Mecanica Solidos Beer-03

Embed Size (px)

Citation preview

  • 8/20/2019 Mecanica Solidos Beer-03

    1/30

    MECHANICS OFMATERIALS

    Third Edition

    Ferdinand P. Beer

    E. Russell Johnston, Jr.

     

    CHAPTER

    Torsion  .

    Lecture Notes:

    J. Walt Oler

    Texas Tech University

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved.

  • 8/20/2019 Mecanica Solidos Beer-03

    2/30

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Contents

    Introduction

    Torsional Loads on Circular Shafts

    Net Torque Due to Internal StressesAxial Shear Components

    Shaft Deformations

     

    Statically Indeterminate Shafts

    Sample Problem 3.4

    Design of Transmission ShaftsStress Concentrations

    Plastic Deformations

     

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 2

    ear ng ra n

    Stresses in Elastic Range

    Normal Stresses

    Torsional Failure Modes

    Sample Problem 3.1

    Angle of Twist in Elastic Range

    as op as c a er a s

    Residual Stresses

    Example 3.08/3.09

    Torsion of Noncircular Members

    Thin-Walled Hollow Shafts

    Example 3.10

  • 8/20/2019 Mecanica Solidos Beer-03

    3/30

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Torsional Loads on Circular Shafts

    • Interested in stresses and strains of

    circular shafts subjected to twisting

    couples or torques

    • Shaft transmits the torque to the

    • Turbine exerts torque T on the shaft

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 3

    • Generator creates an equal and

    opposite torque T ’

  • 8/20/2019 Mecanica Solidos Beer-03

    4/30

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Net Torque Due to Internal Stresses

    ( )∫ ∫==   dAdF T    τ  ρ 

    • Net of the internal shearing stresses is an

    internal torque, equal and opposite to the

    applied torque,

    • Although the net torque due to the shearing

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 4

     

    is not

    • Unlike the normal stress due to axial loads, the

    distribution of shearing stresses due to torsional

    loads can not be assumed uniform.

    • Distribution of shearing stresses is statically

    indeterminate – must consider shaft

    deformations

  • 8/20/2019 Mecanica Solidos Beer-03

    5/30

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Axial Shear Components

    • Torque applied to shaft produces shearing

    stresses on the faces perpendicular to the

    axis.

    • Conditions of equilibrium require the

    existence of equal stresses on the faces of the

    two planes containing the axis of the shaft

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 5

    • The existence of the axial shear components is

    demonstrated by considering a shaft made up

    of axial slats.

    The slats slide with respect to each other when

    equal and opposite torques are applied to the

    ends of the shaft.

  • 8/20/2019 Mecanica Solidos Beer-03

    6/30

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    • From observation, the angle of twist of the

    shaft is proportional to the applied torque and

    to the shaft length.

     L

    φ 

    φ 

    Shaft Deformations

    • -

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 6

      ,

    of a circular shaft remains plane andundistorted.

    • Cross-sections of noncircular (non-

    axisymmetric) shafts are distorted when

    subjected to torsion.

    • Cross-sections for hollow and solid circular

    shafts remain plain and undistorted because a

    circular shaft is axisymmetric.

  • 8/20/2019 Mecanica Solidos Beer-03

    7/30

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Shearing Strain

    • Consider an interior section of the shaft. As a

    torsional load is applied, an element on the

    interior cylinder deforms into a rhombus.

    • Since the ends of the element remain planar,

    the shear strain is equal to angle of twist.

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 7

    • Shear strain is proportional to twist and radius

    maxmax   and  γ   ρ 

    γ  φ 

    γ  c L

    c==

     L L

      φ γ   ρφ γ     ==   or

    • It follows that

  • 8/20/2019 Mecanica Solidos Beer-03

    8/30

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Stresses in Elastic Range

    41 c J    π =

    • Multiplying the previous equation by theshear modulus,

    maxγ  γ     Gc

    G   =

    maxτ τ c

    =

    From Hooke’s Law,  τ    G=

    , so

    The shearing stress varies linearly with the

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 8

     J cdAcdAT   max2max   τ 

     ρ 

    τ 

     ρτ    ∫   =∫   ==

    • Recall that the sum of the moments from

    the internal stress distribution is equal to

    the torque on the shaft at the section,

    41

    422

    1 cc J    −=   π 

     and max  J 

     J 

    Tcτ τ    ==

    • The results are known as the elastic torsion

    formulas,

      .

