Author
mirjam-lax
View
104
Download
0
Embed Size (px)
Tracking sessionJochen Markert, IKF FrankfurtJochen Markert, IKF Frankfurt
TopicsTopics ActivitiesActivities Lepton efficiency estimationLepton efficiency estimation
Implementation of efficiency in digitizerImplementation of efficiency in digitizer Dependency of efficiency on the Dependency of efficiency on the
ionization of the particle trackionization of the particle track Number of wires in clusterNumber of wires in cluster Estimation of layer efficiencyEstimation of layer efficiency Comparison of different tracking code Comparison of different tracking code
versionsversions Reconstruction of opening angle of Reconstruction of opening angle of
lepton pairslepton pairs Dependency of resolution on the Dependency of resolution on the
ionization of the particle trackionization of the particle track PID with MDC: energy lossPID with MDC: energy loss
CAL1CAL1 JochenJochenKhaledKhaledYvonneYvonne
Pulser method for offset calibrationPulser method for offset calibration Tuning of offsets and second iteration of calibrationTuning of offsets and second iteration of calibration
weeksweeksDone for ppDone for pp
CAL2CAL2 JochenJochen New GARFIELD parametersNew GARFIELD parameters Cathode planes instead of cathode wires short termCathode planes instead of cathode wires short term
Analytical description of xt-correlation and errorsAnalytical description of xt-correlation and errors
DELAYED!DELAYED!Short termShort termMedium termMedium term
TRACK TRACK
Segment Segment fitterfitter
VladimirVladimir Restructuring of the tracking code Restructuring of the tracking code Improvement of minimizationImprovement of minimization Improvement of performanceImprovement of performance
Tuning of parametersTuning of parameters
DoneDoneDoneDoneDoneDoneMedium termMedium term
ThierryThierryEmilieEmilieJean-LoisJean-Lois
Investigation on MDCIVInvestigation on MDCIVCheck of geometryCheck of geometry
Medium termMedium term
AlignmentAlignment AlexanderAlexander Alignment for inner and outer modulesAlignment for inner and outer modules Alignment with photo modeler (MDCs + Magnet)Alignment with photo modeler (MDCs + Magnet) Alignment with cosmics Alignment with cosmics Alignment of METAAlignment of META
DoneDoneDoneDoneDoneDoneDoneDone
GeydarGeydar Wire layer offsetsWire layer offsets Layer thickness (MDCIII+IV)Layer thickness (MDCIII+IV)
Done but no Done but no clear resultsclear results
Activities in MDC analysisActivities in MDC analysis
Future tasksFuture tasks First priority:First priority: Efficiency correction Efficiency correction
Tracking for high multiplicities + CPs, Tracking for high multiplicities + CPs, needed for final DSTs needed for final DSTs of SEP05!!!of SEP05!!!
CODE STABILITY!!!!! (we lost weeks for CODE STABILITY!!!!! (we lost weeks for debugging!)debugging!)
Second priority: (several weeks)Second priority: (several weeks) Time offsets from pulser method (Time offsets from pulser method (KhaledKhaled)) Development of “ideal tracking” Development of “ideal tracking”
MDC partMDC part ( done by Vladimir ( done by Vladimir)) Other detectors ? Other detectors ?
Development of embedding of simulated tracks in real events Development of embedding of simulated tracks in real events MDC part already existing MDC part already existing Other detectors ? Other detectors ?
Investigation of events with very large unphysical multiplicityInvestigation of events with very large unphysical multiplicity How many ? Definition of reasonable numbers of tracks (SIM/DATA)How many ? Definition of reasonable numbers of tracks (SIM/DATA)
Fixing of geometry of outer MDCs Fixing of geometry of outer MDCs Wire angles , layer thickness (Wire angles , layer thickness (GeydarGeydar)) Wire layer offsets (Wire layer offsets (Geydar + Thierry + EmilieGeydar + Thierry + Emilie)) Measurements on MDCIV (Measurements on MDCIV (Thierry + Jean-LoisThierry + Jean-Lois))
Optimization of cal2 parametersOptimization of cal2 parameters Smoother values + analytical description (Smoother values + analytical description (JochenJochen)) Retrieving parameters for out MDCs from DATA (Retrieving parameters for out MDCs from DATA (Thierry + EmilieThierry + Emilie))
Influence on the tracking Influence on the tracking efficiencyefficiency
MDC efficiency (cell efficiency: gas, MDC efficiency (cell efficiency: gas, thresholds, noise).thresholds, noise).
MDC hardware problems (MDC hardware problems (missing MBo, missing MBo, …).…).
