Mnogo zajebana stvar

Embed Size (px)

Citation preview

  • 8/9/2019 Mnogo zajebana stvar

    1/124

    Eurocode 3 Folder : Bolted connections

    Bolted angilar connection:

    EdS

    EdEdEd

    Dimensions of connection:

    Plate thickness d = 15,00 mmBolt spacing e = 35,00 mmSpacing of bolts e o = 30,00 mmSpacing of bolts b = 70,00 mmSpacing of bolts h = 220,00 mm

    Angle of tension force = 45,00

    Bolts:Bolt = SEL("steel/bolt"; BS; ) = M 20SC = SEL("steel/bolt"; SC; ) = 8.8f u,b = TAB("steel/bolt"; fubk; SC=SC) = 800,00 N/mmHole diameter d l= TAB("steel/bolt"; d; BS=Bolt) = 20,00 mmShaft diameter d ll= d l+2 = 22,00 mmCross-section areas A s = TAB("steel/bolt"; Asp; BS=Bolt) = 2,45 cm

    Plate:steel = SEL("steel/EC"; Name; ) = Fe 510f y = TAB("steel/EC"; fy; Name=steel) = 355,00 N/mmf u = TAB("steel/EC"; fu; Name=steel) = 510,00 N/mm M0 = 1,10 Mb = 1,25

    Loads:S Ed = 424,26 kNNEd = COS( ) * S Ed = 300,00 kNVEd = SIN( ) * S Ed = 300,00 kN

    Force per bolt:

    F t,Ed =NEd

    4= 75,00 kN

    Fv,Ed =VEd

    4= 75,00 kN

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    2/124

    Eurocode 3 Folder : Bolted connections

    Limit tension force of bolts:

    F t,Rd = *0,9*f u, b A s

    * Mb 10= 141,12 kN

    F t,Ed

    F t ,Rd = 0,53 < 1

    Check limit shear force for bolts:

    Fv,Rd = 0,6 **f u, b * d l

    2

    *4000 Mb= 120,64 kN

    F v,Ed

    F v,Rd= 0,62 < 1

    Check combined:

    +F t,Ed

    *1,4 F t ,Rd

    F v,Ed

    F v,Rd= 1,00 1

    Analysis of bearing strength:as in 6.5.1.3: e o / d ll = 1,36 > 1as in 6.5.1.3: e o / d ll = 1,36 < 1,5as in 6.5.1.2(1): e / d ll = 1,59 > 1,2as in 6.5.1.2(3): b / d ll = 3,18 > 3

    = MIN(e

    *3 d ll;

    b

    *3 d ll - 0,25;

    f u,bf u

    ; 1) = 0,53

    Tab.6.5.3 F b1,Rd = 2,5 * * dl * d *f u

    * Mb 103

    = 162,18 kN

    6.5.5.(10) F b2,Rd =2

    3 * F b1,Rd = 108,12 kN

    Fb,Rd = F b2,Rd + (F b1,Rd - F b2,Rd ) *

    -e o

    d l1,2

    0,3= 162,18 kN

    F v,Ed

    F b,Rd= 0,46 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    3/124

    Eurocode 3 Folder : Bolted connections

    Bolted connection subject to bending

    Dimensions of connection:a = 80,00 mma 1 = 45,00 mme = 80,00 mme 1 = 45,00 mme 2 = 50,00 mme 3 = 90,00 mmd1 = 20,00 mmd2 = 8,00 mmb1 = 160,00 mm

    h2 = 2 * (e 2 + e 3 ) = 280,00 mm

    Flange-Bolts:Bolt f = SEL("steel/bolt"; BS; ) = M 20SC1 = SEL("steel/bolt"; SC; ) = 4.6f u,bo = TAB("steel/bolt"; fubk; SC=SC1) = 400,00 N/mmHole diameter d lo = TAB("steel/bolt"; d; BS=Bolt f ) = 20,00 mmShaft diameter d l1o = d lo + 2 = 22,00 mmNumber of rows n o = 3

    Steg-Bolts:Bolt S = SEL("steel/bolt"; BS; ) = M 16SC2 = SEL("steel/bolt"; SC; ) = 4.6f u,bs = TAB("steel/bolt"; fubk; SC=SC2) = 400,00 N/mmHole diameter d ls = TAB("steel/bolt"; d; BS=Bolt S ) = 16,00 mmShaft diameter d l1s = d ls + 2 = 18,00 mmNumber of rows n s = 3Number of columns m s = 2

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    4/124

    Eurocode 3 Folder : Bolted connections

    Profil:Profil Typ = SEL("steel/Profils"; Name; ) = IPESelected Profil = SEL("steel/"Typ; Name; ) = IPE 240Column height h = TAB("steel/"Typ; h; Name=Profil) = 240,00 mmWeb thickness s = TAB("steel/"Typ; s; Name=Profil) = 6,20 mmFlange thickness t = TAB("steel/"Typ; t; Name=Profil) = 9,80 mmCross-sectional area A = TAB("steel/"Typ; A; Name=Profil) = 39,10 cmMoment of resistance W y = TAB("steel/"Typ; Wy; Name=Profil) = 324,00 cmMoment of resistance W pl = 1,14 * W y = 369,36 cm

    Material and Partial safety factors:steel = SEL("steel/EC"; Name; ) = Fe 360f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mmf u = TAB("steel/EC"; fu; Name=steel) = 360,00 N/mm M0 = 1,10 M2 = 1,25

    Loads:MEd = 157,95 kNmVEd = 60,75 kN

    Check beam-web strength without holes:

    Mc,Rd =*W pl f y

    * M0 103

    = 78,91 kNm

    MEd

    Mc,Rd

    = 2,00 < 1

    A v = 1,04 **h s

    100= 15,48 cm

    Vpl,Rd = * A vf y

    ** 3 M0 10= 190,93 kN

    VEd

    Vpl,Rd= 0,32 < 1

    Check beam-web strength with holes:

    A z = 0,5 * A = 19,55 cm

    A z,net = - A z

    *2 *d l1o +t *-n s 1

    2*d l1s s

    100= 14,12 cm

    *f y

    f u

    M2 M0

    *0,9 A z,net

    A z

    = 1,14 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    5/124

    Eurocode 3 Folder : Bolted connections

    Wpl,net = W pl - 2 * d l1o * t *-h t

    2000= 319,73 cm

    Mc,Rd,C =*W pl,net f y

    * M0 103

    = 68,31 kNm

    MEd

    Mc,Rd,C= 2,31 < 1

    A v,net = Av - n s * dl1s *s

    100= 12,13 cm

    *f y

    f u

    Av

    Av,net= 0,83 < 1

    Area of holes will be neglected.