  • 8/20/2019 Mecanica Solidos Beer-03

    9/30

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Normal Stresses

    • Elements with faces parallel and perpendicular

    to the shaft axis are subjected to shear stresses

    only. Normal stresses, shearing stresses or a

    combination of both may be found for other

    orientations.

    ( )   0max0max   245cos2   τ τ    ==   A AF 

    • Consider an element at 45o to the shaft axis,

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 9

    max0

    0max45 2

    2o   τ τ σ    === A

     A AF 

    • Element a is in pure shear.

    • Note that all stresses for elements a and c have

    the same magnitude

    • Element c is subjected to a tensile stress on

    two faces and compressive stress on the other

    two.

  • 8/20/2019 Mecanica Solidos Beer-03

    10/30

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Torsional Failure Modes

    • Ductile materials generally fail in

    shear. Brittle materials are weaker in

    tension than shear.

    • When subjected to torsion, a ductile

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 10

     

    maximum shear, i.e., a planeperpendicular to the shaft axis.

    • When subjected to torsion, a brittle

    specimen breaks along planesperpendicular to the direction in

    which tension is a maximum, i.e.,

    along surfaces at 45o to the shaft

    axis.

  • 8/20/2019 Mecanica Solidos Beer-03

    11/30

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Sample Problem 3.1

    SOLUTION:

    • Cut sections through shafts AB

    and BC and perform static

    equilibrium analysis to findtorque loadings

    • Apply elastic torsion formulas to

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 11

    Shaft BC is hollow with inner and outer

    diameters of 90 mm and 120 mm,

    respectively. Shafts AB and CD are solid

    of diameter d . For the loading shown,

    determine (a) the minimum and maximum

    shearing stress in shaft BC , (b) the

    required diameter d of shafts AB and CD

    if the allowable shearing stress in these

    shafts is 65 MPa.

    • Given allowable shearing stress

    and applied torque, invert the

    elastic torsion formula to find the

    required diameter

     

    stress on shaft BC 

  • 8/20/2019 Mecanica Solidos Beer-03

    12/30

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    SOLUTION:

    • Cut sections through shafts AB and BC 

    and perform static equilibrium analysis

    to find torque loadings

    Sample Problem 3.1

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 12

    ( )

    CD AB

     AB x

    T T 

    T  M 

    =⋅=

    −⋅==∑mkN6

    mkN60   ( ) ( )

    mkN20

    mkN14mkN60

    ⋅=

    −⋅+⋅==∑ BC 

     BC  x

    T  M 

  • 8/20/2019 Mecanica Solidos Beer-03

    13/30

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    • Apply elastic torsion formulas tofind minimum and maximum

    stress on shaft BC 

    • Given allowable shearing stress andapplied torque, invert the elastic torsion

    formula to find the required diameter

    Sample Problem 3.1

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 13

    ( )   ( ) ( )[ ]46

    444142

    m1092.13

    045.0060.022

    −×=

    −=−=

     π cc J 

    ( )( )

    MPa2.86m1092.13

    m060.0mkN2046

    22max

    =

    ×

    ⋅===

     J 

    cT  BC τ τ 

    MPa7.64

    mm60

    mm45

    MPa2.86

    min

    min

    2

    1

    max

    min

    =

    ==

    τ 

    τ 

    τ 

    τ 

    c

    c

    MPa7.64

    MPa2.86

    min

    max

    =

    =

    τ 

    τ 

    m109.38

    mkN665

    3

    3

    2

    4

    2

    max

    −×=

    ⋅===

    c

    c MPa

    cTc

     J Tc

    π π τ 

    mm8.772   ==   cd 

  • 8/20/2019 Mecanica Solidos Beer-03

    14/30

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Angle of Twist in Elastic Range

    • Recall that the angle of twist and maximum

    shearing strain are related,

     L

    cφ γ     =max

    • In the elastic range, the shearing strain and shearare related by Hooke’s Law,

     JG

    Tc

    G==   maxmax

    τ γ  

     

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 14

    • Equating the expressions for shearing strain andsolving for the angle of twist,

     JG

    TL=φ 

    • If the torsional loading or shaft cross-section

    changes along the length, the angle of rotation isfound as the sum of segment rotations

    ∑=i   ii

    ii

    G J 

     LT φ 

  • 8/20/2019 Mecanica Solidos Beer-03

    15/30

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    • Given the shaft dimensions and the applied

    torque, we would like to find the torque reactions

    at A and B.