Calibration qualityCalibration quality AlignmentAlignment Track finder efficiency.Track finder efficiency. Momentum reconstruction efficiency.Momentum reconstruction efficiency. Matching efficiency.Matching efficiency. Cuts efficiency (Cuts efficiency (chi2 cut etc.chi2 cut etc.).). Particle identification efficiency.Particle identification efficiency. ……
Properties of wire Properties of wire clustersclusters
CPR by properties of cluster size and number of wires in cluster
Tuned to get good agreement between simulation and experiment
Cell efficiency in digitizerCell efficiency in digitizer
Cell efficiency not depending on energy loss of particle in digitizer
Mean number of wires in Mean number of wires in clustercluster
NOV01
MDCI
MDCII
MDCIII
MDCIV
Detection efficiency of Detection efficiency of MDCMDC
Efficiency of Layer: A particle track has to be detected at least once per
efficiency of wire layer better than als 89% (MIPS)
Segment theoretical better than
98,4% !?????
Good agreement with laboratory measurement
Particle
Layer 1Layer 2Layer 3Layer 4Layer 5Layer 6
Method:
MDCI
MDCII
NOV01
Layer efficiency including Layer efficiency including the wires which have been the wires which have been removed by tukey weightsremoved by tukey weights
NOV02
Layer efficiency from fit Layer efficiency from fit accepted wiresaccepted wires
MDCI MDCII
LayLay MDMDCC
II
MDCMDC
IIII
11 0.750.75 0.900.90
22 0.680.68 0.910.91
33 0.690.69 0.900.90
44 0.700.70 0.900.90
55 0.700.70 0.900.90
66 0.660.66 0.850.85
NOV02
MDC I p-blue, --red MDC II
SEP05
Ratio fitted segments/all Ratio fitted segments/all segments of lepton pairssegments of lepton pairs
Comparison for
Exp
URQMD
PLUTOFull pair analysis and background rejection applied!
Comparison of Comparison of fitting track fitter fitting track fitter
for different for different HYDRA versionsHYDRA versionsSubtitle: long story about Subtitle: long story about
nothingnothing
Problem descriptionProblem description
Efficiency of track reconstruction of Efficiency of track reconstruction of lepton pairslepton pairs
Rumors about change in Rumors about change in reconstruction efficiency of pairs reconstruction efficiency of pairs (10%) observed by Laura between old (10%) observed by Laura between old calculation with HYDRA v7_05b and calculation with HYDRA v7_05b and new v7_07/v7_08new v7_07/v7_08
MethodMethod Tracking + ideal tracking parallel Tracking + ideal tracking parallel
(HMdcTaskSet/HMdcIdealTracking)(HMdcTaskSet/HMdcIdealTracking) Filling of ntuple with HMdcTrackingEffFilling of ntuple with HMdcTrackingEff Efficiency calculation: Efficiency calculation:
Input Pluto Sim Nov02Input Pluto Sim Nov02 Reference sample ideal segments (both inner and Reference sample ideal segments (both inner and
outer segments + Meta hits found in GEANT)outer segments + Meta hits found in GEANT) Pairs definition : inner segments cluster/fitted, no Pairs definition : inner segments cluster/fitted, no
condition on outer segments, opening angle cut of 9 condition on outer segments, opening angle cut of 9 degreedegree
Efficiency: found pairs / ideal pairsEfficiency: found pairs / ideal pairs
opening angle distribution opening angle distribution of lepton pairsof lepton pairs
Comparison of different code versions of tracking
Efficiency of lepton pairs as Efficiency of lepton pairs as function of opening anglefunction of opening angle
1ook events in simulation
No significant efficiency between the different versions
Opening angle Opening angle reconstructionreconstruction
Cut on opening angle 9 degree :
Difference between GEANT angle accepted reconstructed angle accepted gives 5% more accepted pairs.
Reconstruction of Reconstruction of invariant Massinvariant Mass
Resolution of the drift cells Drift time residuals spatial resolution :
Dependence on the primary ionization clearly visual
Drift cell resolution better than 150 m
Position resolution of the Position resolution of the track reconstrutiontrack reconstrution
distance time measured trackfit drift*t t v
Position resolution of the reconstructionMeets requirements
NOV01 Data
design value
MDCII
Energy loss measurement with Energy loss measurement with MDCs ?MDCs ?
