Logic Design Lab Manual

Embed Size (px)

Citation preview

1

Implementation circuit using AND - OR gates Implementation circuit using NAND gates only Implementation circuit using NOR gates only Full Adder circuit (XOR AND OR) Parity generator & Parity Checker (XOR) 4-Bit Adder Subtracter ( IC : 83 XOR ) Implementation function using Decoder ( IC : 155 expansion ) Implementation function using MUX ( IC : 151 ) Design circuit using Flip Flop 4 Bit Counter with Parallel load 4 Bit Shift Register Random Generator Mod n counter Frequency Divider magnitude comparator 10 16 20 23 26 27 29 33 38 42 43 44 45 48

2

: 7002 8002 1 Section . : Digital Design .

. .

.

: Breadboard Open Book .

* . 3

- : 1's Complement 0 1 1 0 . : 1's Complement : 2)1001010011 ( 2 )0110101100 ( .

- : 2's Complement 2's Complement : 1 - 1's Complement 1's Complement 1 . : 2's Complement 2)0000001111( : 1's Complement 2)1111110000( 0 1 1 0 1 : 1's Complement1111110000 +1 0000001000 1 1+1=2 2 (10)2 = (2)10 Binary system 0 1 .

2's Complement 2)0000001111( 2 )0000001000( 2 - 1's Complement : 1 0 1 1 0 . : 2's Complement 2)0000001111( 2)0000001000( .

4

The

rules of Boolean Algebra

0 1 0 1 0 0 1 1

are: AND Operations ()= = = = 0 0 0 1

1 True 1 AND

X X X X

0 1 x x'

= = = =

0 x x 0

0 1 0 1 + + + + 0 0 1 1

OR Operations (+)= = = = 0 1 1 1

1 True 1 OR

x x x x

+ + + +

0 1 x x'

= = = =

x 1 x 1

0' = 1 1' = 0

NOT Operations (')

Associative Law(xy)z = x(yz) = xyz (x+y)+z = x+(y+z) = x+y+z

NOT 0 0 1 1 = x

( x' )'

Distributive Lawx(y+z) = (xy) + (xz) x+(yz) = (x+y) (x+z)

Commutative Lawxy = yx x+y = y+x

Precedencexy = xy xy+z = (xy) + z x+yz = x + (yz)

DeMorgan's Theorem(xy)' = x' + y' (x+y)' = x' y' (NAND) (NOR)

: x + 0 =x x + x' = 1 x+x=x ( x' )' = x x+1=1 x+y=y+x x +( y +z) =( x+y ) z x ( y + z ) = x . ( y + z ) = xy + xz ( x + y )' = x' . y' x + xy = x : + . 1 0 1 0 x . 1 =x x . x' = 0 x.x=x ( x' )' = x x.0=0 x.y=y.x x . ( y . z ) = xyz x + ( y . z ) = x + yz = ( x + y ) .( x + z ) ( x . y )' = x' + y' x.x+y =x( x+y ) =x

5

: DeMorgan's Theorem (xy)' = x' + y' : (OR) + ( AND)

. ( . ) variables complement (x+y)' = x' y'

:

(AND)

.

( OR) + ( + ) variables complement F= ( x'yz' + x'y'z )' :

.

( OR) + ( + ) complement 1 - F= ( x'yz' )'.( x'y'z )' ( AND)

( AND)

. variable complement 2 - F= ( x + y' + z ) . ( x + y + z' ) ( OR) +

x x.1

x + xy = x + xy = x - 1 : + xy = = = x x x -2 -3 -4

x . (1+y) x . 1

:

ANDing & ORing Venn diagram

x+y

x.y6

Name

Graphic symbol

Algebraic function

Truth Tablex 0 0 1 1 x 0 0 1 1 x 0 1 y 0 1 0 1 y 0 1 0 1 F 1 0 F 0 0 0 1 F 0 1 1 1

AND

F = xy

OR

F=x+y

Inverter

F = x'

Buffer

F=x

x 0 1 x 0 0 1 1 x 0 0 1 1 x 0 0 1 1 x 0 0 1 1 y 0 1 0 1 y 0 1 0 1 y 0 1 0 1 y 0 1 0 1

F 0 1 F 1 1 1 0 F 1 0 0 0 F 0 1 1 0 F 1 0 0 1 7

NAND

F = ( xy )'

NOR

F = ( x + y )'

Exclusive-OR ( XOR )Exclusive-NOR or equivalence

F = xy' + x'y = x+y F = xy + x'y' = ( x + y )'

Logic function :

Logic expression

-

) product of sum

( - ) sum of product ( - : 1 - Boolean Algebra 5 . 2 - : K - Map Variables .

Logic gates 7 x y x 'y 'xy 'xy

Logic diagram

-

Variables Normal form ' x . y AND gate x inputs y inverter

input AND Complement form y' X AND inverter :

Complement form Logic diagram inverter IC .: ( F = x'y'+x'yz'+yz :) Simplify : Variable : Boolean Algebra ORing Variable 1 : diagram: 1 AND gate & 1 OR gate F = x'y'+x'yz'+yz ]=x'y'+y[x'z'+z ])'= x'y'+y[(x'+z)(z+z 1 . )= x'y'+y[(x'+z =x'y'+yx'+yz =x'[y'+y]+yz 1 ['=x =x'+yz ]+yz ] F = x'y'+x'yz'+yz =x'[y'+yz']+yz =x'[(y'+y)(y'+z')]+yz ['=x 1 .(y'+z')]+yz : diagram: 3 AND gates & 1 OR gates

=x'(y'+z')+yz =x'y'+x'z'+yz

8

. Logic diagram

: : F = x'y'+x'yz'+yz

: ( Boolean Algebra ) K-map : F=x'+yz Normal form : sum of product product of sum F ( ) OR ] ( ) AND [ 1 AND gate 1 OR gate & yz ' x & yz 1 inverter gate : x 'x F y yz z