    Statically Indeterminate Shafts

    • From a free-body analysis of the shaft,

    which is not sufficient to find the end torques.

    ftlb90   ⋅=+  B A   T T 

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 15

    e pro em s s a ca y n e erm na e.

    ftlb9012

    21 ⋅=+  A A   T  J  L

     J  LT 

    • Substitute into the original equilibrium equation,

     A B B A T 

     J  L

     J  LT 

    G J 

     LT 

    G J 

     LT 

    12

    21

    2

    2

    1

    121   0   ==−=+=   φ φ φ 

    • Divide the shaft into two components which

    must have compatible deformations,

  • 8/20/2019 Mecanica Solidos Beer-03

    16/30

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Sample Problem 3.4

    SOLUTION:

    • Apply a static equilibrium analysis on

    the two shafts to find a relationship

    between T CD and T 0

     

    • Apply a kinematic analysis to relate

    the angular rotations of the gears

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 16

    Two solid steel shafts are connected

    by gears. Knowing that for each shaft

    G = 11.2 x 106 psi and that the

    allowable shearing stress is 8 ksi,

    determine (a) the largest torque T 0that may be applied to the end of shaft

     AB, (b) the corresponding angle

    through which end A of shaft AB

    rotates.

    • Find the corresponding angle of twist

    for each shaft and the net angular

    rotation of end A

    • Find the maximum allowable torque

    on each shaft – choose the smallest

  • 8/20/2019 Mecanica Solidos Beer-03

    17/30

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    SOLUTION:

    • Apply a static equilibrium analysis on

    the two shafts to find a relationship

    between T CD

    and T 0

    • Apply a kinematic analysis to relate

    the angular rotations of the gears

    Sample Problem 3.4

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 17

    ( )

    ( )

    0

    0

    8.2

    in.45.20

    in.875.00

    T T 

    T F  M 

    T F  M 

    CD

    CDC 

     B

    =

    −==

    −==

    C  B

    C C  B

    C  B

    C C  B B

    r r r 

    φ φ 

    φ φ φ 

    φ 

    8.2

    in.875.0

    in.45.2

    =

    ==

    =

  • 8/20/2019 Mecanica Solidos Beer-03

    18/30

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    • Find the T 0 for the maximumallowable torque on each shaft –

    choose the smallest

    • Find the corresponding angle of twist for eachshaft and the net angular rotation of end A

    ( )( ).24in.lb561   ⋅==   AB

      in LT 

    Sample Problem 3.4

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 18

    ( )

    ( )

    ( )

    ( )

    in.lb561

    in.5.0

    in.5.08.28000

    in.lb663

    in.375.0

    in.375.08000

    0

    4

    2

    0max

    0

    4

    2

    0max

    ⋅=

    ==

    ⋅=

    ==

    T  psi

     J 

    cT 

    T  psi

     J 

    cT 

    CD

    CD

     AB

     AB

    π 

    π 

    τ 

    τ 

    inlb5610   ⋅=T 

    ( )

    ( )( )

    ( )

     ( )

    ( )

    oo / 

    oo

    o

    64

    2

     / 

    o

    2

    2.2226.8

    26.895.28.28.2

    95.2rad514.0

    psi102.11in.5.0

    .24in.lb5618.2

    2.22rad387.0

    psi102.11in.375.0

    +=+=

    ===

    ==

    ×

    ⋅==

    ==

    ×

     B A B A

    C  B

    CD

    CD DC 

     AB

    in

    G J 

     LT 

    G J 

    φ φ φ 

    φ φ 

    φ π 

    π 

    o48.10= Aφ 

  • 8/20/2019 Mecanica Solidos Beer-03

    19/30

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Design of Transmission Shafts

    • Principal transmission shaft

    performance specifications are:

    - power

    - speed

    • Determine torque applied to shaft at

    specified power and speed,

     f 

    PPT 

     fT T P

    π ω 

    π 

    2

    2

    ==

    ==

    • Find shaft cross-section which will not• Designer must select shaft

    material and cross-section to

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 19

    excee e max mum a owa e

    shearing stress,

    ( )

    ( )   ( )shaftshollow2

    shaftssolid2

    max

    41

    42

    22

    max

    3

    max

    τ 

    π 

    τ 

    π 

    τ 

    T cc

    cc

     J 

    cc

     J 

     J 

    Tc

    =−=

    ==

    =

    meet performance specificationswithout exceeding allowable

    shearing stress.