    Analysis of bolts in flange:

    Iw =*2 *d 2 h 2

    3

    *12 104

    = 2926,93 cm 4

    If = 2 * b 1 * d1 *( )+h d 12

    2

    104

    = 10816,00 cm 4

    Mw = MEd *Iw

    +Iw If = 33,64 kNm

    Mf = MEd *If

    +Iw If = 124,31 kNm

    Effective tension force in flange:

    NEd =M f

    +h d 1 * 10 = 478,12 kN

    Limit shear force

    Fv,Rd = n o * 2 * 0,6 *

    *f u,bo *4d lo 2

    *103

    M2= 361,91 kN

    Limit bearing force:

    = MIN(a 1

    *3 d l1o;

    a

    *3 d l1o - 0,25;

    f u,bo

    f u; 1) = 0,682

    Fb,Rd = 2 * no * 2,5 * * dlo * t *f u

    * M2 103

    = 577,46 kN

    MAX(

    NEd

    F v,Rd;

    NEd

    F b,Rd ) = 1,32 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    6/124

    Eurocode 3 Folder : Bolted connections

    Analysis of bolts in web:

    ns1 =-n s 1

    2 + 0,49 = 1

    ns2 = n s1 * 2 = 2

    m s1 =-m s 1

    2 + 0,49 = 1

    m s2 = m s1 * 2 = 2

    Ip =

    *n s *m s2 +( )*-m s 12 e2

    *n s2 *m s ( )*-n s 12 e 32

    100= 420,00 cm

    MEw = Mw +*VEd e 3

    103

    = 39,11 kNm

    REd = +( )*10 *MEw e 3Ip2

    ( )+VEd*m s n s *10 *MEw *-m s 1

    2

    e

    Ip

    2

    = 96,27 kN

    Fv,Rd = m s * 0,6 * f u,bs *4

    *d ls

    2

    * M2 103

    = 77,21 kN

    = MIN(e 1

    *3 d l1s;

    e

    *3 d l1s - 0,25;

    f u,bo

    f u; 1) = 0,833

    Fb,Rd = 2,5 * * dls * s *f u

    * M2 103

    = 59,50 kN

    MAX(R Ed

    F v,Rd;

    R Ed

    F b,Rd ) = 1,62 < 1

    Analysis of cover plates:

    A =*d 1 b 1

    100= 32,00 cm

    A net = A -*2 *d l1o d 1

    100= 23,20 cm

    Limit tension force:

    Nt,Rd = MIN(A *f y

    * M0 10; 0,9 * A net *

    f u

    * M2 10) = 601,34 kN

    N Ed

    N t ,Rd= 0,80 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    7/124

    Eurocode 3 Folder : Bolted connections

    Connection subject to moment load:

    7

    1 2 3

    54

    86

    e

    e

    e

    e

    ee

    e e

    2

    2

    3

    3

    1 1

    Dimensions of connection:

    Bolt spacing e = 50,00 mmEdge distance e1 = 35,00 mmBolt spacing e3 = 70,00 mm

    Plate thickness t = 6,00 mmNumber of bolts n = 8

    Bolts:Bolt1 = SEL("steel/bolt"; BS; ) = M 30SC1 = SEL("steel/bolt"; SC; ) = 5.6f u,b1 = TAB("steel/bolt"; fubk; SC=SC1) = 500,00 N/mmHole diameter d l1 = TAB("steel/bolt"; d; BS=Bolt1) = 30,00 mm

    Bolt2 = SEL("steel/bolt"; BS; ) = M 12SC2 = SEL("steel/bolt"; SC; ) = 5.6f u,b2 = TAB("steel/bolt"; fubk; SC=SC2) = 500,00 N/mm

    Hole diameter d s2 = TAB("steel/bolt"; d; BS=Bolt2) = 12,00 mmShaft diameter d l2 = d s2 +1 = 13,00 mm

    steel = SEL("steel/EC"; Name; ) = Fe 360f u2 = TAB("steel/EC"; fu; Name=steel) = 360,00 N/mm Mb = 1,25 Mo = 1,25

    Loads:

    VEd = 58,70 kN

    MEd = 910,00 kNcm

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    8/124

    Eurocode 3 Folder : Bolted connections

    Analysis of the right bolt:Check limit shear force

    Fv,Rd = 0,6 * *4 ( )d l110

    2

    *f u,b1

    *10 Mo= 169,65 kN

    VEd

    F v,Rd= 0,35 < 1

    Limit bearing strength

    Fb,Rd = 1,5 * d l1 * t *f u2

    *103

    Mb= 77,76 kN

    VEd

    F b,Rd= 0,75 < 1

    Check bolts on left:

    Ip =*6 ( )+e 2 e 3

    2

    100= 444,00 cm

    Maximum horizontal force in bolt due to moment:

    Fh = MEd *e 3

    *Ip 10= 14,35 kN

    Maximum vertical force:

    Fv = *MEd +e

    *Ip 10

    VEd

    n= 17,59 kN

    Resulting force

    Rr = +F h2

    F v2 = 22,70 kN

    Fv,Rd = 0,6 * f u,b2 * dl2 *

    *4 * Mb 103

    = 31,86 kN

    R r

    F v,Rd= 0,71 < 1

    Analysis of bearing strength

    = MIN(e 1

    *3 d l2; 2 *

    e

    *3 d l2 - 0,25;

    f u,b2

    f u2; 1) = 0,90

    Fb,Rd = 2,5 * * dl2 * t *f u2

    * Mb 103

    = 50,54 kN

    F h

    F b,Rd= 0,28 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    9/124

    Eurocode 3 Folder : Bolted connections

    Bolted shear joint:

    Dimensions of connection:Spacing of bolts a = 45,00 mmSpacing of bolts a 0 = 35,00 mmSpacing of bolts a 1 = 30,00 mmSpacing of bolts a 2 = 50,00 mmSpacing of bolts a 3 = 90,00 mmDepth of cope a 4 = 30,00 mmPlate projection a s = 20,00 mmLever-arm x = 45,00 mmNumber of bolts n = 3

    Bolts:M16 4.6Bolt = SEL("steel/bolt"; BS; ) = M 16SC = SEL("steel/bolt"; SC; ) = 4.6f u,b = TAB("steel/bolt"; fubk; SC=SC) = 400,00 N/mmHole diameter d l= TAB("steel/bolt"; d; BS=Bolt) = 16,00 mmShaft diameter d 0= d l+2 = 18,00 mm

    Angle section P = SEL("steel/WG"; Name; ) = L 80x8 Angle thickness t = TAB("steel/WG"; s; Name=P) = 8,00 mmFactor for group bolts as in 6.5.2..2(3):k = 0,5 for 1 group bolts; =2,5 for 2 rows

    steel = SEL("steel/EC"; Name; ) = Fe 360f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mmf u = TAB("steel/EC"; fu; Name=steel) = 360,00 N/mm

    Profil Typ = SEL("steel/Profils"; Name; ) = IPESelected Profil = SEL("steel/"Typ; Name; ) = IPE 270Column height h = TAB("steel/"Typ; h; Name=Profil) = 270,00 mmWeb thickness s = TAB("steel/"Typ; s; Name=Profil) = 6,60 mm

    Mb = 1,25 M2 = 1,25 M0 = 1,10

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    10/124

    Eurocode 3 Folder : Bolted connections

    Loads:VEd = 60,00 kN

    Check bolt spacing as in 6.5.1:1,2 * d 0 / a 1 = 0,72 < 1a 1 / MAX(12 * t; 150) = 0,20 < 11,5 * d 0 / a 0 = 0,77 < 1a 0 / MAX(12 * t; 150) = 0,23 < 12,2 * d 0 / a 2 = 0,79 < 1a 2 / MIN(12 * s; 200) = 0,63 < 1

    Check bolts strength:

    Bolts in web of main beam F v,Ed =VEd

    *2 n= 10,00 kN

    Bolts in web of connecting beam MEd

    = *x

    10V

    Ed= 270,00 kNcm

    Horizontal force due to M Ed Fh,Ed =MEd

    *( )-n 1a 2

    10

    = 27,00 kN

    Distributed shearing force on bolts F v,Ed =VEd

    n= 20,00 kN

    Maximum bolt strength F Ed = +F h,Ed2

    F v,Ed2 = 33,60 kN

    Limit strength and analysis of bolts:

    Bolts in web of main beam:

    Plain in the shear plane F v,Rd = 0,6 * f u,b * *d l

    2

    *4 * Mb 103

    = 38,60 kN

    Limit bearing strength

    = MIN(a 1

    *3 d 0;

    a 2

    *3 d 0 - 0,25;

    f u,b

    f u; 1) = 0,556

    Fb,Rd = 2,5 * * dl * t *f u

    * M2 103

    = 51,24 kN

    Analysis:

    F Ed

    F b,Rd= 0,66 < 1

    Bolts in web of connecting beam:

    Fv,Rd = 2 * 0,6 * f u,b * *d l

    2

    *4 * Mb 103

    = 77,21 kN

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    11/124

    Eurocode 3 Folder : Bolted connections

    Limit bearing strength

    = MIN(a 1

    *3 d 0;

    a 2

    *3 d 0 - 0,25;

    f u,b

    f u; 1) = 0,556

    Fb,Rd = 2,5 * * dl * s *f u

    * M2 103 = 42,27 kN

    Analysis:

    F Ed

    F b,Rd= 0,79 < 1

    Check angle section strengthDesign loads:

    VEdw =

    VEd

    2 = 30,00 kN

    MEdw =MEd

    2= 135,00 kNm

    A = (2 * a 2 + 2 * a 1 ) *t

    200= 6,40 cm

    A net = (2 * a 2 + 2 * a 1 - n * d 0 ) *t

    200= 4,24 cm

    *f y

    f u

    M2 M0

    *0,9 A net

    A

    = 1,24 > 1

    Subtract bottom bolt holes.

    A = A * 2 = 12,80 cm A net = Anet * 2 = 8,48 cm

    *f y

    f u

    A

    Anet= 0,99 < 1

    Bolt holes should not be subtracted

    Wpl =

    *t -( )*2 +a 2 *2 a 1

    2

    4*d 0 *t a 2

    1000= 44,00 cm

    Mpl,Rd = *W plf y

    * M0 10= 940,00 kNcm

    MEd

    Mpl,Rd= 0,29 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    12/124

  • 8/9/2019 Mnogo zajebana stvar

    13/124

    Eurocode 3 Folder : Bolted connections

    Double shear joint with bolts:

    Dimensions of connection:

    Plate thickness d 1 = 6,00 mmNumber of plates n 1 = 2Plate thickness d 2 = 7,10 mmNumber of plates n 2 = 1Plate width b = 210,00 mmBolt spacing e = 40,00 mmEdge distance e1 = 60,00 mmEdge distance e2 = 40,00 mmBolt spacing e3 = 65,00 mm

    Bolts:Bolt = SEL("steel/bolt"; BS; ) = M 20SC = SEL("steel/bolt"; SC; ) = 10.9f u,b = TAB("steel/bolt"; fubk; SC=SC) = 1000,00 N/mmHole diameter d l= TAB("steel/bolt"; d; BS=Bolt) = 20,00 mmCross-section areas A s = TAB("steel/bolt"; Asp; BS=Bolt) = 2,45 cmNumber of bolts n= 5

    Plate :steel = SEL("steel/EC"; Name; ) = Fe 360f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mmf u = TAB("steel/EC"; fu; Name=steel) = 360,00 N/mm M0 = 1,10 M2 = 1,25

    Loads:NEd = 100,00 kN

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    14/124

    Eurocode 3 Folder : Bolted connections

    Joint with tension and shear:Limit tension force of plate links

    A = b * d 1 *n 1

    100= 25,20 cm

    d = d l + 2 = 22,00 mmCross-section area 1:

    A net,1 = A - 2 * d * d 1 *n 1

    100= 19,92 cm

    Cross-section area 2:

    A net,2 = A-3 *d *d 1 *n 1

    100 + 2 * e / (4*e 3 ) * d1 *

    n 1

    100= 18,76 cm

    A net = MIN(Anet,1 ; A net,2 ) = 18,76 cm

    Nt,Rd1 = MIN( * Af y

    M0; 0,9 * * Anet

    f u

    M2)/10 = 486,26 kN

    Limit tension force of plate rechts

    A = b * d 2 *n 2

    100= 14,91 cm

    d = d l+ 2 = 22,00 mm

    A net,1 = A - 2 * d * d 2 *n 2

    100= 11,79 cm

    A net,2 = A - 3 * d * d 2 *n 2

    100 + 2 * e / (4*e 3 ) * d2 *

    n 2

    100= 11,10 cm

    A net = MIN(Anet,1 ; A net,2 ) = 11,10 cm

    Nt,Rd2 = MIN( * Af y

    M0; 0,9 * * Anet

    f u

    M2)/10 = 287,71 kN

    Nt,Rd = MIN(N t,Rd2 ; Nt,Rd1 ) = 287,71 kN

    Limit tension force of boltsn:

    A s =

    * ( )d l102

    4= 3,14 cm

    Thread in the shearing plane:

    Fv,Rd = 0,6 * n * (n 1 + n 2 - 1) **f u,b As

    *10 M2= 1507,20 kN

    Limit bearing strength

    = MIN(e 1

    *3 d; 2 *

    e

    *3 d - 0,25;

    f u,b

    f u; 1) = 0,91

    Fb,Rd1 = n 1 * n * 2,5 * * dl* d1 *f u

    * M2 103

    = 786,24 kN

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    15/124

    Eurocode 3 Folder : Bolted connections

    = MIN(e 1

    *3 d; 2 *

    e

    *3 d - 0,25;

    f u,b

    f u; 1) = 0,91

    Fb,Rd2 = n 2 * n * 2,5 * * dl* d2 *f u

    * M2 103 = 465,19 kN

    Fb,Rd = MIN(F b,Rd1 ; F b,Rd2 ) = 465,19 kN

    Maximum allowed force:Nl,Rd = MIN(N t,Rd ; Fv,Rd ; F b,Rd ) = 287,71 kN

    Analysis:NEd / N l,Rd = 0,35 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    16/124

    Eurocode 3 Folder : Bolted connections

    High strength friction-grip bolt connection:

    Dimensions of connection:

    Plate thickness 1 d 1 = 10,00 mmPlate thickness 2 d 2 = 8,00 mmBolt spacing e = 65,00 mmEdge distance e1 = 55,00 mmEdge distance e2 = 50,00 mmBolt spacing e3 = 70,00 mmPlate width b= 240,00 mm

    Bolts:Bolt = SEL("steel/bolt"; BS; ) = M 22SC = SEL("steel/bolt"; SC; ) = 10.9f u,b = TAB("steel/bolt"; fubk; SC=SC) = 1000,00 N/mmHole diameter d l= TAB("steel/bolt"; d; BS=Bolt) = 22,00 mmCross-section areas A s= TAB("steel/bolt"; Asp; BS=Bolt) = 3,03 cmNumber of bolts n= 5

    normal holes with tolerance as K s = 1,00Number of slip joints as in 6.5.8.1 (1) = 1,00coefficient of friction as in 6.5.8.3 = 0,40as in 6.5.8.1 (3) Ms = 1,25

