11 10 9 8 7 6 5 4 3 2 1 0 ppm

4.971

+ (S )-CSA 1 + DABCOCOOH

HHO

Cl

11 10 9 8 7 6 5 4 3 2 1 0 ppm

5.600

+ (R)-CSA 1 + DABCOCOOH

HHO

Cl

7

Figure S7. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 4

Figure S8. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 4

11 10 9 8 7 6 5 4 3 2 1 0 ppm

5.310

+ (S )-CSA 1 + DABCOCOOH

OHH

H3CO

11 10 9 8 7 6 5 4 3 2 1 0 ppm

4.749

+ (R)-CSA 1 + DABCOCOOH

OHH

H3CO

8

Figure S9. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 5

Figure S10. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 5

11 10 9 8 7 6 5 4 3 2 1 0 ppm

4.752

+ (S)-CSA 1 + DABCOCOOH

HHO

H3CO

11 10 9 8 7 6 5 4 3 2 1 0 ppm

5.290

COOH

HHO

H3CO

+ (R)-CSA 1 + DABCO

9

Figure S11. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 6

Figure S12. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 6

11 10 9 8 7 6 5 4 3 2 1 0 ppm

4.745

+ (S )-CSA 1 + DABCOCOOH

HHO

Cl

11 10 9 8 7 6 5 4 3 2 1 0 ppm

5.251

+ (R)-CSA 1 + DABCOCOOH

HHO

Cl

10

Figure S13. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 7

Figure S14. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 7

11 10 9 8 7 6 5 4 3 2 1 0 ppm

4.793

+ (S )-CSA 1 + DABCOCOOH

HHO

F

11 10 9 8 7 6 5 4 3 2 1 0 ppm

5.450

+ (R)-CSA 1 + DABCOCOOH

HHO

F

11

Figure S15. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 8

Figure S16. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 8

11 10 9 8 7 6 5 4 3 2 1 0 ppm

3.861

3.868

+ (S)-CSA 1 + DABCOCOOH

HHO

11 10 9 8 7 6 5 4 3 2 1 0 ppm

3.990

3.998

+ (R)-CSA 1 + DABCOCOOH

HHO

12

Figure S17. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 9

Figure S18. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 9

11 10 9 8 7 6 5 4 3 2 1 0 ppm

4.012

4.020

+ (S)-CSA 1 + DABCOCOOH

OHH

11 10 9 8 7 6 5 4 3 2 1 0 ppm

3.880

3.887

+ (R)-CSA 1 + DABCOCOOH

OHH

13

Figure S19. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 10

Figure S20. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 10

11 10 9 8 7 6 5 4 3 2 1 0 ppm4.162

4.175

4.182

4.195

+ (S )-CSA 1 + DABCOCOOH

OHH

11 10 9 8 7 6 5 4 3 2 1 0 ppm

4.059

4.069

4.082

4.092

+ (R)-CSA 1 + DABCOCOOH

OHH

14

Figure S21. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 11

Figure S22. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 11

11 10 9 8 7 6 5 4 3 2 1 0 ppm

3.781

+ (S )-CSA 1 + DABCOCOOH

OHH

11 10 9 8 7 6 5 4 3 2 1 0 ppm

3.699

+ (R)-CSA 1 + DABCOCOOH

OHH

15

Figure S23. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 12

Figure S24. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 12

11 10 9 8 7 6 5 4 3 2 1 0 ppm4.256

4.266

4.277

4.286

+ (S )-CSA 1 + DABCOCOOH

HHO

11 10 9 8 7 6 5 4 3 2 1 0 ppm

4.385

4.394

4.403

4.413

+ (R)-CSA 1 + DABCOCOOH

HHO

16

Figure S25. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 13

Figure S26. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 13

11 10 9 8 7 6 5 4 3 2 1 0 ppm

4.379

4.390

4.398

4.408

+ (S )-CSA 1 + DABCOCOOH