  • 8/20/2019 Mecanica Solidos Beer-03

    20/30

     T h i    r   d 

    E  d i     t   i     on

    Beer • Johnston • DeWolf

    Stress Concentrations

    • The derivation of the torsion formula,

    assumed a circular shaft with uniform

    cross-section loaded through rigid end

    plates.

     J 

    Tc=maxτ 

    • The use of flange couplings, gears and

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 20

     J 

    TcK =maxτ 

    • Experimental or numerically determined

    concentration factors are applied as

    pulleys attached to shafts by keys inkeyways, and cross-section discontinuities

    can cause stress concentrations

    T E 

  • 8/20/2019 Mecanica Solidos Beer-03

    21/30

     Th i    r   d 

    E d i     t   i     on

    Beer • Johnston • DeWolf

    Plastic Deformations

    • With the assumption of a linearly elastic material,

     J 

    Tc=maxτ 

    • Shearing strain varies linearly regardless of material

    • If the yield strength is exceeded or the material has

    a nonlinear shearing-stress-strain curve, this

    expression does not hold.

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 21

    ( )   ∫=∫=cc

    d d T 0

    2

    0

    22   ρ τ  ρ π  ρ πρ  ρτ 

    • The integral of the moments from the internal stress

    distribution is equal to the torque on the shaft at the

    section,

    properties. Application of shearing-stress-straincurve allows determination of stress distribution.

    T E 

  • 8/20/2019 Mecanica Solidos Beer-03

    22/30

     Th i    r   d 

    E d i     t   i     on

    Beer • Johnston • DeWolf

    Elastoplastic Materials

    • As the torque is increased, a plastic region( ) develops around an elastic core ( )Y τ τ   =   Y Y 

    τ  ρ 

    τ   =

    φ  ρ    Y 

     LY   =

    • At the maximum elastic torque,

    Y Y Y    cc

     J T    τ π τ    3

    21==

    c

     L Y Y φ    =

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 22

    • As , the torque approaches a limiting value,0→Y  ρ 

    torque plasticT T  Y P   == 34

      −=  

    −= 341343413

    32 11c

    T c

    cT    Y Y Y Y  ρ 

    τ π 

     

     

     

     −=

    3

    3

    41

    34 1

    φ 

    φ Y Y T T 

    T E 

  • 8/20/2019 Mecanica Solidos Beer-03

    23/30

     Th i    r   d 

    E d i     t   i     on

    Beer • Johnston • DeWolf

    Residual Stresses

    • Plastic region develops in a shaft when subjected to a

    large enough torque

    • On a T-φ curve, the shaft unloads along a straight line

    to an an le reater than zero

    • When the torque is removed, the reduction of stress

    and strain at each point takes place along a straight lineto a generally non-zero residual stress

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 23

     

    • Residual stresses found from principle of superposition

    ( )   0=∫   dAτ 

     J 

    Tc

    m =′

    τ 

  • 8/20/2019 Mecanica Solidos Beer-03

    24/30

    T  

  • 8/20/2019 Mecanica Solidos Beer-03

    25/30

     hi    r   d 

    E d i     t   i     on

    Beer • Johnston • DeWolf

    SOLUTION:

    • Solve Eq. (3.32) for ρ Y  /c and

    evaluate the elastic core radius

    31

    3413

    3

    41

    34

     

      

     −=⇒

     

     

     

     −=

    Y Y Y 

    cc

    T T   ρ  ρ 

    m10614

    m1025

    49

    3214

    21

    ×=

    ×==

    −c J    π π 

    • Solve Eq. (3.36) for the angle of twist

    ( )( )( )( )