    Plate:steel = SEL("steel/EC"; Name; ) = Fe 360

    f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mmf u = TAB("steel/EC"; fu; Name=steel) = 360,00 N/mm M0 = 1,10 M2 = 1,25

    Loads:Tension force N Ed = 100,00 kN

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    17/124

    Eurocode 3 Folder : Bolted connections

    Limit tension force of plate:

    A = MIN(d 1 ; d 2 ) *b

    100= 19,20 cm

    as in 7.5.2 d = d l + 2 = 24,00 mm

    Cross-section area 1:

    A net,1 = A - 2 * MIN(d 1 ; d 2 ) *d

    100= 15,36 cm

    Cross-section area 2:

    A net,2 = A - 3 *d

    100 * MIN(d 1 ;d2 ) + *

    2

    100

    e2

    *4 e 3*MIN(d1 ;d 2 ) = 15,85 cm

    A net = MIN(Anet,1 ; A net,2 ) = 15,36 cm

    Friction-grip connection:Plate

    Nnet,Rd = Anet *f y

    * M0 10= 328,15 kN

    Limit tension force of bolts

    Limit shank tension F p,cd = 0,7 *f u,b

    10 * As = 212,10 kN

    Limit slip resistance force F s,Rd = n * K s * * *F p,cd

    Ms= 339,36 kN

    Limit bearing force:

    = MIN(e 1

    *3 d; 2 *

    e

    *3 d - 0,25;

    f u,b

    f u; 1) = 0,76

    Fb,Rd = n * 2,5 * * dl * MIN(d 1 ; d 2 ) *f u

    * M2 103

    = 481,54 kN

    Maximum allowed force:Ng,Rd = MIN(Nnet,Rd ; Fb,Rd ; F s,Rd ) = 328,15 kN

    Analysis:N Ed

    N g,Rd= 0,30 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    18/124

    Eurocode 3 Folder : Bolted connections

    Joint with tension and shear:

    Dimensions of connection:

    Plate thickness d 1 = 10,00 mm

    Plate thickness d 2 = 8,00 mmBolt spacing e = 65,00 mmEdge distance e1 = 55,00 mmEdge distance e2 = 50,00 mmBolt spacing e3 = 70,00 mmPlate width b = 240,00 mm

    Bolts:Bolt = SEL("steel/bolt"; BS; ) = M 22SC = SEL("steel/bolt"; SC; ) = 4.6f u,b = TAB("steel/bolt"; fubk; SC=SC) = 400,00 N/mm

    Hole diameter d l = TAB("steel/bolt"; d; BS=Bolt) = 22,00 mmCross-section areas A s = TAB("steel/bolt"; Asp; BS=Bolt) = 3,03 cmNumber of bolts n = 5

    Plate:steel = SEL("steel/EC"; Name; ) = Fe 360f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mmf u = TAB("steel/EC"; fu; Name=steel) = 360,00 N/mm M0 = 1,10 M2 = 1,25

    Loads:NEd = 100,00 kN

    Joint with tension and shear:

    Limit tension force of plate:

    A = MIN(d 1 ; d 2 ) *b

    100= 19,20 cm

    d = d l+ 2 = 24,00 mmCross-section area 1:

    A net,1 = A - 2 * MIN(d 1 ; d 2 ) *d

    100= 15,36 cm

    Cross-section area 2:

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    19/124

    Eurocode 3 Folder : Bolted connections

    A net,2 = A - 3 *d

    100 * MIN(d 1 ;d2 ) + *

    2

    100

    e2

    *4 e 3*MIN(d1 ;d 2 ) = 15,85 cm

    A net = MIN(Anet,1 ; A net,2 ) = 15,36 cm

    Nt,Rd = MIN( * Af y

    M0; 0,9 * * Anet

    f u

    M2)/10 = 398,13 kN

    Limit tension force of boltsn:

    A s =

    * ( )d102

    4= 4,52 cm

    Thread in the shearing plane:

    Fv,Rd = 0,6 * n **f u,b As

    *10 M2= 433,92 kN

    Limit bearing strength

    = MIN(e 1

    *3 d; 2 *

    e

    *3 d - 0,25;

    f u,b

    f u; 1) = 0,76

    Fb,Rd = n * 2,5 * * d * MIN(d 1 ; d 2 ) *f u

    * M2 103

    = 525,31 kN

    Maximum allowed force:Nl,Rd = MIN(N t,Rd ; Fv,Rd ; F b,Rd ) = 398,13 kN

    Analysis:NEd / N l,Rd = 0,25 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    20/124

    Eurocode 3 Folder : Bolted connections

    Check shear failure:

    VVEd

    VVVVVV

    Dimensions of connection:

    Spacing of bolts a = 50,00 mmSpacing of bolts a 1 = 43,00 mmSpacing of bolts a 2 = 70,00 mmSpacing of bolts a 3 = 75,00 mmNumber of bolts n = 4

    Bolts:Bolt = SEL("steel/bolt"; BS; ) = M 20SC = SEL("steel/bolt"; SC; ) = 5.6f u,b = TAB("steel/bolt"; fubk; SC=SC) = 500,00 N/mmHole diameter d l= TAB("steel/bolt"; d; BS=Bolt) = 20,00 mmShaft diameter d l2 = d l+2 = 22,00 mm

    k = 0,5 for 1 group bolts; =2,5 for 2 rows

    steel = SEL("steel/EC"; Name; ) = Fe 360f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mmf u = TAB("steel/EC"; fu; Name=steel) = 360,00 N/mm

    Profil Typ = SEL("steel/Profils"; Name; ) = IPESelected Profil = SEL("steel/"Typ; Name; ) = IPE 360Column height h = TAB("steel/"Typ; h; Name=Profil) = 360,00 mmWeb thickness s = TAB("steel/"Typ; s; Name=Profil) = 8,00 mm Mb = 1,25 M0 = 1,10

    Loads:VEd = 58,70 kN

    Limit shear force of section:

    A v = 1,04 **h s

    100= 29,95 cm

    Vpl,Rdp = * Avf y

    * 3 * M0 10= 369,41 kN

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    21/124

    Eurocode 3 Folder : Bolted connections

    A v,net = Av -*n *s d l2

    100= 22,91

    *

    f y

    f u

    Av

    Av,net= 0,85 < 1

    Holes can be neglected.