OHH

11 10 9 8 7 6 5 4 3 2 1 0 ppm

4.253

4.263

4.273

4.283

+ (R)-CSA 1 + DABCOCOOH

OHH

17

Figure S27. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 14

Figure S28. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 14

11 10 9 8 7 6 5 4 3 2 1 0 ppm3.968

3.976

3.990

3.997

+ (S )-CSA 1 + DABCOCOOH

HHO

11 10 9 8 7 6 5 4 3 2 1 0 ppm

4.059

4.066

4.082

4.088

+ (R)-CSA 1 + DABCOCOOH

HHO

18

Figure S29. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 15

Figure S30. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 15

11 10 9 8 7 6 5 4 3 2 1 0 ppm

4.109

+ (S )-CSA 1 + DABCOCOOH

HH3CO

11 10 9 8 7 6 5 4 3 2 1 0 ppm

4.647

+ (R)-CSA 1 + DABCOCOOH

HH3CO

19

Figure S31. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 16

Figure S32. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 16

11 10 9 8 7 6 5 4 3 2 1 0 ppm

5.880

+ (S)-CSA 1 + DABCOCOOH

OCOCH3H

11 10 9 8 7 6 5 4 3 2 1 0 ppm

5.664

+ (R)-CSA 1 + DABCOCOOH

OCOCH3H

20

Figure S33. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 17

Figure S34. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 17

11 10 9 8 7 6 5 4 3 2 1 0 ppm

4.261

4.280

4.299

+ (S )-CSA 1 + DABCOCOOH

HO

11 10 9 8 7 6 5 4 3 2 1 0 ppm

4.054

4.073

4.092

+ (R)-CSA 1 + DABCOCOOH

HO

21

Figure S35. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 18

Figure S36. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 18

11 10 9 8 7 6 5 4 3 2 1 0 ppm

4.419

4.436

4.453

4.470

+ (S)-CSA 1 + DABCOCOOH

HO

HO

11 10 9 8 7 6 5 4 3 2 1 0 ppm

4.442

4.458

4.476

4.492

+ (R)-CSA 1 + DABCOCOOH

HO

HO

22

Figure S37. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 19

Figure S38. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 19

11 10 9 8 7 6 5 4 3 2 1 0 ppm

5.845

COOH

HPhCOO

+ DABCO+(S )-CSA 1

11 10 9 8 7 6 5 4 3 2 1 0 ppm

6.020

COOH

HPhCOO

+ DABCO+(R )-CSA 1

23

Figure S39. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 20

Figure S40. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 20

11 10 9 8 7 6 5 4 3 2 1 0 ppm4.234

4.244

4.252

4.263

+ DABCO+(S )-CSA 1

COOH

HHOO

O

11 10 9 8 7 6 5 4 3 2 1 0 ppm

4.320

4.330

4.337

4.347

+ DABCO+(R )-CSA 1COOH

HHOO

O

24

Figure S41. 1H NMR (400 MHz, TMS) of (S)-CSA 1, DABCO and carboxylic acid 21

Figure S42. 1H NMR (400 MHz, TMS) of (R)-CSA 1, DABCO and carboxylic acid 21

11 10 9 8 7 6 5 4 3 2 1 0 ppm

4.574

4.592

4.610

4.628

+ DABCO+(S)-CSA 1

COOH

NH

O

O

11 10 9 8 7 6 5 4 3 2 1 0 ppm

4.870

4.888

4.906

4.923

+ DABCO+(R )-CSA 1

COOH

NH

O

O

25

Figure S43. Chiral HPLC analysis of racemic carboxylic acid 20

Figure S44. Chiral HPLC analysis of carboxylic acid 20

COOH

HHOO

O

carboxylic acid 20

Chiral column: Chiralcel OJ-H column,Mobile phase: n-hexane /isopropanol /trifluoroacetic acid = 90/10/0.1Flow rate: 1ml/min

26

Figure S45. Chiral HPLC analysis of the carboxylic acid 20’s derivative

Figure S46. Chiral HPLC analysis of nature product Danshensu (R)