Contra: MDCs measure drift times not pulse height
„Low-mass“ - concept of MDCs not optimized for dE/dx - measurement with high resolution
Measurement of energy loss through width of the drift time signal („TTime aabove TThreshold“, t2-t1) as measure of deposed charge ? 1
1 T. Akesson et al. Nucl. Inst. and Methods, A(474):172–187, 2001.
Normalization of signal Normalization of signal width width
cell
n
m
orm
ce l dcl( 2 1) (angle , distance)t ta CT CT
norm
cellnorm
sec ll
ge
TaTnTaT
Drift cell
Impact angle , distance from
wire
Drift chamber
Gas amplification (HV)
Track segment
Mean over all cells
Impact angle
Protons and pions can be separated
Electrons and pions overlay
deuterons and protons overlay
Normalized and averaged Normalized and averaged Signal widthSignal width
Resolution of signal width Resolution of signal width measurementmeasurement
resolution for protons 6-9 %
resolution for pions 10-12%
Data
Resolution comparable with dE/dx measurement through pulse height!
- 9.8 % p 7.6 %d 7.2 %
+ 10.6 %
Correlation of signal width Correlation of signal width with dE/dxwith dE/dx
Fitted with F(dE/dxBethe-Bloch)
Correlation of signal width measurement with dE/dx
property of signal shape and readout
electronic1
Good agreement for protons and pions1 L. Ratti et al., WCC 2004, Vienna, Vortrag 2004.
norm
segmentvs dE/dxCorrelation TaT
The drift cellThe drift cell
Dimension of the drift cells 5x5 - Dimension of the drift cells 5x5 - 10x14 mm10x14 mm22
Gas mixture He/i-Butan (60/40) Simulation of the drift cells with
GARFIELD - Geometry, Field, Drift
MAGBOLZ - Gas properties HEED - Primary ionization
Field wire
Cathode wires
Cathode wires
Amplification area
Sense wire
Simulation with GARFIELDSimulation with GARFIELD
x [cm]y [cm]
drift/v cm s
Simulation:
Inhomogeneous electric Field inside the drift cell
VDrift depending on electric field
Inhomogeneous distribution of VDrift inside drift cell
drift
Time distanceTime distance
For track reconstruction space points are needed, but MDCs measure drift times
Relation between drift time and minimal distance of the particle track from sense wire has to be known
x-t- correlationx-t- correlation
2-dimensional drift cell model:
Simulation of the drift signals using GARFIELD
Parameterization through impac angle and minimum distance from wire
Implementation into track reconstruction and GEANT - Simulation
Normalization of signal Normalization of signal width (t2-t1)width (t2-t1)
MDCIIData Nov01
Normalization with one curve per impact angle step (5°)
MDCI/II normalized to the same value
Deviation for higher momenta
Normalization of signal Normalization of signal widthwidth
Normalization: Impact angle (), minimal
distance from wire All chamber types
normalized to common value
Normalization point at 450 MeV/c
Inner segment (MDCI/II) : Good agreement at small
momenta Deviation at higher
momenta
MDCIII/IV show different behavior as MDCI/II (statistic/geometry/working point?)
Data Nov01
Nomalization
Comparison of dE/dx Comparison of dE/dx resolution with other resolution with other
experimentsexperiments
2 22
inv
inv1%
2 2 2 tan( / 2)e e
e e
p p
p pMM
dE/dx resolution for gas mixtures with large fraction of hydrocarbon (Quencher) better as predicted
Empiric formula for calculation of dE/dx resolution (MIPS):
A. H. Walenta et al. Nucl. Instr. Methods, 161(45), 1979
The drift time measurementThe drift time measurement
The drift time measurement started by the induced signal at the sense wire
The signal gets amplified, shaped and discriminated
The TDC measures the time between the edges of the logic signal and an external signal („common stop“ (CMS))
Calibration of drift timesCalibration of drift times
Track reconstructionTrack reconstruction
Track fitting:
Energy loss measurement Energy loss measurement with MDCswith MDCs
Energy loss calculation with GARFIELD
Protons above 1GeV nearly minimal ionizing
Protons at 100 MeV have 4 times larger dE/dx compared to ,e,
Simulation with GARFIELDSimulation with GARFIELD
Impact of a asymmetrical Impact of a asymmetrical cathode voltagecathode voltage
Cathode voltage -1000V Cathode voltage -1000V instead t -1750V (MDCI instead t -1750V (MDCI in NOV01)in NOV01)
Electric field deformed Electric field deformed near the cathodenear the cathode
y [cm]x [cm]
drift/v cm s
Relative error of the drift time measurement compared Relative error of the drift time measurement compared to normal working conditions is largeto normal working conditions is large
Affected wire layers should nor be used in analysisAffected wire layers should nor be used in analysis
Impact of a asymmetrical Impact of a asymmetrical cathode voltagecathode voltage
Analysis of the GARFIELD Analysis of the GARFIELD SignalsSignals
„Leading“- and „trailing edge“ –times are calculated at a give threshold
Distribution of drift times of 100 tracks for a given parameter set (minimal distance, angle) are accumulated and the mean and sigma of the time measurement calculated
Shape of the signalsShape of the signals
parallel tracks
Broad arrival time distribution near sense wire
slow electrons from the edge of the drift cell
Anzahl der Cluster pro cm Anzahl der Cluster pro cm als Funktion der als Funktion der TeilchenenergieTeilchenenergie
Nimmt mit steigender Energie ab
Unterschiede zwischen Teilchenspezies ver-schwinden bei hohen Energien
Anzahl der Cluster pro cm Anzahl der Cluster pro cm als Funktion der als Funktion der
GasmischungGasmischung Ändert sich mit
der Zusammensetzung des Zählgases
Nimmt mit steigendem i-Butan Anteil zu
Signalbreite versus Signalbreite versus TeilchenimpulsTeilchenimpuls
Messung einzelner Driftzellen (oberer Reihe)
Normalisierte Signalbreite für ein Segment (unten)