F=x'y'+x'z'+yz Normal form F ( )OR ( )AND : 3 inverter gates & 1 OR gate & 3 AND gates :

x

'x

'x'y

y

'y 'z

'x'z yz

F

z

? Implement function F using AND OR gates and test its Truth table 2- Truth table . : 1- . 3 - Logic diagram gates. . 4 - DC LED ICs 5 - . Truth table

9

: ? Implement function F = x'y'+x'yz'+yz , using AND OR gates and test its Truth table : 1 - . F=x'+yz 2 - Truth table : F : 1=' )x( (0=)yz = (1=0+1 =)F=x'+yz F : 0=' )x( (1=)yz = (1=1+0 =)F=x'+yz yz F x 0 0 0 0 1 1 1 1 y 0 0 1 1 0 0 1 1 z 0 1 0 1 0 1 0 1 yz 0 0 0 1 0 0 0 1 F=x'+yz 1 1 1 1 0 0 0 1

3 - Logic diagram ( Complement form : ) inverter

'x y z1 2

1 3 2

23

3

F

80

yz4 - : ICs & LED & DC

Logic diagram gate IC output input pin IC 23 OR IC 1 Pin ' x 2 Pin 3 Pin AND IC 80 .

: AND & OR Pin Assignments

2-input AND

2-input OR : Vcc 5 Volts . Ground : GND .01

IC 23 80 4 gates Breadboard 5 AND gates . IC

Negative Positive

LED : : LED output . gate output1 output 0 . LED Pin output OR IC Pin 3 LED GND . LED Positive Negative

IC 5 Volts DC supply LED Ground DC supply LED LED LED . 5 - : Truth table variables ICs 1 0 . x 1 Node ) 5 Volts DC(Vcc Z 0 NODE . Ground 1: 0=: x=y=z 1 Pin OR IC ' x 1 ( ) Vcc 2 Pin OR IC 3 Pin AND IC 1 Pin AND IC y 0 ( )Ground 2 Pin AND IC z 0 ( )Ground 3 Pin OR IC LED F 0= ( x=y=z LED 1=. ) F 2: 1=: x=1,y=0,z 1 Pin OR IC ' x 0 ( )Ground 2 Pin OR IC 3 Pin AND IC 1Pin AND IC y 0 ( )Ground 2 Pin AND IC z 1 ( )Vcc 3 Pin OR IC LED F 1= ( x=1,y=0,z LED 0=. ) F .

Breadboard 1 2 : ( 25 )

11

Minterms & Maxterms Variables Y 0 0 1 1 0 0 1 1 Minterms Term Designation 'x'y'z 0m x'y'z 1m 'x'yz 2m x'yz 3m 'xy'z 4m xy'z 5m 'xyz 6m xyz 7m Maxterms Term Designation x+y+z 0M 'x+y+z 1M x+y'+z 2M 'x+y'+z 3M x'+y+z 4M 'x'+y+z 5M x'+y'+z 6M 'x'+y'+z 7M

X 0 0 0 0 1 1 1 1

Z 0 1 0 1 0 1 0 1

Truth table . Minterms & Maxterms Minterms 0 1=') x'y'z 1 ( 0= x=y=z 0 m . sum of product Maxterms 1 0 ( 1= x=y=z 7 m 0=' ) x'+y'+z . product of sum function Minterms Maxterms : * : Minterms Minterms 1 : 1 = 6 m1 & m3 & m : sum of product ('F(xyz)= (m1 , m3 , m6) = )x'y'z + x'yz + xyz * : Maxterms Maxterms 0 : =1 6 m1 & m3 & m : product of sum )'F(xyz)= (M0 . M2 . M4 . M5 . M7 ) = )x+y+z((x+y'+z)( x'+y+z)( x'+y+z')( x'+y'+z

-

-

-

K-map Variable

Two-Variable mapx 0 0 1 1 y 0 1 0 1 Minterms 'x'y x'y 'xy xy 0m 1m 2m 3m x y 0 x 1 0 0

y 1

'x'y 'x'y

'x'y2

1 3

'x'y

map 22 power . Variables : OR function :( F = x + y ) K-map: : 1 - Truth Table F 1 3 m1 & m2 & m Minterms F 1 . K-map 21

1s 4 2 1 ( 2 ) 1 1 F : 1s x ' x y ' y . F x ( y 3 ) m xy : F ' x ' ( y 0 )m x'y' : F x y x + y : F x y F = x + y 2 - map . map x 1 x map y 1 y . 1s . F = x + y y x 0 0 1 1 y 0 1 0 1 F=x+y 0 1 1 1 x y 0 x 1 0 0 1

12

1 3

1

1

Three-Variable mapy x 0 0 0 0 1 1 1 1 y 0 0 1 1 0 0 1 1 z 0 1 0 1 0 1 0 1 Minterms 'x'y'z x'y'z 'x'yz x'yz 'xy'z xy'z 'xyz xyz 0m 1m 2m 3m 4m 5m 6m 7m x yz 0 x 1 00 'x'y'z 'xy'z 0 4 10 x'y'z xy'z 1 5 11 x'yz xyz 3 7 01 'x'yz 'xyz 2 6

z

map 32 power . Variables : )7,6,4,3( = )F(x,y,z : Minterms F1 . 1 Minterms map 1s 8 4 2 1 map Z' X Z yF = xz' = yz y

0 4

1 5

1 1z

3 7

2 6

x

1

1

31

Four-Variable mapw 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 x 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 y 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 z 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Minterms w'x'y'z' w'x'y'z w'x'yz' w'x'yz w'xy'z' w'xy'z w'xyz' w'xyz wx'y'z' wx'y'z wx'yz' wx'yz wxy'z' wxy'z wxyz' wxyz m0 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15 yz wx 00 01 1 w'x'y'z 5 w'xy'z 13 wxy'z 9 wx'y'z z 11 3 w'x'yz 7 w'xyz 15 wxyz y 10 2 w'x'yz' 6 w'xyz' 14 wxyz' x