27

Figure S47. 1H NMR (500 MHz, TMS) of 40 mM (S)-CSA 1/40 mM (S)-MA/40 mM DABCO

Figure S48. 1D NOESY (500 MHz, TMS) of 40 mM (S)-CSA 1/40 mM (S)-MA/40 mM DABCO

10 9 8 7 6 5 4 3 2 1 ppm

HaHb

Hc

Hd He

H f Hg

H i

α -H

Hh

N N

S

N

S

N

CF3

CF3

F3C

F3CO O

OH

HH

N

N

Ha

HbHb

Ha

Hc

Hc

Hd

Hc

Hd

He

He

Hf

Hf

Hf Hf

Hg

Hg HgHg Hg

Hg

Hg

Hg

Hg

Hh Hh

Hi

10 9 8 7 6 5 4 3 2 1 ppm

Hc

He

α -H

28

Figure S49. 1H NMR (500 MHz, TMS) of 40 mM (R)-CSA 1/40 mM (S)-MA/40 mM DABCO

Figure S50. 1D NOESY (500 MHz, TMS) of 40 mM (R)-CSA 1/40 mM (S)-MA/40 mM DABCO

10 9 8 7 6 5 4 3 2 1 ppm

Hh

Ha

Hb

Hc

HdHf Hg

H i

α -H

He

7.07.17.27.37.47.5 ppm

N N

S

N

S

N

CF3

CF3

F3C

F3CO O

OH

HH

N

N

Ha

HbHb

Ha

Hc

Hc

Hd

Hc

Hd

He

He

Hf

Hf

Hf Hf

Hg

Hg HgHg Hg

Hg

Hg

Hg

Hg

Hh Hh

Hi

10 9 8 7 6 5 4 3 2 1 ppm

α -H

He

7.37.47.57.67.77.8 ppm

Hc Hf

29

Figure S51. 1H NMR (500 MHz, TMS) of 40 mM (S)-CSA 1/40 mM (R)-MA/40 mM DABCO

Figure S52. 1D NOESY (500 MHz, TMS) of 40 mM (S)-CSA 1/40 mM (R)-MA/40 mM DABCO

11 10 9 8 7 6 5 4 3 2 1 0 ppm

Hh

Ha

Hb

Hc

HdHf Hg

Hi

α -H

He

7.07.17.27.37.47.5 ppm

N N

S

N

S

N

CF3

CF3

F3C

F3CO O

OH

HH

N

N

Ha

HbHb

Ha

Hc

Hc

Hd

Hc

Hd

He

He

Hf

Hf

Hf Hf

Hg

Hg HgHg Hg

Hg

Hg

Hg

Hg

Hh Hh

Hi

10 9 8 7 6 5 4 3 2 1 ppm

7.37.47.57.67.77.8 ppm

α -H

He

HcHf

30

Figure S53. 1H NMR (500 MHz, TMS) of 40 mM (R)-CSA 1/40 mM (R)-MA/40 mM DABCO

Figure S54. 1D NOESY (500 MHz, TMS) of 40 mM (R)-CSA 1/40 mM (R)-MA/40 mM DABCO

10 9 8 7 6 5 4 3 2 1 0 ppm

Hh

Ha

Hb

Hc

Hd HfHg

H i

α -H

He

7.17.27.37.47.5 ppm

N N

S

N

S

N

CF3

CF3

F3C

F3CO O

OH

HH

N

N

Ha

HbHb

Ha

Hc

Hc

Hd

Hc

Hd

He

He

Hf

Hf

Hf Hf

Hg

Hg HgHg Hg

Hg

Hg

Hg

Hg

Hh Hh

Hi

10 9 8 7 6 5 4 3 2 1 ppm

α -H

He

Hc

31

Figure S55. Contrasted 1D NOESY spectra

Studies of the stoichiometry of the CSA 1/MA-DABCO complex (Job Plots).

According to the references (J. Org. Chem. 2010, 75, 5487; New J. Chem. 2013, 37, 4025; J. Org. Chem., 2013, 78, 9137), we proposed MA/DABCO formed an 1:1 ion-pair and behaved as a single moiey to accept protons from CSA 1. Thus, only the stoichiometry of the CSA 1/ ion-pair need to determine. It was found that the recorded Job Plots for CSA 1 exhibited maxima at 0.5 ± 0.05. This indicates that CSA 1 forms a 1:1 complex with the MA-DABCO ion-pair. (x = [CSA 1] / ([CSA 1] + [MA-DABCO]); ∆δ = variation of the chemical shift of the observed proton (NHa))

7.17.27.37.47.57.67.77.87.9 ppm

Hc

He

7.17.27.37.47.57.67.77.87.9 ppm

He

HcHf Hf

(S)-CSA 1 + (S)-MA (S)-CSA 1 + (R)-MA(R)-CSA 1 + (R)-MA(R)-CSA 1 + (S)-MA

32

Determination of association constants by 1H NMR titrations.

The 50% CDCl3/50% C6D6 solution of CSA 1 (8 mM) was titrated by the addition of concentrated 50%

CDCl3/50% C6D6 solution of mandelates (in the form of their DABCO salts) and 1H NMR was then

measured at 25 ºC. The change in the NHa resonances of CSA 1 was monitored. The data were fit to a

1:1 binding profile and the binding constant was calculated by the nonlinear least-squares curve-fitting

method.