    3

    49-

    3

    rad104.93

    Pa1077m10614

    m2.1N1068.3

    ×=

    ××

    ×==

    =⇒=

    −φ 

    φ 

     ρ 

    φ φ 

    φ 

    Y Y 

    Y Y 

     JG

     LT 

    cc

    Example 3.08/3.09

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 25

    ( )( )

    mkN68.3

    m1025

    m10614Pa101503

    496

    ⋅=

    ×

    ××=

    =⇒=

    Y Y Y Y 

    c J T 

     J cT    τ τ 

    630.068.3

    6.434

    31

      

     −=

    c

    Y  ρ 

    mm8.15=Y 

    o33 8.50rad103.148630.0

    rad104.93=×=

    ×=

      −−φ 

    o50.8=φ 

    T h 

    E  d 

  • 8/20/2019 Mecanica Solidos Beer-03

    26/30

     hi    r   d 

    di     t   i     on

    Beer • Johnston • DeWolf

    • Evaluate Eq. (3.16) for the angle

    which the shaft untwists when

    the torque is removed. The

    permanent twist is the difference

    between the angles of twist and

    untwist

    =′φ   TL

    • Find the residual stress distribution by

    a superposition of the stress due to

    twisting and untwisting the shaft

    MPa3.187

    m10614

    m1025mN106.449-

    33

    max

    =

    ×

    ×⋅×==′

     J 

    Tcτ 

    Example 3.08/3.09

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 26

    ( )( )( )( )

    ( )o

    33

    3

    949

    3

    1.81

    rad108.116108.116

    rad108.116

    Pa1077m1014.6

    m2.1mN106.4

    =

    ×−×=

    ′−=

    ×=

    ××

    ⋅×=

    −−

    φ φ  pφ

    o

    81.1=

     pφ 

  • 8/20/2019 Mecanica Solidos Beer-03

    27/30

    T h 

    E  d 

  • 8/20/2019 Mecanica Solidos Beer-03

    28/30

     hi    r   d 

    di     t   i     on

    Beer • Johnston • DeWolf

    Thin-Walled Hollow Shafts

    • Summing forces in the x-direction on AB,

    shear stress varies inversely with thickness

    ( ) ( )

    flowshear

    0

    ====

    ∆−∆==∑

    qt t t 

     xt  xt F 

     B B A A

     B B A A x

    τ τ τ 

    τ τ 

    • Compute the shaft torque from the integral

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 28

    ( ) ( )

    tA

    qAdAqdM T 

    dAq pdsqdst  pdF  pdM 

    2

    22

    2

    0

    0

    =

    ===

    ====

    ∫∫

    τ 

    τ 

     

    ∫=t 

    ds

    G A

    TL24

    φ 

    • Angle of twist (from Chapt 11)

    T h 

    E  d 

  • 8/20/2019 Mecanica Solidos Beer-03

    29/30

     hi    r   d 

    di     t   i     on

    Beer • Johnston • DeWolf

    Example 3.10

    Extruded aluminum tubing with a rectangular

    cross-section has a torque loading of 24 kip-

    in. Determine the shearing stress in each of

    the four walls with (a) uniform wall thickness

    of 0.160 in. and wall thicknesses of (b) 0.120in. on AB and CD and 0.200 in. on CD and

     BD.

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 29

    SOLUTION:

    • Determine the shear flow through the

    tubing walls

    • Find the corresponding shearing stress

    with each wall thickness

    T h     

    E  d 

    B J h t D W lf

  • 8/20/2019 Mecanica Solidos Beer-03

    30/30

     ir   d i     t   i     on

    Beer • Johnston • DeWolf

    SOLUTION:

    • Determine the shear flow through the

    tubing walls

    • Find the corresponding shearingstress with each wall thickness

    with a uniform wall thickness,

    in.160.0

    in.kip335.1==

    qτ 

    ksi34.8=τ 

    Example 3.10

    © 2002 The McGraw-Hill Companies, Inc. All rights reserved. 3 - 30

    ( )( )

    ( )   in.kip335.1

    in.986.82in.-kip24

    2

    in.986.8in.34.2in.84.3

    2

    2

    ===

    ==

     AT q

     A

    with a variable wall thickness

    in.120.0

    in.kip335.1==  AC  AB   τ τ 

    in.200.0

    in.kip335.1== CD BD   τ τ 

    ksi13.11==  BC  AB   τ τ 

    ksi68.6== CD BC    τ τ