0 00 w'x'y'z ' 4 01 w'xy'z' 11 12 wxy'z'

w

8 10 wx'y'z'

11 10 wx'yz wx'yz'

1 1w

. Variables power 42 map y Simplify F( w,x,y,z ) = (0,1,2,4,5,6,8,9,12,13,14) : 1 1 61 8 4 2 Minterms : : map 0 1 3 2 F =y' + w'z' + xz' 1 1 4 12 8

-

1 1 1

5 13 9

7 15 11

1 1

6 x 14 10 Simplify F( w,x,y,z ) = (0,2,3,5,7,8,9,10,11,13,15) :2 F = xz + x'z' + yz + wz : -

1 1

z y 0 4 12 w 8 1 5 13 9 3 7 15 11

1

1 1 1 1

1

2 6 x 14 10 14

1 1 1

1

1

z

Five-Variable map'A BC 00 10 11 B 01 8 9 E 11 01 DE 00 0 4 21 10 1 5 31 11 3 7 51 A D 01 2 6 C 41 B 01 42 52 E 72 62 11 82 92 13 03 BC 00 10 DE 00 61 02 10 71 12 11 91 32 D 01 81 22 C

map 52 power . Variables 52 & 92 & 9 & 31 1 . BD'E map ). F (A,B,C,D,E

1s . ) F( w,x,y,z K-map

( 01 ) 1: ( F = x'y'+x'yz'+yz :) Simplify : Truth table 01 )7,3,2,1,0( = )F(xyz map F = x' + yz y 01 .

1x

0 4

1

1 5

1 1z

3 7

1

2 6

51

2: Simplify F(A,B,C,D) = BD + BCD' + AB'C'D', and implement it with two-level NAND gate circuit :1- K-map map BD B D . C 0 4 21 A 8 1 5 31 9 3 7 51 11 2 6 B 41 01

1 1

1 1

1 1

1

D 1s 'F = BD + BC + AB'C'D 2- Logic diagram ( Complement form : ) inverterB D BD

BCC A 'B 'C 'D

F

'AB'C'D

two-level NAND gate circuit : AND NAND complement NAND OR gatex y z

+ 'x' + y 'z

x y z

')( xyz

') x' + y' + z' = ( xyz

: DeMorgan : 61

:B D1 2

00

3

4

1

C A 'B 'C 'D

5

00

6

2 31

01

21

F

1 2 4 5

02

6

: 2-input NAND & 3-input NAND & 4-input NAND Pin Assignments

)00( 2-input NAND

)01( 3-input NAND

)02( 4-input NAND

Minterms 1 map : )51,31,8,7,5( = ) F (A,B,C,D 0 m 0= F 8 m 1=. F LED output ) 0 0 0 0 ( 0 m LED. ) 0 0 0 1 ( 8 m LED.

Breadboard : ( 35 )71

: Product of sum : Simplify F (A,B,C,D) = ( 0,1,2,5,8,9,10 ) in sum of Product & Product of sum : map 1s F sum of Product Minterms 1s F 1 F 0 ] [complement of F 0 map ' F sum of Product ' F ( F' )' DeMorgan's Theorem F . Product of sum C C

1

0 4 21

1 1

1 5 31

3 7 51 11

1

2 6 41 B A

0

1 5 31 9 D

0 0 0 0

3 7 51 11

2 6 41 01 B

1 0 0

4 21 8

0 0

A

0

1

8

1

9 D

01 1

F : sum of Product F = B'C' + B'D' + A'C'D

'F'= AB + CD + BD

( (0s

F (F')' : Product of sum ') 'F = (AB + CD + BD )= (A' + B')(C' + D')(B' + D : ) 01,9,8,5,2,1,0 ( = )F (A,B,C,D ) 51,41,31,21,11,7,6,4,3 (F (A,B,C,D) = F = B'C' + B'D' + A'C'D )F= (A' + B')(C' + D')(B' + D

Product of sum . NOR gates

81

:Dont care : ) 5,2,0 ( = )Simplify F (A,B,C,D) = ( 1,3,7,11,15 ) & d (A,B,C,D ) 5,2,0 ( = ) d (A,B,C,D Dont care Dont care . Dont care sum of Product & Product of sum map x . 1s & 0s C C -

x

0 4 21

1 x

1 5 31 9 D

1 1 1 1

3 7 51 11

x

2 6 41 01 B

x 0 0A

0 4 21 8

1 5 31 9 D

3 7 51 11

x 0 0 0

2 6 41 01 B

x 0 0

A 8

0

F : sum of Product F = CD + A'D

'F'= AC' + D

( (0s

F (F')' : Product of sum ')'F = (AC' + D )= D (A' + C

Dont care .