[(R)-CSA 1] = 8 mM

Ka = 226 ± 10 M-1

∆δmax = 3.11 ± 0.03 ppm

[(S)-CSA 1] = 8 mM

Ka = 356 ± 30 M-1

∆δmax = 3.04 ± 0.04 ppm

33

Computational models of complexes.

Ball-cylinder model for (S)-CSA 1/(S)-MA/DABCO complex and cartesian coordinates.

The distances between α-H of MA and Ar-Hs of CSA 1 have been marked.

C 0.253585 -0.167477 3.647988

C -0.100511 -0.931379 2.332219

O 0.889212 -1.301586 1.623280

O -1.303851 -1.169890 2.097068

C -0.871928 0.701703 4.186192

O 1.459543 0.572172 3.409331

C -0.822753 2.099769 4.112537

C -1.872952 2.880512 4.610175

C -2.985261 2.270683 5.191370

C -3.037228 0.875310 5.279193

C -1.989023 0.099429 4.784506

H 0.461404 -0.963987 4.378553

H 1.830086 0.854773 4.256125

H 0.048095 2.584258 3.682590

H -1.813352 3.963792 4.551285

H -3.800205 2.874146 5.579775

H -3.895467 0.390540 5.735288

H -2.043527 -0.982985 4.849489

34

C 2.679416 6.057934 -1.268519

C -2.639969 6.001483 0.003863

C -0.420628 2.916867 -0.557392

C 0.753313 3.175553 0.433337

C -2.348274 5.681875 -2.371640

N 1.562755 1.971201 0.698628

C 2.441694 1.325313 -0.112043

N 3.043024 0.273492 0.568500

C 4.151514 -0.506652 0.235881

C 4.267394 -1.749332 0.883734

C 5.371314 -2.570799 0.649999

C 6.382611 -2.184694 -0.228339

C 3.228670 6.699240 -0.156170

C 7.337607 -0.522832 -1.837194

F 7.416479 0.818957 -1.981933

F 8.567133 -0.960291 -1.464741

F 7.104871 -1.039052 -3.075465

C 5.427324 -3.906254 1.342954

F 5.189744 -3.804300 2.675014

F 6.617309 -4.526513 1.193294

F 4.476089 -4.761939 0.856003

S 2.710786 1.694816 -1.728633

C 6.269195 -0.940470 -0.856536

C 5.178482 -0.100583 -0.637424

N -1.256913 1.840925 0.004195

C -2.030495 0.985762 -0.716987

N -2.819608 0.197025 0.108061

C -3.939277 -0.576597 -0.231754

C -4.208038 -1.707522 0.552861

C -5.345175 -2.480656 0.304911

C -6.231333 -2.150264 -0.717883

C -6.899072 -0.660563 -2.614506

F -8.195128 -0.899506 -2.289183

F -6.641034 -1.398556 -3.729056

F -6.811470 0.639274 -2.977714