    Joint with shear failure as in Bild 6.5.5:Lv = (n - 1) * a 2 = 210,00 mmL1 = a 1 = 43,00 mm

    L1

    *5 d l2= 0,39 < 1

    L2 = (a - k * d l2 ) *f u

    f y= 59,74 mm

    L3 = Lv + a 1 + a 3 = 328,00 mmLv,eff = Lv + L1 + L2 = 312,74 mmLv, e f f

    L3= 0,95 < 1

    L3

    +Lv +a 1 -a 3 +n d l2= 0,95 < 1

    Effective shear area:

    A v,eff = Lv,eff *s

    100= 25,02 cm

    Vpl,Rd = * A v,eff f y

    * M0 * 3 10= 308,60 kN

    Maximum design force for shear:VRd = MIN(Vpl,Rdp ; V pl,Rd ) = 308,60 kN

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    22/124

    Eurocode 3 Folder : Columns

    Column subject to compression force:

    N

    H

    d

    Column heigth H = 7,50 mly = H/2 = 3,75 mlz = H/3 = 2,50 m

    Materials and stresses:steel = SEL("steel/EC"; Name; ) = Fe 430f y = TAB("steel/EC"; fy; Name=steel) = 275,00 N/mmE = TAB("steel/EC"; E; Name=steel) = 210000,00 N/mm

    = 235f y = 0,92Profil:

    Profil Typ = SEL("steel/Profils"; Name; ) = IPESelected Profil = SEL("steel/"Typ; Name; ) = IPE 300Cross-sectional area A = TAB("steel/"Typ; A; Name=Profil) = 53,80 cmColumn height h = TAB("steel/"Typ; h; Name=Profil) = 300,00 mmDepth of web h 1 = TAB("steel/"Typ; h1; Name=Profil) = 248,00 mmWeb thickness s = TAB("steel/"Typ; s; Name=Profil) = 7,10 mmFlange width b = TAB("steel/"Typ; b; Name=Profil) = 150,00 mmFlange thickness t = TAB("steel/"Typ; t; Name=Profil) = 10,70 mm

    Radius of gyration i y = TAB("steel/"Typ; iy; Name=Profil) = 12,50 cmRadius of gyration i z= TAB("steel/"Typ; iz; Name=Profil) = 3,35 cm

    Section classification As in Table 5.3.1:Web:

    h 1

    *s *33 = 1,15 < 1

    h 1*s *38

    = 1,00 < 1

    Section class 2.

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    23/124

    Eurocode 3 Folder : Columns

    Flange:b

    *2 *t *10 = 0,76 < 1

    Section class 1.

    Section will be classified as class 2.

    Analysis:nach 5.5.1.1 (1) A= 1,00 Cross-section class 2nach 5.1.1 (2) M1 = 1,10 Cross-section class 2Check buckling In Y-Y Axis:h / b = 2,00 > 1,2t /10 = 1,07 cm < 4 cmas in Tab 5.5.3 :

    y = ly *100

    iy= 30,00

    1

    = 93,9 * = 86,39

    trans,y = *y1

    A = 0,347

    Apply strut curve a As in Table 5.5.1 = 0,21

    = 0,5 * (1 + * (trans,y - 0,2) + trans,y ) = 0,576

    =1

    + -2 trans,y 2= 0,9655

    Nb,y,Rd = * A * A *

    f y

    *10 M1 = 1298,60 kN

    Check buckling In Z-Z Axis:h / b = 2,00 > 1,2t / 10 = 1,07 cm < 4cmas in Tab 5.5.3 :z = lz * 100 / i z = 74,63

    trans,z = *z1

    A = 0,864

    Apply strut curve b As in Table 5.5.1 = 0,34

    = 0,5 * (1 + * (trans,z - 0,2) + trans,z ) = 0,986

    =1

    + -2 trans,z 2= 0,6844

    Nb,z,Rd = * A * A *f y

    *10 M1= 920,52 kN

    max_N d = MIN(Nb,y,Rd ; N b,z,Rd ) = 920,52 kN

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    24/124

    Eurocode 3 Folder : Columns

    Column of section class 4:

    t1t y

    z

    b

    2hh

    N

    N

    Load diagram:Column heigth H = 4,00 kNFlange width b = 20,00 cmDepth of web h = 30,00 cmWeb thickness t 1 = 1,20 cm

    Flange thickness t 2 = 1,20 cm

    Loads:Nd = 700,00 kN

    Materials and stresses:steel = SEL("steel/EC"; Name; ) = Fe 360f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mmE = TAB("steel/EC"; E; Name=steel) = 210000,00 N/mm

    = 235f y = 1,001 = 93,90 * = 93,90

    Partial safety factors: M = 1,10

    Section classification As in Table 5.3.1:

    b

    *t 2 *14 = 1,19 > 1

    Section class 4

    h

    *t 1 *33 = 0,76 > 1

    Section class 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    25/124

    Eurocode 3 Folder : Columns

    Effective web area:Flangee:

    As in Table 5.3.3: = 1,00k = 0,43as in 5.3.5(3)

    trans,p =b

    *t2 *28,4 * k= 0,89 >0,673

    =-trans,p 0,22

    trans,p2

    = 0,846

    beff = * b = 16,92 cm Aeff = 2 * (b eff * t2) + (h + 2 * t 2) * t1 = 79,49 cm

    Location of shear centre:

    ys,eff =

    *b e f f *2 *t2+b e f f t2

    2

    Ae f f = 4,628 cm

    Iz,eff = *beff

    3

    12*2 +t2 *beff *2 *t2 +( )-+beff t12 ys,eff

    2

    *( )+h *2 t2 ( )+t1 312 *t1 ys,eff 2 = 2604 cm 4Wz,eff =

    Iz,eff

    -( )+b eff t 1 -y s,eff t 1

    2

    = 201,99 cm

    Gross area: A = b * 2 * t 2 + (h + 2 * t 2) * t1 = 86,88 cm

    Location of center of gravity:

    ys =

    *b *2 *t2+b t 1

    2

    A= 5,856 cm

    Iz = *b

    3

    12*2 +t2 *b *2 *t2 +( )-+b t12 ys

    2

    *( )+h *2 t2 ( )+t1 312 *t1 ys 2 = 4018 cm 4e

    Nz= y

    s- y

    s,eff = 1,228 cm

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    26/124

    Eurocode 3 Folder : Columns

    Check buckling:

    Ncr = *2

    *E

    10

    Iz

    ( )*H 1002

    = 5204,85 kN

    A = A eff

    A= 0,915

    trans,z = * A * A f y*10 N cr = 0,599 Apply strut curve c As in Table 5.5.3 = 0,49 = 0,5 * (1 + * (trans,z - 0,2) + trans,z ) = 0,777

    =1

    + -2

    trans,z2

    = 0,786

    Mz,d = Nd *e Nz

    100= 8,60 kNm

    = 1,00M = 1,8 - 0,7 * = 1,10z = trans,z * (2 * M - 4) = -1,078 < 0,9

    kz1 = 1 -*z Nd

    * * A eff f y

    10

    = 1,514 ~ 1,5

    kz2 = 1,500kz = MIN(k z1 ; k z2 ) = 1,500

    +Nd

    * * A eff f y

    * M 10

    *100 *k zMz,d

    *W z,eff f y

    * M 10

    = 0,823 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    27/124

    Eurocode 3 Folder : Columns

    Column with compression and moment:

    H

    N

    M

    d

    d

    Load diagram:Column heigth H = 5,00 m

    Loads:Nd = 200,00 kNMy,d = 10,00 kN

    Materials and stresses:steel = SEL("steel/EC"; Name; ) = Fe 360f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mmE = TAB("steel/EC"; E; Name=steel) = 210000,00 N/mmG = TAB("steel/EC"; G; Name=steel) = 81000,00 N/mm = (235 / f y) = 1,00Partial safety factors: M = 1,10 g = 1,35platischer Formbeiwert pl y = 1,14platischer Formbeiwert pl z = 1,25