91

Implement F (A,B,C,D) = (0,1,2,9,11)

&

d(A,B,C,D) = (8,10,14,15) using 2-input NOR gates . :

: Product of sum NOR gates : C 0 1 5 13 9 DA C' D' B'

0 0 x

3 7 15 11

2 6 14 10 B

F'= B + A'CD

(0s ( (F')' : Product of sum F

0 0A

4 12 8

0 0

0 x x

F = (B + A'CD)' = B' (A + C' + D')

x

Logic diagram (A + C' + D')F

:-2 input NOR gates NOR complement NOR OR AND gate x y

x' y'

x y

( x + y)'

X' y'

=

( x + y)'

: DeMorgan : :

A C' D' B'

F

A C' D' B'

F

20

gates : complement :

x

x'

A 'C 'D

F'B B

B

A 'C 'D B

F

2-input NOR gates 3-input NOR gates gates : 3-input NOR gates ' ] ' [ A + C' + D ' ]' [ ( A + C' ) + D ( A + C' )' . D :A 'C D B

F

NORA 'C D B

AND :

NOR

F

NOR :

A 'C

FD B

12

2 IC 5 NOR ( IC NOR gate D ' D ) :

A 'C 'D B

2 3

20

1

5 6

4

20

9 8

20

01

11 21

31

20

F

: 2-input NOR Pin Assignments

A,B,C,D LED . output

ANDNANDx y ')(xy F y F = xy 'x F 'y x y x

OR'x 'y F = (x'y')' = x + y F x

NOT

F 'F = (xx)' = x

x

NOR

')(x+y

y

F

x 'F = (x + x)' = x

F

F = ( x' + y' ) = xy

F=x+y

Breadboard : ( 45 )

22

x 0 0 1 1

y 0 1 0 1

2-binary input & 2-binary output Half Adder . x & y ( augend ( ) addend( -2 : binary input . S & C ) carry ( ) sum ( -2 : binary output C S . S is the least significant bit CS 0 0 : Truth table x =y = 1 C =1 0 1 : S & C map 0 1 1 0 y y 0 0

-

0x

12

1 3

0x

02

1 3

1

0

0C= xy

1

S = x'y + xy' =x + y

: Logic diagram x y

S C

x 0 0 0 0 1 1 1 1

y 0 0 1 1 0 0 1 1

z 0 1 0 1 0 1 0 1 0 4 1

3-binary input & 2-binary output Full Adder . x & y & z -3 binary input . S & C ) carry ( ) sum ( -2 : binary output . S is the least significant bit CS C S : Truth table x =y = z = 1 S = C =1 0 0 : S & C map 0 1 0 1 S = x'y'z + x'yz' + xy'z' + xyz = x + y + z 1 0 0 1 C = xy + xz + yz = xy + x'yz + xy'z 1 0 = xy + z (x'y + xy') = xy + z (x + y) 1 0 1 1 y y 1 0 1 5 0 1 3 1 7 0 6 x 4 1 5 2 0 1 1 1 3 7

-

2 6

0 x

1

z

z

23

: Logic diagramx y

S

Cz

Full Adder 2 Half Adder :x y

1S 1C

2S S 2C C map F = x + y + z y

z

0 x 1

0 4

1 0

1 0 5 1

3 1 7 0

2 6

z map Full Adder Carry . y 0 4 1 5 1 1 3 7 2 6

x

1

1

z

Truth table Full Adder 2 LED S C 1 = . x = y = z

42

: Full Adder

x y

1 2

3

86

4 6 5

86

S

1 2

4

08

3 5

08

6

1 2

32

3

C

z: 2-input OR & 2-input AND & 2-input XOR Pin Assignments

) 55 ( : Breadboard

25

0

1Sender

1Receiver Parity Bit

0x 0 0 0 0 1 1 1 1 y 0 0 1 1 0 0 1 1 z 0 1 0 1 0 1 0 1

1P 0 1 1 0 1 0 0 1

1

0

1

1

P

x y z

Bits Bits.- Parity .) even or odd ( P

P

1 : ) 3-bit even parity generator ( x , y , z :

P 0 1 x,y,z P 1 1 x,y,z - map P P = x + y + z

Logic diagram LED output P x , y , z x 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 y 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 z 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 P 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 C 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 2: ) 4-bit even parity checker ( x , y , z ,p : C 1 1 P & x&y&z . C 0 1 P & x&y&z . map C C = x + y + z + p Logic diagram LED output C x , y , z , p -

x y C z p

.

62

. 4-bits Full Adder . 1 A = A4 A3 A2 A 1 B = B4 B 3 B 2 B 0 C . 1 C4 S4 S 3 S 2 S outputs . Second Full Addes 1 C Delay 2 C 1 B2 & A 2 & C 1 C 1 ( B 1 & A ) . 4- Bit Parallel Binary Adder :

-

4 B4 A 4C

3 B3 A

2 B2 A

1 B1 A 0C

4S1101 1011 2-complement

3C3 S1101 +1101 01110

2C2 S

1C1 S :

4-bit . 4-bit 2-complement

:

2- 1 = 0C

: : 1- B 'B

4B 4A 4C

3B 3A

2B 2A

1B 1A 1 = 0C

4S

3C3 S

2C2 S

1C1 S

:

x x 0 X-OR = Buffer

x 1

: :X-OR

72

'X X-OR = converter

4 bit Parallel Binary Adder Subtracter : X-OR B412 13

B39

B24 5 1

B12

10

8611

86

86

86

A41

8

A33

6

A28

3

A110

16

4

7

11

C0 = M83 832

C414 15

836

83

13

9

S4

C3

S3

C2

S2

C1

S1

. M=1 M=0 M Mode C0 : 4 bit Parallel Binary Adder Subtracter & 2-input XOR Pin Assignments

B4

S4

C4

C0 GND

B1

A1

S1

A4

S3

A3

B3

VCC

S2

B2

A2

Breadboard A= 1000 : 0011 B=

Add 0 1 0 1 1 Sub. 1 0 1 0 1

) 56 - 57 ( :

28

. inputs & outputs Decoder inputs n outputs 2 . Decoder ) ( 2 * 4 Decoder :n

A & B 00 0 1 = 0D A B Minterms 0D3 D2 D1 D A & B 0 0 'A'B 0m 0 0 0 1 11 0 1 A'B 1m 0 0 1 0 3 1 = 3 D 1 0 'AB 2m 0 1 0 0 . 1 1 AB 3m 1 0 0 0 2 * 4 Decoder 0 = A = B inverter 1 = A = B AND AND 1 ... outputs Decoder

: Decoder With Enable Enable Decoder 0 ( ) OFF Decoder 1 ( ) ON Decoder . E 0= E outputs 0 1= E inputs .- E .