C -5.584967 -3.688473 1.172444

F -6.698980 -4.370643 0.824415

F -4.545559 -4.569281 1.106224

F -5.714158 -3.356134 2.483479

S -1.967248 0.853140 -2.393938

C 2.966593 6.202732 1.122977

C -5.961752 -1.012004 -1.486162

C -4.836385 -0.224279 -1.255495

C -2.897498 6.403629 -1.309886

35

C -1.272421 4.160334 -0.809581

C 1.607486 4.417707 0.166581

C -1.544285 4.566727 -2.121801

C -1.835704 4.887435 0.249516

C 2.158559 5.074947 1.276721

C 1.878695 4.924375 -1.109795

H 2.877905 6.435027 -2.267469

H -3.063520 6.555246 0.836875

H -0.027349 2.548005 -1.504451

H 0.283758 3.358231 1.406862

H -2.548832 5.981269 -3.396277

H 1.549558 1.654827 1.665534

H 2.464278 -0.128640 1.311549

H 3.493813 -2.057663 1.580814

H 7.238533 -2.822899 -0.406777

H 3.852828 7.578845 -0.284334

H 5.118852 0.857836 -1.131930

H -1.538661 1.967853 0.971312

H -2.373236 -0.086741 0.987338

H -3.524856 -1.971831 1.354069

H -7.111935 -2.751369 -0.905774

H 3.382058 6.694426 1.997919

H -4.656311 0.655344 -1.856769

H -3.522999 7.270313 -1.502638

H -1.133698 3.998271 -2.950548

H -1.650609 4.592665 1.279881

H 1.953594 4.700788 2.277961

H 1.478406 4.431949 -1.986309

N 0.208767 -3.995628 -2.794382

C 1.029078 -4.732024 -1.823591

N 0.413313 -2.641153 -0.656309

C 1.129619 -3.951217 -0.478035

C -1.043304 -2.885775 -0.945927

C -1.129414 -3.766928 -2.226914

C 1.032295 -1.863790 -1.790341

C 0.841658 -2.699724 -3.090494

H 0.582727 -5.717684 -1.663356

H 2.022607 -4.885292 -2.254298

H 0.513582 -2.080597 0.252127

H 0.647324 -4.469274 0.354405

H 2.158520 -3.726825 -0.192958

H -1.476084 -3.356435 -0.061484

H -1.506761 -1.909076 -1.084264

H -1.750748 -3.276435 -2.980741

36

H -1.580479 -4.738100 -2.003413

H 0.532413 -0.894551 -1.836212

H 2.080873 -1.699872 -1.537841

H 1.804804 -2.883256 -3.574793

H 0.209013 -2.161115 -3.800578

Ball-cylinder model for (R)-CSA 1/(S)-MA/DABCO complex and cartesian coordinates.

The distances between α-H of MA and Ar-Hs of CSA 1 have been marked.