Data Nov01
Segment
Single cellSingle cell
Korrelation der Signalbreite Korrelation der Signalbreite mit dE/dxmit dE/dx
Freie Anpassung mit
Korrelation der Signalbreitenmessung gegenüber dE/dx
Eigenschaft der Ausleseelektronik1
Gute Übereinstimmung für Protonen und Pionen
par0* log( / ) par1dE dx
1 L. Ratti et al., WCC 2004, Vienna, Vortrag 2004.
Data
Zeitauflösung als Funktion Zeitauflösung als Funktion des Schwellenwertesdes Schwellenwertes
Zeitauflösung verschlechtert sich mit steigender Schwelle
Der Effekt ist nahe am Auslesedraht und in den Randbereichen der Driftzelle stärker ausgeprägt
DUBNA
Zeitauflösung als Funktion Zeitauflösung als Funktion der Teilchenenergieder Teilchenenergie
Zeitauflösung verschlechtert sich mit steigender Energie
Der Effekt ist nahe dem Auslesdraht und in den Randbereichen der Driftzelle stärker ausgeprägt
DUBNA
Zeitauflösung als Funktion Zeitauflösung als Funktion der Teilchenenergieder Teilchenenergie
Zeitauflösung verschlechtert sich mit steigender Energie
Data Nov01impact 90°
Zeitauflösung als Funktion Zeitauflösung als Funktion der Schwelleder Schwelle
Änderungen in der Zeitauflösung führen zu einer Verschiebung der Driftzeitmessung mit steigender Energie
resolution in the middle of the cell
DUBNA
Verschiebung in der Verschiebung in der DriftzeitmessungDriftzeitmessung
xt – Relation für 100/1000 MeV Protonen
Effekt ist nahe dem Auslesedraht und in den Randbereichen der Driftzelle stärker ausgeprägt
DUBNA
Verschiebung in der Verschiebung in der DriftzeitmessungDriftzeitmessung
Änderungen in der Zeitauflösung (verursacht durch Änderungen der Ionisation) führt zu einer Verschiebung der Driftzeitmessung mit zunehmender Energie
Timing shift in the middle of the cellDUBNA
VVD D als Funktion der als Funktion der GasmischungGasmischung
Driftgeschwindigkeit in der Mitte der Driftzelle
i-Butan verringert die Driftgeschwindigkeit
Relativer Fehler der DriftzeitmessungRelativer Fehler der Driftzeitmessung
VVD D als Funktion des als Funktion des GasdruckesGasdruckes
Driftgeschwindigkeit in der Mitte der Driftzelle
Driftgeschwindigkeit verringert sich mit steigendem Druck
Relativer Fehler der DriftzeitmessungRelativer Fehler der Driftzeitmessung
VVD D als Funktion der als Funktion der GastemperaturGastemperatur
Driftgeschwindigkeit in der Mitte der Driftzelle
Driftgeschwindigkeit steigt mit steigender Temperatur
Relativer Fehler der DriftzeitmessungRelativer Fehler der Driftzeitmessung
VVD D als Funktion der Oals Funktion der O22 und und NN22 Konzentration Konzentration
Driftgeschwindigkeit in der Mitte der Driftzelle
Effekt vernachlässigbar
VVD D als Funktion der Hals Funktion der H22O O KonzentrationKonzentration
Driftgeschwindigkeit in der Mitte der Driftzelle
Driftgeschwindigkeit nimmt mit steigender H2O-Kozentration ab
Relativer Fehler der DriftzeitmessungRelativer Fehler der Driftzeitmessung
Townsend KoeffizientTownsend Koeffizient
Nimmt mit steigendem i-Butananteil zu
Attachment KoeffizientAttachment Koeffizient
DiffusionskoeffizientenDiffusionskoeffizienten