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    28/124

    Eurocode 3 Folder : Columns

    Profil:Profil Typ = SEL("steel/Profils"; Name; ) = HEASelected Profil = SEL("steel/"Typ; Name; ) = HEA 160Cross-sectional area A = TAB("steel/"Typ; A; Name=Profil) = 38,80 cmColumn height h = TAB("steel/"Typ; h; Name=Profil) = 152,00 mmDepth of web h 1 = TAB("steel/"Typ; h1; Name=Profil) = 104,00 mmWeb thickness s = TAB("steel/"Typ; s; Name=Profil) = 6,00 mmFlange width b = TAB("steel/"Typ; b; Name=Profil) = 160,00 mmFlange thickness t = TAB("steel/"Typ; t; Name=Profil) = 9,00 mmRadius of gyration i y = TAB("steel/"Typ; iy; Name=Profil) = 6,57 cmRadius of gyration i z= TAB("steel/"Typ; iz; Name=Profil) = 3,98 cmWel y= TAB("steel/"Typ; Wy; Name=Profil) = 220,00 cmWpl y = pl y * W el y = 250,80 cmWel z = TAB("steel/"Typ; Wz; Name=Profil) = 76,90 cmWpl z = pl z * W el z = 96,13 cm

    Section classification As in Table5.3.1:Web will be assumed as pressed in

    h 1

    *s *33 = 0,53 < 1

    Section class 1.Flange:

    b

    **2 t *10 = 0,89 < 1

    Section class 1.

    Check bending and buckling:as in 5.5.1.1 (1) A = 1,00 Cross-section class 1as in 5.1.1 (2) M1 = 1,10 Cross-section class 1

    y = H *100

    iy= 76,10

    1 = 93,9 * = 93,90

    trans,y = *y1

    A = 0,810

    z = H *100

    iz= 125,63

    trans,z = z

    * Ef y= 1,34

    As in Table 5.5.3h / b = 0,95 < 1,2t / 10 = 0,90 cm < 10cm

    As in Table:5.5.1Strut curve b for Y-Y axis = 0,34

    = 0,5 * (1 + * (trans,y - 0,2) + trans,y ) = 0,932

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    29/124

    Eurocode 3 Folder : Columns

    y =1

    + -2 trans,y 2= 0,7179

    Apply strut curve c for z-Achse

    = 0,49 = 0,5 * (1 + * (trans,z - 0,2) + trans,z ) = 1,677

    z =1

    + -2 trans,z 2= 0,3724

    = 0,00My = 1,8 - 0,7 * = 1,80

    y = trans,y * (2 * My - 4) +-W ply W ely

    W ely= -0,184 < 0,9

    ky = 1 -

    *y Nd* y * A f y = 1,006 < 1,5

    = MIN( y; z) = 0,372

    +Nd

    * * Af y* M 10

    *k y *100My,d

    *W pl yf y* M 10

    = 0,836 < 1

    Check torsional-flexural buckling:w = 1,00 Cross-section class 1

    As in Table: F.1.1

    = 0,00k = 1,00C1 = 1,879

    LT = *90H

    *iz ( )* C 1 +1 *120 ( )*100 Hizht

    24

    = 59,208

    trans,LT = *LT1

    w = 0,631

    For rolled sections strut curve a = 0,21 = 0,5 * (1 + * (trans,LT - 0,2) + trans,LT ) = 0,74

    LT =1

    + -2 trans,LT 2= 0,89

    M,LT = 1,8 - 0,7 * = 1,80

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    30/124

    Eurocode 3 Folder : Columns

    quer,z = *z1

    A = 1,338

    LT = 0,15 * quer,z * M,LT - 0,15 = 0,211 < 0,9h / b = 0,95 < 1,2t / 10 = 0,90 cm < 10cmZ-Z axis Strut curve c = 0,49 = 0,5 * (1 + * (trans,z - 0,2) + trans,z ) = 1,677

    z =1

    + -2 trans,z 2= 0,3724

    kLT = 1 -*LT Nd

    * z * A f y= 0,988 < 1,5

    +Nd

    * z * Af y

    * M 10

    *kLT

    *100My,d

    ** LT W pl yf y

    * M 10

    = 0,855 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    31/124

    Eurocode 3 Folder : Columns

    Column subject to compression force:

    N

    H

    d

    Column base is pinned.For buckling, column head is pinned about the Y-Y axis, and fixed about the Z-Z axis .

    Load diagram:Column heigth H = 8,00 m

    Loads:Nd = 2000,00 kN

    Materials and stresses:steel = SEL("steel/EC"; Name; ) = Fe 360f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mmE = TAB("steel/EC"; E; Name=steel) = 210000,00 N/mm

    = 235f y = 1,00Effective length factor:ky = 1,00 For simply supported endskz = 0,70 fixed ends

    Profil:Profil Typ = SEL("steel/Profils"; Name; ) = HEBSelected Profil = SEL("steel/"Typ; Name; ) = HEB 300Cross-sectional area A = TAB("steel/"Typ; A; Name=Profil) = 149,00 cmColumn height h = TAB("steel/"Typ; h; Name=Profil) = 300,00 mmDepth of web h 1 = TAB("steel/"Typ; h1; Name=Profil) = 208,00 mmWeb thickness s = TAB("steel/"Typ; s; Name=Profil) = 11,00 mmFlange width b = TAB("steel/"Typ; b; Name=Profil) = 300,00 mmFlange thickness t = TAB("steel/"Typ; t; Name=Profil) = 19,00 mmMoment of inertia I = TAB("steel/"Typ; Iy; Name=Profil) = 25170,00 cm 4Radius of gyration i y = TAB("steel/"Typ; iy; Name=Profil) = 13,00 cmRadius of gyration i z= TAB("steel/"Typ; iz; Name=Profil) = 7,58 cm

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    32/124

    Eurocode 3 Folder : Columns

    Section classification:Web:

    h 1

    *s *33 = 0,57 > 1

    Flange:b

    **2 t *10 = 0,79 > 1

    Section class 1.

    Analysis: A = 1,00 Cross-section class 1 M1 = 1,10 Cross-section class 1

    Check buckling In Y-Y Axis:h / b = 1,00 < 1,2t / 10 = 1,90 cm < 10cm

    y = k y * H *100

    iy= 61,54

    1 = 93,9 * = 93,90

    trans,y = *y1

    A = 0,655

    Apply strut curve b As in Table 5.5.1 = 0,34

    = 0,5 * (1 + * (trans,y - 0,2) + trans,y ) = 0,792

    =1

    + -2 trans,y 2= 0,8083

    Nb,Rd = * A * A *f y

    *10 M1= 2572,966 kN

    N d

    N b,Rd= 0,78 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    33/124

    Eurocode 3 Folder : Columns

    Check buckling In Z-Z Axis:h / b = 1,00 < 1,2t / 10 = 1,90 cm < 10cm

    z = k z * H *100

    iz

    = 73,88 m

    trans,z = *z1

    A = 0,787

    Apply strut curve c As in Table 5.5.1 = 0,49

    = 0,5 * (1 + * (trans,z - 0,2) + trans,z ) = 0,953

    =1

    + -2 trans,z 2= 0,6709

    Nb,Rd = * A * A *f y

    *10 M1 = 2135,60 kN

    N d

    N b,Rd= 0,94 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    34/124

    Eurocode 3 Folder : Columns

    Column of channel section with compression and transverse loads:

    H

    d

    dq t1t y

    z

    b

    2

    h

    N

    Load diagram:Column height H = 4,00 mBeam width b = 9,50 cmDepth of web h = 29,40 cmWeb thickness t 1 = 1,00 cmFlange width t 2 = 0,60 cm