C -0.468889 0.643588 -3.969119

C 0.339975 0.328402 -2.691009

O -0.202186 -0.412612 -1.827595

O 1.489548 0.867854 -2.581072

C -2.365620 2.297161 -3.582762

C -0.674999 4.470922 -4.048737

C -0.178777 3.167967 -4.127258

O -1.493074 -0.311653 -4.154531

C -1.018946 2.069805 -3.891623

37

C -2.861937 3.602574 -3.501428

C -2.019879 4.692451 -3.733353

H 0.228088 0.584891 -4.815074

H -3.025297 1.448719 -3.436997

H -0.015894 5.312427 -4.244055

H 0.865422 2.999166 -4.374549

H -1.514864 -0.851482 -3.346949

H -3.909508 3.764503 -3.264523

H -2.409249 5.704939 -3.679821

C 3.026545 5.105610 3.076880

C -1.919011 6.479556 0.383357

C -0.510262 3.027391 1.301695

C 0.889711 3.047587 0.609679

C -2.185152 6.141454 2.759220

N 1.388415 1.684066 0.343800

C 1.587393 0.657904 1.219663

N 1.545506 -0.561255 0.541747

C 1.953649 -1.835177 0.952966

C 1.369850 -2.934653 0.294829

C 1.788446 -4.232691 0.578469

C 2.788804 -4.477924 1.523133

C 3.922182 5.722833 2.200280

C 4.473795 -3.588297 3.171793

F 4.209246 -3.000597 4.360734

F 5.643557 -3.041346 2.724202

F 4.724252 -4.894901 3.413892

C 1.192445 -5.379321 -0.198536

F 1.274674 -6.552264 0.468563

F -0.107621 -5.173768 -0.505148

F 1.846019 -5.560246 -1.385713

S 1.846340 0.825958 2.862184

C 3.361842 -3.384813 2.172555

C 2.960651 -2.073735 1.902277

N -1.352713 2.100171 0.544104

C -2.204031 1.172937 1.067670

N -2.607708 0.271750 0.087762

C -3.641789 -0.675718 0.148296

C -3.465486 -1.881525 -0.547189

C -4.488463 -2.827731 -0.584970

C -5.696566 -2.601874 0.076538

C -7.155151 -1.156517 1.507765

F -8.224382 -1.665185 0.842680

F -7.149778 -1.744048 2.733359

F -7.399217 0.160147 1.706075

38

C -4.304327 -4.122391 -1.334422

F -4.367260 -5.198553 -0.508271

F -3.114318 -4.186778 -1.978486

F -5.272091 -4.303147 -2.271611

S -2.649934 1.109183 2.677642

C -5.864297 -1.398662 0.765273

C -4.856926 -0.434390 0.805541

C -2.351495 6.944260 1.628578

C -1.138731 4.414456 1.404246

C 1.932269 3.983515 1.221235

C 2.828158 4.619878 0.349018

C 2.041602 4.241611 2.592490

C 3.820471 5.477880 0.828648

C -1.584986 4.884964 2.645322

C -1.318971 5.223581 0.272956

H 3.094141 5.292611 4.144578

H -2.048957 7.094056 -0.503031

H -0.423380 2.603719 2.302924

H 0.720317 3.432252 -0.402782

H -2.528208 6.487869 3.729834

H 1.357061 1.420959 -0.639824

H 0.946226 -0.561884 -0.293768

H 0.583833 -2.763487 -0.433686

H 3.104726 -5.488127 1.748698

H 4.685836 6.394673 2.581503

H 3.406280 -1.245819 2.436608

H -1.356712 2.201810 -0.464513

H -1.919316 0.098762 -0.643510

H -2.527098 -2.077244 -1.053981

H -6.490651 -3.338820 0.047331

H -5.011412 0.494205 1.336269

H -2.818415 7.921163 1.714945

H 2.737991 4.452466 -0.722805

H 1.370522 3.758103 3.291017

H 4.498404 5.965786 0.133571

H -1.477913 4.254437 3.522932

H -1.001599 4.880942 -0.709017

N 6.436319 -0.598970 -2.274341

C 6.165624 0.318567 -3.388484

N 3.985325 0.044949 -2.254338

C 4.661976 0.730484 -3.411034

C 4.097614 -1.450228 -2.404744

C 5.615192 -1.809203 -2.420025

C 4.616593 0.482413 -0.956038

39

C 6.117499 0.063347 -1.000763

H 6.443982 -0.175480 -4.323577

H 6.804818 1.198735 -3.276979

H 2.956713 0.317083 -2.273976

H 4.141409 0.417149 -4.318523

H 4.506408 1.803651 -3.282035

H 3.582673 -1.720648 -3.329601

H 3.560996 -1.899702 -1.567367

H 5.855048 -2.494503 -1.603068

H 5.885975 -2.303890 -3.356899

H 4.059824 0.002126 -0.151288

H 4.471397 1.561458 -0.872836

H 6.765586 0.937060 -0.890767

H 6.348664 -0.623894 -0.182907

Ball-cylinder model for (R)-CSA 1/(R)-MA/DABCO complex and cartesian coordinates.

4.27 Ao

Hc

Hc

Hf

5.10 Ao

6.22 Ao

The distances between α-H of MA and Ar-Hs of CSA 1 have been marked.