X Don't care A B 0 = E

92

Active low & Active high : Active high Minterm 1 Active 0 . Inactive : Active low Minterm 0 Active 1 . Inactive E .

)OFF( Decoder 1= E ) ON( Decoder 0= E inverter E AND gates 0=E 1= E Decoder IC Active low .

: Decoder : ) 3 , 0 ( = )F (x , y : Decoder 0 m3 m 1=. F- Active high Decoder : OR gate

x y

4*2 Decoder

0I 1I 2I 3I

F

E- Active low Decoder : NAND gate

x y

4*2 Decoder

0I 1I 2I 3I

NOT-OR

FAND-NOT

E

= NAND

x y

4*2 Decoder

0I 1I 2I 3I

F

E03

. Implement Full Adder using 3 * 8 Decoder if S ( x,y,z ) = ( 1,2,4,7 ) & C ( x,y,z ) = ( 3,5,6,7 ) :1 2

:

x y z

3 13

Pin 1 & 15

IC = 155

I0 I1 I2 I3 I4 I5 I6 I7

9 10 11 12 7 6 5 4

4 5

20

6

S

Pin 1 & 15

E

Pin 2 & 14

9 10 12 13

20

8

C

: 3 * 8 Decoder & 4-input NAND Pin Assignments

VCC

x

E

z

I3

I2

I1

I0

155

3 * 8 Decoder

x

E

y

I7

I6

I5

I4

GND

4-input NAND ( 20 )

. 11 S & C LED xyz= 111

31

054 G = E 1 C=x, B=y, A=z OFF ON 0

Breadboard : ( 85 )

y z

Decoder : 1 - : Implementation 3 * 8 Decoder using two 2 * 4 Decoder

x

: 0= x=y=z 0 m 0 1 X Decoder Decoder 4 * 2 0= A y=z E 0 0D 0 1 Active low Decoder A E 1 1 0 D 3 * 8 Decoder 2 * 4 Decoder 2 - : Implementation 4 * 16 Decoder using five 2 * 4 Decoder

y z y w x z y z y z

0I 1I 2I 3I 4I 5I 6I 7I 8I 9I 01I 11I 21I 31I 41I 51I3

most significant bit 4 * 2 Decoder bits Decoders wxyz - . Active high

23

3 - : Implementation 4 * 16 Decoder using four 2 * 4 Decoder

'w 'x

y z

0I 1I 2I 3I 4I 5I 6I 7I 8I 9I 01I 11I 21I 31I 41I 51I3

'w x

y z

w 'x

y z

w x

y z

0I 1I 2I 3I

4 * 1 MUX

Output

1S

2S

output n 2n selectors . inputs input selectors . output inputs : ) . ( 4 * 1 MUX : 0 = 2 S1 = S 0 I output 1 = 3S1 = S 3 I output .

-

: . Implement Function F( A,B,C,D ) = ( 0,3,5,6,8,9,14,15 ) using MUX : 8 * 1 MUX 3 bits selectors 8 = 32 = . inputs B , C , D selectors . A most significant bit : ) selectors ( B , C , D ) . control bit ( A Truth table . 4 Variables control bit ' A A I 8 0 I 7. I : ' A Truth table Minterms A 0 Minterm I 0= A 7m0, m5, m A 0 0 I 5 5 I 7 7I ' A Minterms A 1 . 1- 2- 3- 4-

33

Minterms 1= F : ) 51,41,9,8,6,5,3,0 ( = ) . F( A,B,C,D I : 7 I 51 A . I7 = A I . MUX : 0 = A = B = C =D selectors 0 = 2 S0 = S1 = S 000 0 selectors 0 I = 1 1= output : 1 = A = 0 , B = C =D selectors 1 = 2 S0 = S1 = S 1 1 1 7 selectors 7 I = A 0 0= output .

5- 6- 7- 8-

0I'A A

1I 1 9I1=A

2I 2 010=2I

3I 3 11'I3= A

4I 4 210=4I

5I 5 31'I5= A

6I 6 411='I6=A + A

7I 7 51I7=A

0 81='I0=A + A

A 0 0 0 Minterms 0 = A 0 0 0 0 0 1 1 1 1 1 1 1 1

B 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

C 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Minterms 'w'x'y'z w'x'y'z 'w'x'yz w'x'yz 'w'xy'z w'xy'z 'w'xyz w'xyz 'wx'y'z wx'y'z 'wx'yz wx'yz 'wxy'z wxy'z 'wxyz wxyz 0m 1m 2m 3m 4m 5m 6m 7m 8m 9m 01m 11m 21m 31m 41m 51m

Minterms 1 = A

1 A 0 'A 0 'A 1 A

0I 1I 2I 3I 4I 5I 6I 0 I7 S 2 S 1 S

Output

B

C

D

43

: 8 * 1 MUX Pin Assignments

VCC

I4

I5

I6

I7

S2 D

S1 C

S0 B

151 3 * 8 MUX

I3

I2

I1

I0

y

y'

E

GNDE = 0 ( ON ) E = 1 ( OFF )

4 3 2 1 15 14 13 12

I0 I1IC = 151 I2 I3 I4 I5 I6 I7

: Pin

5

y

9

10

11

B

C

D

) 59 ( : Breadboard

- Implement Function F( A,B,C,D ) = ( 0,3,5,6,8,9,14,15 ) using MUX : . 1 * 4 MUX selectors : . control bits ( C , D ) selectors ( A , B ) 35

: selectors

-

0I'C'D C'D

1I 4 5 6 7'I1= C'D + CD =C+D

2I 8 9 01 11I2=C'D' + C'D '= C

3I 21 31 41 51I3= CD' + CD =C

C&D . T.T C .T.T D 1

0 1 2 3I0=C'D' + CD ') =( C + D

D .T.T C 1 C&D . T.T 1

'CD

CD

:

C D C D A 'C C

1*4 y MUX

B

I1 = C + D 0-1-1-0 X-OR function

63

Combinational Circuits . Sequential Circuits :Input Output next state

Combinational Circuits

Input

Combinational Circuits

Output Memory

Feed back

Storing

: Sequential Circuits 1 - :Asynchronous Sequential Circuits output Feed back input . 2 - : . Output Trigger : 1 - : Level Clock signal generation output (+ve )level trigger )-ve level trigger ( +ve clock . 2 Sec output . 2 - : Edge Clock signal generation output (+ve )edge trigger )-ve edge trigger ( output ) clock ( +ve ). clock ( -ve+ve level trigger

-ve level trigger

-ve edge trigger

+ve edge trigger

Flip Flop Function table

73

: Flip Flop clock Q' Q Bit Flip Flop . CK or CP or CLK . next atate Q(t+1) Present state Q(t) -

1- R S Flip FlopR 0 0 0 0 1 1 1 1 S 0 0 1 1 0 0 1 1 Q (t) 0 1 0 1 0 1 0 1 0 1 1 1 0 0 ? ? Q(t+1)

Function table

R 0 0 1 1

S 0 1 0 1 Q (t) 1 0 ?

Q(t+1) No Change Set Reset Undefined

No Change No Change Set, If S = 1 Then output = 1 Set, If S = 1 Then output = 1 Reset, If R = 1 Then output = 0 Reset, If R = 1 Then output = 0 Undefined Undefined

2- D Flip Flop ( Data Flip Flop ) input = outputFunction table D 0 1 0 1 Q(t+1) Reset Set

3- J K Flip FlopFunction table J 0 0 1 1 K 0 1 0 1 Q (t) 0 1 Q' (t) Q(t+1) No Change Reset , If K = 1 Set , If J = 1 Toggle = inverter

4- T Flip Flop ( Toggle Flip Flop )Function table T 0 1 Q (t) Q' (t) Q(t+1) No Change Toggle = inverter 38

: Flip Flop Clock sign

+ve level trigger

-ve level trigger

+ve edge trigger

-ve edge trigger

CLK

CLK

CLK

CLK

. Design 2 Bit up counter using JK Flip Flop : : counter A,B 2 Bit . 0 1 2 3 0 Up 2 bit : . A & B 2 Flip flop 2 bit 1 - : Counter State Diagram 2 -

00 11 10: State Table 3 - Present state A 0 0 1 1 B 0 1 0 1 Next state A 0 1 1 0 B 1 0 1 0 A Flip Flop JA 0 1 x x KA x x 0 1 B Flip Flop JB 1 x 1 x KB x 1 x 1

01

AB A,B in Present state AB in Next state AB in Present state : 01 00 00 01 AB in Next state

) B in Present state) Q(t) )B in Next state) Q(t+1)

) A in Present state) Q(t) )A in Next state) Q(t+1)

39

Q (t) 0 0 1 1

Q (t+1) 0 1 0 1

J 0 1 x x

K x x 1 0

No Change or Reset Toggle or Set Toggle or Reset No Change or Set . Q (t+1) Q (t)

0 Q (t+1) Reset No Change Q (t+1) = 0 Q (t) = 0 : J=0 , K=0 JK Flip flop Function table K J . K=x 0 J K Reset J=0 , K=1 No Change 0 Q (t+1) Reset Toggle Q (t+1) = 0 Q (t) = 1 : J=1 , K=1 JK Flip flop Function table K J . J=x 1 k j Reset J=0 , K=1 Toggle : Flip flop State equations 4 - B JA = B 0 KA = B 0 B

0A

1 x

1 3

xA

x2

1 3

x

2

0

1

B JB = 1 0 JB = 1 0

B

1A

x2

1 3

xA

12

1 3

1

x

x

1

: Logic Diagram 5 - JA KA QA Q' A A'

CLK JB 1 KB Q' QB B B' 40

6 - : 67 IC Type 754 .

) Clear ( CLR ) Preset ( PR 1 J K Flip flop Pin Assignments :

VCC CLR CLR

CK

KB

JB

PR

QB

211 J K Flip FlopCK KA JA QA Q'A Q'B GND

PR

CLK Function Generator Pin 31 & 1 IC frequency . negative ( ) Ground

positive ( ) Life

Breadboard: ( 06 )

14

. 15 4 61 0 Bit Binary Counter . 9 4 61 0 Bit B.C.D. Counter : 4 Bit Binary Counter A & B & C & D : Inputs - 1 QA QB QC QD . QA & QB & QC & QD : Outputs - 2 .: 1 61 Cout - 3 cout clear : 0 Count - 4 4 Bit Binary load . inputs Counter CLK count . outputs : Clear - 5 : Load - 6 A B C D . 0 next state CLK clear . Asynchronous control 161 IC Function Table . CLK Clear 0 1 1 1 Clock x Load x 0 1 1 Count x x 1 0 Function Clear outputs to 0 Load inputs data Count to next binary value No change in output

-

-

. inputs : 4 Bit Binary Counter Pin Assignments CLR . clear 0 IC inputs 6 pin 3 most significant bit Least significant bit outputs pin most significant bit 11 Least significant bit 14

VCC Cout

QA QB161

QC QD

Load

4 Bit Binary Counter

Count

CLR

CK

A

B

C

D

GND

: Function Table 4 Bit Binary/B.C.D. Counter Pin Assignments VCC

A

CLR

B0 C 0

Load

C

D

Clear 1 0 0

Load 1 0 1

Function Clear Load Count

193 ( Binary Counter ) 192 ( B.C.D. Counter )