C 0.253585 -0.167477 -3.647988

C -0.100511 -0.931379 -2.332219

40

O 0.889212 -1.301586 -1.623280

O -1.303851 -1.169890 -2.097068

C -0.871928 0.701703 -4.186192

O 1.459543 0.572172 -3.409331

C -0.822753 2.099769 -4.112537

C -1.872952 2.880512 -4.610175

C -2.985261 2.270683 -5.191370

C -3.037228 0.875310 -5.279193

C -1.989023 0.099429 -4.784506

H 0.461404 -0.963987 -4.378553

H 1.830086 0.854773 -4.256125

H 0.048095 2.584258 -3.682590

H -1.813352 3.963792 -4.551285

H -3.800205 2.874146 -5.579775

H -3.895467 0.390540 -5.735288

H -2.043527 -0.982985 -4.849489

C 2.679416 6.057934 1.268519

C -2.639969 6.001483 -0.003863

C -0.420628 2.916867 0.557392

C 0.753313 3.175553 -0.433337

C -2.348274 5.681875 2.371640

N 1.562755 1.971201 -0.698628

C 2.441694 1.325313 0.112043

N 3.043024 0.273492 -0.568500

C 4.151514 -0.506652 -0.235881

C 4.267394 -1.749332 -0.883734

C 5.371314 -2.570799 -0.649999

C 6.382611 -2.184694 0.228339

C 3.228670 6.699240 0.156170

C 7.337607 -0.522832 1.837194

F 7.416479 0.818957 1.981933

F 8.567133 -0.960291 1.464741

F 7.104871 -1.039052 3.075465

C 5.427324 -3.906254 -1.342954

F 5.189744 -3.804300 -2.675014

F 6.617309 -4.526513 -1.193294

F 4.476089 -4.761939 -0.856003

S 2.710786 1.694816 1.728633

C 6.269195 -0.940470 0.856536

C 5.178482 -0.100583 0.637424

N -1.256913 1.840925 -0.004195

C -2.030495 0.985762 0.716987

N -2.819608 0.197025 -0.108061

C -3.939277 -0.576597 0.231754

41

C -4.208038 -1.707522 -0.552861

C -5.345175 -2.480656 -0.304911

C -6.231333 -2.150264 0.717883

C -6.899072 -0.660563 2.614506

F -8.195128 -0.899506 2.289183

F -6.641034 -1.398556 3.729056

F -6.811470 0.639274 2.977714

C -5.584967 -3.688473 -1.172444

F -6.698980 -4.370643 -0.824415

F -4.545559 -4.569281 -1.106224

F -5.714158 -3.356134 -2.483479

S -1.967248 0.853140 2.393938

C 2.966593 6.202732 -1.122977

C -5.961752 -1.012004 1.486162

C -4.836385 -0.224279 1.255495

C -2.897498 6.403629 1.309886

C -1.272421 4.160334 0.809581

C 1.607486 4.417707 -0.166581

C -1.544285 4.566727 2.121801

C -1.835704 4.887435 -0.249516

C 2.158559 5.074947 -1.276721

C 1.878695 4.924375 1.109795

H 2.877905 6.435027 2.267469

H -3.063520 6.555246 -0.836875

H -0.027349 2.548005 1.504451

H 0.283758 3.358231 -1.406862

H -2.548832 5.981269 3.396277

H 1.549558 1.654827 -1.665534

H 2.464278 -0.128640 -1.311549

H 3.493813 -2.057663 -1.580814

H 7.238533 -2.822899 0.406777

H 3.852828 7.578845 0.284334

H 5.118852 0.857836 1.131930

H -1.538661 1.967853 -0.971312

H -2.373236 -0.086741 -0.987338

H -3.524856 -1.971831 -1.354069

H -7.111935 -2.751369 0.905774

H 3.382058 6.694426 -1.997919

H -4.656311 0.655344 1.856769

H -3.522999 7.270313 1.502638

H -1.133698 3.998271 2.950548

H -1.650609 4.592665 -1.279881

H 1.953594 4.700788 -2.277961

H 1.478406 4.431949 1.986309

42

N 0.208767 -3.995628 2.794382

C 1.029078 -4.732024 1.823591

N 0.413313 -2.641153 0.656309

C 1.129619 -3.951217 0.478035

C -1.043304 -2.885775 0.945927

C -1.129414 -3.766928 2.226914

C 1.032295 -1.863790 1.790341

C 0.841658 -2.699724 3.090494

H 0.582727 -5.717684 1.663356

H 2.022607 -4.885292 2.254298

H 0.513582 -2.080597 -0.252127

H 0.647324 -4.469274 -0.354405

H 2.158520 -3.726825 0.192958

H -1.476084 -3.356435 0.061484

H -1.506761 -1.909076 1.084264

H -1.750748 -3.276435 2.980741

H -1.580479 -4.738100 2.003413

H 0.532413 -0.894551 1.836212

H 2.080873 -1.699872 1.537841

H 1.804804 -2.883256 3.574793

H 0.209013 -2.161115 3.800578

Ball-cylinder model for (S)-CSA 1/(R)-MA/DABCO complex and cartesian coordinates.

43

The distances between α-H of MA and Ar-Hs of CSA 1 have been marked.

C -0.468889 0.643588 3.969119

C 0.339975 0.328402 2.691009

O -0.202186 -0.412612 1.827595

O 1.489548 0.867854 2.581072

C -2.365620 2.297161 3.582762

C -0.674999 4.470922 4.048737

C -0.178777 3.167967 4.127258

H 0.228088 0.584891 4.815074

O -1.493074 -0.311653 4.154531

H -3.025297 1.448719 3.436997

H -0.015894 5.312427 4.244055

H 0.865422 2.999166 4.374549

C -1.018946 2.069805 3.891623

C -2.861937 3.602574 3.501428

C -2.019879 4.692451 3.733353

H -2.409249 5.704939 3.679821

H -3.909508 3.764503 3.264523

H 0.720317 3.432252 0.402782

C 3.026545 5.105610 -3.076880

H 1.370522 3.758103 -3.291017

C -1.919011 6.479556 -0.383357

H 4.498404 5.965786 -0.133571

H 3.094141 5.292611 -4.144578

H -1.001599 4.880942 0.709017

C -0.510262 3.027391 -1.301695

C 0.889711 3.047587 -0.609679

H -0.423380 2.603719 -2.302924

C -2.185152 6.141454 -2.759220

N 1.388415 1.684066 -0.343800

H -2.818415 7.921163 -1.714945

C 1.587393 0.657904 -1.219663

N 1.545506 -0.561255 -0.541747

C 1.953649 -1.835177 -0.952966

C 1.369850 -2.934653 -0.294829

C 1.788446 -4.232691 -0.578469

C 2.788804 -4.477924 -1.523133

C 3.922182 5.722833 -2.200280

C 4.473795 -3.588297 -3.171793

F 4.209246 -3.000597 -4.360734

F 5.643557 -3.041346 -2.724202

F 4.724252 -4.894901 -3.413892

C 1.192445 -5.379321 0.198536

44

F 1.274674 -6.552264 -0.468563

F -0.107621 -5.173768 0.505148

F 1.846019 -5.560246 1.385713

S 1.846340 0.825958 -2.862184

H -1.477913 4.254437 -3.522932

H -2.528208 6.487869 -3.729834

C 3.361842 -3.384813 -2.172555

C 2.960651 -2.073735 -1.902277

N -1.352713 2.100171 -0.544104

C -2.204031 1.172937 -1.067670

N -2.607708 0.271750 -0.087762

C -3.641789 -0.675718 -0.148296

C -3.465486 -1.881525 0.547189

C -4.488463 -2.827731 0.584970

C -5.696566 -2.601874 -0.076538

C -7.155151 -1.156517 -1.507765

F -8.224382 -1.665185 -0.842680

F -7.149778 -1.744048 -2.733359

F -7.399217 0.160147 -1.706075

C -4.304327 -4.122391 1.334422

F -4.367260 -5.198553 0.508271

F -3.114318 -4.186778 1.978486

F -5.272091 -4.303147 2.271611

S -2.649934 1.109183 -2.677642

H 2.737991 4.452466 0.722805

C -5.864297 -1.398662 -0.765273

C -4.856926 -0.434390 -0.805541

C -2.351495 6.944260 -1.628578

C -1.138731 4.414456 -1.404246

C 1.932269 3.983515 -1.221235

H -2.048957 7.094056 0.503031

H 1.357061 1.420959 0.639824

H 0.946226 -0.561884 0.293768

H 0.583833 -2.763487 0.433686

H 3.406280 -1.245819 -2.436608

H 3.104726 -5.488127 -1.748698

C 2.828158 4.619878 -0.349018

C 2.041602 4.241611 -2.592490

H -1.356712 2.201810 0.464513

H -1.919316 0.098762 0.643510

H -2.527098 -2.077244 1.053981

H -6.490651 -3.338820 -0.047331

H -5.011412 0.494205 -1.336269

H 4.685836 6.394673 -2.581503

45

C 3.820471 5.477880 -0.828648

C -1.584986 4.884964 -2.645322

C -1.318971 5.223581 -0.272956

H 2.956713 0.317083 2.273976

H -1.514864 -0.851482 3.346949

N 6.436319 -0.598970 2.274341

C 6.165624 0.318567 3.388484

N 3.985325 0.044949 2.254338

C 4.661976 0.730484 3.411034

C 4.097614 -1.450228 2.404744

C 5.615192 -1.809203 2.420025

C 4.616593 0.482413 0.956038

C 6.117499 0.063347 1.000763

H 6.443982 -0.175480 4.323577

H 6.804818 1.198735 3.276979

H 4.141409 0.417149 4.318523

H 4.506408 1.803651 3.282035

H 3.582673 -1.720648 3.329601

H 3.560996 -1.899702 1.567367

H 5.855048 -2.494503 1.603068

H 5.885975 -2.303890 3.356899

H 4.059824 0.002126 0.151288

H 4.471397 1.561458 0.872836

H 6.765586 0.937060 0.890767

H 6.348664 -0.623894 0.182907

REFERENCES

(1) Bian, G.; Fan, H.; Yang, S.; Yue, H.; Huang, H.; Zong, H.; Song, L. J. Org. Chem. 2013, 78, 9137-9142.

(2) Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.;

Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng,

G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.;

Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers,

E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar,

S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.;

Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.;

Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A.

D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.1; Gaussian, Inc.:

Wallingford CT, 2009.