B

Q B QA

Down

CK

Up

QC QD

GND

42

291 Pin Assignments 391 IC . B.C.D. Counter Binary Counter most significant bit 9 Pin 161 IC 1 B0 4 Pin CLK Down counter IC C0 5 Pin CLK Up counter 61 . 1 61

-

) 61 ( : Breadboard

Serial Output ( SO )

1Serial Input ( SI ) A CLK

0

1

0

B

C

D

1

0

1

Shift register right 4 bit Shift register right with parallel load Serial Output ( SO ) QA QB QC QD Serial Input ( SI )

A CLK

B

C

D

4 bit Shift register left with parallel load VCC

QA

QB

QC QD Q'D

CK sh/load: 4 bit Shift register Pin Assignments

:

1954 bit Shift register

. CLR = 0 SI : Shift left 15 SO 7 . 0 9

CLR

J SI K'

A

B

C

D

GND

43

IC : 1 - Pin 9 ( ) Shift / load control 1 Shift right 0 Shift left Shift left . 2 - ': J & K input = output . D flip flop D J K

1 3

: . Design Random generator 0 1 0 1 = A B C D

68QA

2

QB QCB C

QDD

Serial Input ) ( SI

A

Shift register right XOR . . 0 = A = B = C = D XOR 0 . 51 0000 1 cycle 51 Maximum cycle : :

1-

2- 3- 4- 5-

1 0 0 0 1 0 1

0 1 0 0 0 1 0

1 0 1 0 0 0 1

0 1 1 0 1 0 0 0 XOR gate Pin Assignments IC 591 :Random generator 0 0 0 1 0 1 0

Register Function table

Breadboard: ( 26 )

44

. 4 bit counter : 3 7 3 3 . 5 n 0011 . Design mod n counter stated with 3 & n = 5 using 4 bit counter :1 : . ABCD = 0011 1 - 1 Q 2 - . 0111 7 NAND gate Input QA QB QC QD 3 3 - 3 7 load cout 3 load=0 & clear=1 4 Bit Binary clear count function Function table Counter CLK count clear = count = load =1 load function 7 Function table A B C D . load = 0 ABCD 3 Clear = 1 , count = 1 : Function table 4 - : NAND 5 - count load 1 NAND 3 1100 Load (3) count load 1 NAND 4 0010 6 count load 1 NAND 5 1010 7 1110 count load 1 NAND 0110 . ABCD 3 load 0 NAND

Clear 0 1 1 1

Clock x

Load x 0 1 1

Count x x 1 0

Function Clear outputs to 0 Load inputs data Count to next binary value No change in output

. Design mod n counter stated with 11 & n = 5 using 4 bit counter :2

NAND . 1111 1 51 outputQA QB QC QD

cout CLK 4 Bit Binary CounterA B C D

load clear count

45

: 0 1 0 1

cout CLK 4 Bit Binary CounterA B C D

load clear count

NAND output 1 inverter output 0 NAND

QA QB QC QD

cout CLK

load clear count

: 15 5 1 cout . 15

4 Bit Binary CounterA B C D

0 0 0 . . . 0 0 . . . . 0 0

0 0 0 . . . 0 0 . . . . 0 0

0 0 0 . . . 0 0 . . . . 0 1

0 0 0 . . . 0 1 . . . . 1 0

0 0 0 . . . 1 0 . . . . 1 0

0 0 0 . . . 1 0 . . . . 1 0

0 0 1 . . . 1 0 . . . . 1 0

0 1 0 . . . 1 0 . . . . 1 0

1 2 3

. Design mod n counter from 5 to 24 using 4 bit counter : 3 : . two ( 4bit counter ) 0 23 . 51 load = clear = count 1 . load = clear = 1

15 16cout QA QB QC QD load 2 A B C D clear count cout QA QB QC QD load clear 1 count A B C D

31 32CLK

46

Design mod n counter from 0 to 4 using 4 bit counter clear NAND . 4 CLK clear 4 4 5 0 : load

QA QB QC QD

cout CLK

Load clear count

4 Bit Binary CounterA B C D

1 2

00

3

QA QB QC QD

QA QB QC QD

cout CLK

load clear count

cout 161 CLKA B C D

loadClear=1 Count=1

4 Bit Binary CounterA B C D

. : Pin Assignments NAND gate & 4 bit binary counter

CLR . clear 0 IC inputs 6 pin 3 most significant bit Least significant bit outputs pin most significant bit 11 Least significant bit 14

VCC Cout

QA QB

QC QD

Load

161 4 Bit Binary Counter

Count

CLR

CK

A

B

C

D

GND

) 63 ( : Breadboard

47

f/16 f/8 f/4 f/2QD QC QB QAcout Load=1

CLK ( +ve edge )

4 Bit Binary CounterA B C D

Clear=1 Count=1

0

1

2

3

4

5

6

7

CLK ( +ve edge ) T ( CLK )

QAT ( QA)

QBT ( QB)

T ( QA) = 2 T ( CLK ) , If Frequency F = 1 / T , Then : F( QA ) = [ F (CLK ) /2 ] T ( QB) = 4 T ( CLK ) , If Frequency F = 1 / T , Then : F(QB) = [ F (CLK ) /4 ] T ( QC) = 8 T ( CLK ) , If Frequency F = 1 / T , Then : F(QC) = [ F (CLK ) /8 ] T ( QD) = 16 T ( CLK ) , If Frequency F = 1 / T , Then : F(QD) = [ F (CLK ) /16 ] . counter F by 128 QD QC QB QA co ut CL K

load Clear=1 Count=1

A B C D

: Design Frequency divider by 5 : 1 : . 4 0 n = 5 mod n counter 1 - . CLK signal 5 load signal 2 - . CLK signal 5 Qc signal 3 - 2 3 4 0 1 2

0

1

CLK ( +ve edge ) T ( CLK )

loadT ( load)

QCT ( QC) 48

T ( load) = 5 T ( CLK ) , If Frequency F = 1 / T , Then : F(load) = [ F (CLK ) /5 ] T ( QC) = 5 T ( CLK ) , If Frequency F = 1 / T , Then : F( QC ) = [ F (CLK ) /5 ] : Design Frequency divider by 5 ( from 3 to 7 ) : 2 . NAND : 3 7 1110 F by 5 QD QC QB QA co ut CL K load Clear=1 A B C D

most significant bit load : NAND input

Count=1

: signals 3 4 5 6 7 3 4 5

CLK ( +ve edge ) T ( CLK )

loadT ( load)

QCT ( QC)

: Design Frequency divider by 123 : 3 : . ) counters 321 . ( n counter 1 - . 27 2 - 321 ( 2 ) 821 . NAND input most significant bit load signal 3 -

. F by 5 load 1

. 00 161 IC

49

00

QD QC QB QA

cout CLKA B C D

load1=Clear 1=Count

CLR 0 clear . inputs IC pin 6 most significant bit 3 Least significant bit outputs pin 11 most significant bit 41 Least significant bit

VCC Cout

Q A QB

QC Q D

Load

Count

CLR

CK

A

B

C

D

GND

signal Oscilloscope: 1 - load NAND output 1 Channel . 2 - CLK Function generator . 10 KHz 3 - Oscilloscope 1 CH signal signal Square wave x-axis Time / Div position

cycle T : * 2.0 ( =1 )* * Time/Div Time/Div . : 21 5.0 : 100.0 * 5.0 * 2.0 * 21 = T 4 - T F . F = 1 / T 1 84 F load 5/1 F CLK F 5/1 F Function generator CLK 0002 .

Breadboard: ( 46 )

05

Breadboard - : Breadboard . Node Vcc 5 Volts x 1 Node

Node

Node

Node

Node

Node Ground 5 Volts x 0 Node

input inputs .

15

) 10 11 ( : Implementation function F = x'y'+x'yz'+yz , using AND OR gates

1 variable : Vcc

: y y Truth table

: z Truth table z

variable : Ground 0

: x' Truth table x'

x=1,y=0,z=1 ) )m5 2 : 1 variable : Vcc

x=y=z= 0 ) )m0 1 : 1 variable : Vcc

variable : Ground 0

variable : Ground 0

52

Simplification F(A,B,C,D) = BD + BCD' + AB'C'D', and implementation it with two-level NAND gate ) 16 17 ( : circuit1 variable : Vcc

LED

: B B Truth table

: Ground variable 0

D

C

A

B'

C'

D'

) 17 ( : A=1, B=C=D=0 m8 LED

1 variable : Vcc

2 nodes

: Ground variable 0

53

Implementation F (A,B,C,D) = (0,1,2,9,11) & d(A,B,C,D) = (8,10,14,15) using 2-input NOR gates ) 20 21 - 22 ( : variable : Vcc 1

: B B Truth table

: D' D' Truth table

LED

: A A Truth table

: C' C' Truth table

: Ground variable 0

54

) 23 24 - 25 ( : Full Adder

1 variable : Vcc

LED S=1

z

LED C=1

x

y

: Ground variable 0

) 23 24 - 25 ( :

x = y = z = 1 Full Adder

1 variable : Vcc

: Ground variable 0

55

4 bit Parallel Binary Adder - subtracter: ( 82)

1 : A 1 A A 0C 4A 4C 3A

: Vcc variable 1

2A

NODE 04 C X-OR

4B 4S 3B

1S

3S

2S

, A B 82 0 M 1 LED LED

2 nodes

1B 2B : Ground variable 0

65

)28 ( : 4 bit Parallel Binary Adder - subtracter

variable : Vcc 1

variable : Vcc 1

variable : Vcc 1

: Ground variable 0

)28 ( : 4 bit Parallel Binary Adder - subtracter

variable : Vcc 1

: Ground variable 0

57

Implementation Full Adder using 3 * 8 Decoder if S ( x,y,z ) = ( 1,2,4,7 ) & C ( x,y,z ) = ( 3,5,6,7 ) ) 31 ( : E = 0 or 1 variable : Vcc 1

x

z

C

S

y

: Ground variable 0

E=0 ( ON ) 11 S & C LED xyz= 111 variable : Vcc 1

: Ground variable 0

58

) 33-34-35 ( Implementation Function F( A,B,C,D ) = ( 0,3,5,6,8,9,14,15 ) using 8 * 1 MUX variable : Vcc 1

A'

A

D C

B

Output

A' : Ground variable 0

E = 0 ( ON ) A : A Truth table A=B=C=D=0 LED 1 I0 MUX T.T.

59

) 39-40-41 ( Design 2 Bit up counter using JK Flip Flop

variable : Vcc 1

B or QB 00 11 least significant bit

A or QA 00 11 most significant bit CLK Function Generator

: Ground variable 0

60

) 42 ( 4 Bit Binary Counter

QD QC cout QA QB load count

variable : Vcc 1

clear D count load

C

B

A : Ground variable 0

CLK Function Generator 61

Random generator ( 44 )

: Vcc variable 1

CLK Function Generator

0 = Control = control 1 Function table 44 XOR ' J & K SI ABCD 0101 44 . 26 : Ground variable 0

Design mod n counter from 0 to 4 using 4 bit counter ( 74 )

( QC ) ( ) : Vcc variable 1

QD ( QB )

: Ground variable 0 0=A=B=C=D

CLK Function Generator

0 4 0 .

36

) 47 ( Design Frequency divider by 5

QA variable : Vcc 1

QC QB

Oscilloscope ( CH1 )

: Ground variable 0 A=B=C=D=0

CLK Function Generator

64