    Loads:qd = 15,00 kN/mNd = 90,00 kN

    Materials and stresses:steel = SEL("steel/EC"; Name; ) = Fe 360f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mmE = TAB("steel/EC"; E; Name=steel) = 210000,00 N/mm

    = 235f y = 1,001 = 93,90 * = 93,90

    Partial safety factors: M = 1,10

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    35/124

  • 8/9/2019 Mnogo zajebana stvar

    36/124

    Eurocode 3 Folder : Columns

    Location of shear centre:

    ys,eff =

    *b e f f *2 *t2+b e f f t2

    2

    Ae f f = 1,088 cm

    e Nz = y s - y s,eff = 0,337 cm

    A = A eff A

    = 0,965

    Slenderness and reductions:In Z-Z Axis:

    Ncr,z = *2

    *EIz

    ( )*H 1002

    = 4109,09 kN

    trans,z = * A * Af y

    Ncr,z= 1,52

    Apply strut curve c = 0,49 = 0,5 *(1 + * (trans,z - 0,2) + trans,z ) = 1,979

    z =1

    + -2 trans,z 2= 0,308

    In Y-Y Axis:

    Ncr,y = *2

    *EIy

    ( )*H 1002 = 60663,06 kN

    trans,y = * A * A f yN cr,y = 0,40 Apply strut curve c = 0,49

    = 0,5 * (1 + * (trans,y - 0,2) + trans,y ) = 0,629

    y =1

    + -2 trans,y 2= 0,897

    = MIN( z; y) = 0,3080

    Nb,Rd = * * Ae ff f y

    M= 2667,53 kN

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    37/124

    Eurocode 3 Folder : Columns

    Limit bending moment about the Y-Y axis:Cross-section class 4

    z' s =

    *-b e f f *t2 ++h t 2

    2

    *

    ( )+b

    t1

    2

    *t2+h t 2

    2 Ae f f

    = 0,382 cm

    *( )+h t 2

    3

    12+t 1 *( )+h t 2 *t 1 z' s = 2261,46 cm 4

    *b eff *t2 +( )++h t 22 z' s2

    *( )+b t12 *t 2 ( )-+h t 2

    2z' s

    2

    = 2457,57 cm 4

    Ieff,y = 4719,03 cm4

    Weff,y =Ieff,y

    ++h t 22

    z' s

    = 306,79 cm

    Mc,Rd,y = *W eff ,yf y

    M= 65541,50 kNm

    Limit bending moment about the Z-Z axis:Cross-section class 4 Tab 5.3.3

    =-y s

    +b -t1

    2y s

    = -0,17

    k = 0,57 - 0,21 * + 0,07 * = 0,61

    +bt1

    2

    *t 2 *21 * k= 1,02 > 1

    As in Table:5.3.5 (3)

    trans,p =

    +bt 1

    2*t2 *28,4 * k

    = 0,75 >0,673

    =- trans,p 0,22

    trans,p2

    = 0,942

    beff = *+b

    t1

    2

    -1 = 8,05 cm

    bt = -1 * *( )+b t 12 -1

    = 1,45 cm

    c eff = b eff + b t = 9,50 cm

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    38/124

    Eurocode 3 Folder : Columns

    A eff = (h + t 2 ) * t1 + 2 * c eff * t2 = 41,40 cm

    y' = *2 *c e ff 2 t2

    *2 Ae f f = 1,31 cm

    Ieff,z = (h + t 2 ) * t1 * y' + 2 * c eff 3

    12 * t2 + 2 * c eff * t2 *( )-c eff 2 y'

    2

    = 272,12 cm 4

    Weff,z =Ieff,z

    -c eff

    2y'

    = 79,10 cm

    Mc,Rd,z = *W eff ,zf y

    M= 16898,64 kNm

    Check buckling:

    NEd = Nd = 90,00 kN

    My,Ed = q d *H

    2

    8= 30,00 kNm

    Mz,Ed = Nd *e Nz

    100= 0,30 kNm

    My = 1,30y = trans,y * (2 * My - 4) = -0,560 < 0,9

    ky = 1 -*y NEd

    * y

    * Aeff

    f y

    = 1,006 < 1,5

    = 1,000M = 1,8 - 0,7 * = 1,10 < 1,5z = trans,z * (2 * M - 4) = -2,736 < 0,9

    kz1 = 1 -*z NEd

    * * A eff f y= 1,082

    kz2 = 1,500kz = MIN(k z1 ; k z2 ) = 1,082

    +NEd

    * * A eff f y

    M

    *ky *100 +My,Ed

    *W eff,yf y

    M

    *k z *100Mz,Ed

    *W eff,zf y

    M

    = 0,081 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    39/124

    Eurocode 3 Folder : Columns

    Laced column made up of channel and angle sections:

    l

    l y

    N d

    b

    h

    H sd

    Loads:

    Nd = 300,00 kNHd = 45,00 kN

    Plan and elevation values:Span length l y = 69,20 cmColumn height l = 10*l y/100 = 6,92 mWidth b = 40,00 cmWinkel 1 = 45,00

    U-Profil U = SEL("steel/U"; Name; ) = U 300 A f = TAB("steel/U"; A; Name=U) = 58,80 cme z = TAB("steel/U"; ez; Name=U) = 2,70 cmiz = TAB("steel/U"; iz; Name=U) = 2,90 cm

    Winkel W = SEL("steel/WG"; Name; ) = L 50x5 Angle thickness A D = TAB("steel/WG"; A; Name=W) = 4,80 cm Angle thickness i = TAB("steel/WG"; i ; Name=W) = 0,98 cm

    steel = SEL("steel/EC"; Name; ) = Fe 360f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm

    E = TAB("steel/EC"; E; Name=steel) = 210000,00 N/mm

    = 235f y = 1,001 = 93,90 * = 93,90Partial safety factors: M = 1,10

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    40/124

    Eurocode 3 Folder : Columns

    Maximal tension force in chord:Effective length ratio k = 2,00Imperfection:

    wo =*2 l

    5

    = 2,77 cm

    Effective moment of inertia:ho = b - 2 * e z = 34,60 cmIeff = 0,5 * h o * A f = 35196,50 cm 4

    Shear strength:

    S v = 2 *E

    10 * AD * ly *

    h o2

    *2 *2 h o 223= 71276,36 kN

    Ncr =1

    *4 +( )*100 l

    2

    *2

    *E

    10Ieff

    1S v

    = 3615,26 kN

    max_M E = Hd * l +Nd

    -1Nd

    Ncr

    *w o

    100= 320,46 kNm

    Nf,Ed = 0,5 * N d + 100 *max_M E

    h o= 1076,18 kN

    Analysis of channels:

    =ly

    iz= 23,86

    trans =*1

    = 0,254

    Apply strut curve c = 0,49

    = 0,5 * (1 + * (trans - 0,2) + trans ) = 0,545

    =1

    + -

    2

    trans2

    = 0,9735

    Nb,Rd = * Af *f y

    * M 10= 1222,89 kN

    N f,Ed

    N b,Rd= 0,880 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    41/124

    Eurocode 3 Folder : Columns

    Analysis of lacing angles:

    max_V E = Hd + *Nd

    -1Nd

    Ncr

    *wo

    *200 l= 47,06 kN

    Design force for a diagonal:

    NEd =max_V E

    *2 cos ( )1= 33,28 kN

    = *2 h o

    2

    i= 49,93

    trans =*1

    = 0,532

    Apply strut curve c = 0,49

    = 0,5 * (1 + * (trans - 0,2) + trans ) = 0,723

    =1

    + -2 trans 2= 0,8247

    Nb,Rd = * AD *f y

    * M 10= 84,57 kN

    N Ed

    N b,Rd= 0,39 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    42/124

    Eurocode 3 Folder : Columns

    Column of section class 4:

    ht

    t

    b

    C D

    B A2

    1h

    N

    N

    Load diagram:Column height H = 6,50 mBeam width b = 50,00 cmColumn height h = 100,00 cmWeb thickness t 1 = 1,00 cmFlange thickness t 2 = 1,00 cm

    Loads:Nd = 3500,00 kN

    Materials and stresses:steel = SEL("steel/EC"; Name; ) = Fe 360f y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mmE = TAB("steel/EC"; E; Name=steel) = 210000,00 N/mm

    = 235f y = 1,00Partial safety factors: M = 1,10

    g = 1,35

    Section classification: As in Table 5.3.1b' = b - 2 * t 1 = 48,00 cm

    b'

    *t 2 *42 = 1,14 > 1

    Section class 4h' = h - 2 * t 2 = 98,00 cm

    h'

    *t1

    *42 = 2,33 > 1

    Section class 4

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    43/124

    Eurocode 3 Folder : Columns

    Effective web area:Part A-B; C-D As in Table 5.3.2: = 1,00k = 4,00as in 5.3.5(3)

    quer,p =b'

    *t 2 *28,4 * k = 0,85 >0,673

    =-quer,p 0,22

    quer,p2

    = 0,872

    beff = * b' = 41,86 cmPart A-C; B-D As in Table 5.3.2: = 1,00 cmk = 4,00as in 5.3.5(3)

    quer,p =h'

    *t 1 *28,4 * k = 1,73 >0,673

    =-quer,p 0,22

    quer,p2

    = 0,505

    heff = * h' = 49,49 cm

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    44/124

    Eurocode 3 Folder : Columns

    Check buckling: A eff = 2 * (h eff * t1 + b eff * t2 ) + 4 * t 1 * t2 = 186,70 cm A = b * h - (b - 2 * t 1 ) * (h - 2 * t 2 ) = 296,00 cm

    A

    = A eff

    A= 0,631

    Ib =*b -h

    3*( )-b *2 t 1 ( )-h *2 t 2

    3

    12= 401898,67 cm 4

    Ih =*b

    3-h *( )-b *2 t 1

    3( )-h *2 t 2

    12= 138498,67 cm 4

    I = MIN(Ib ; Ih ) = 138498,67 cm 4

    Ncr = *2 *E I

    *H2

    105

    = 67941,82 kN

    transv = * A * A f y

    *10 N cr = 0,25

    Apply strut curve b = 0,34 = 0,5 * (1 + * (transv - 0,2) + transv ) = 0,540

    =1

    + -2 transv 2= 0,9817

    Nb,Rd = * A * A *f y

    * M 10 = 3917,19 kNN d

    N b,Rd= 0,893 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    45/124

    Eurocode 3 Folder : Continuous Beam

    Purlin / Strut with biaxial bending and torsional-flexural buckling:

    qdqd

    Plan and elevation values:Span length l= 720,00 cm

    Angle of slope = 10,00 Spacing of purlin l'= 4,00 mplatischer Formbeiwert pl y = 1,14

    platischer Formbeiwert pl z = 1,25

    Loads:From dead load g= 0,20 kN/mFrom snow load s= 0,40 kN/m

    Section classification for: IPE 200Profil Typ = SEL("steel/Profils"; Name; ) = IPESelected Profil = SEL("steel/"Typ; Name; ) = IPE 200 Column height h = TAB("steel/"Typ; h; Name=Profil) = 200,00 mmFlange width b f = TAB("steel/"Typ; b; Name=Profil) = 100,00 mm

    Flange thickness t f = TAB("steel/"Typ; t; Name=Profil) = 8,50 mmFlange thickness t w = TAB("steel/"Typ; s; Name=Profil) = 5,60 mmMoment of inertia I y = TAB("steel/"Typ; Iy; Name=Profil) = 1940,00 cm 4

    Moment of inertia I z = TAB("steel/"Typ; Iz; Name=Profil) = 142,00 cm 4

    Moment of inertia I y = TAB("steel/"Typ; IT; Name=Profil) = 6,98 cm 4

    I = t f * b f * (h - t f ) / (24*10 6 ) = 12988,09 cm 6

    iz = TAB("steel/"Typ; iz; Name=Profil) = 2,24 cmWel y= TAB("steel/"Typ; Wy; Name=Profil) = 194,00 cmWpl y = pl y * W el y = 221,16 cmWel z = TAB("steel/"Typ; Wz; Name=Profil) = 28,50 cm

    Materials and stresses:steel = SEL("steel/EC"; Name; ) = Fe 360E s = TAB("steel/EC"; E; Name=steel) = 210000,00 N/mmG = TAB("steel/EC"; G; Name=steel) = 81000,00 N/mmf y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm

    = 235f y = 1,00Partial safety factors: M = 1,10 g = 1,35

    p = 1,50

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    46/124

    Eurocode 3 Folder : Continuous Beam

    Design calculations:

    Factored load pd = g * g + p * s = 0,87 kN/mEffective load qd = p d * 4 = 3,48 kN/mVertical load component q

    zd= q

    d* COS(

    ) = 3,43 kN/mHorizontal load component q yd = q d * SIN() = 0,60 kN/m

    Forces at 2nd support:

    MbyEd = 0,105 * q zd *( )l1002

    = 18,67 kNm

    MbzEd = 0,105 * q yd *( )l1002

    = 3,27 kNm

    VbzEd = 0,606 * q zd *l

    100= 14,97 kN

    VbyEd = 0,606 * q yd *l

    100= 2,62 kN

    Check biaxial bending strength:About Y-Y axis

    A v = 1,04 * h * t w / 10 = 11,65 cm

    Vpl,z,Rd = * A vf y

    ** 3 M 10= 143,69 kN

    VbzEd

    Vpl,z,Rd= 0,10 < 1

    VbzEd

    Vpl,z,Rd= 0,10 < 0,5

    No reduction in moment strength necessary due to shear.

    Mpl,y,Rd =*W ply f y

    * M 10= 4724,78 kNcm

    About Z-Z axis

    A v = 2 * b f * tf / 10 = 17,00 cm

    Vpl,y,Rd = * A vf y

    ** 3 M 10= 209,68 kN

    VbyEdVpl,y,Rd

    = 0,01 < 1

    VbyEd

    Vpl,y,Rd= 0,01 < 0,5

    No reduction in moment strength necessary due to shear

    Mpl,z,Rd = 1,5 **W elz f y

    * M 10= 913,30 kNcm

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    47/124

    Eurocode 3 Folder : Continuous Beam

    Analysis:as in 5.35: for I- and H- sections:= 2,00= 1,00Or else: 5.4.8.1 (11)

    abs ( )+( )*MbyEd 10 2Mpl,y,Rd

    ( )*MbzEd 102

    Mpl,z,Rd

    = 0,514 < 1

    Check flexural-torsional buckling strength:

    iLT = *Iz IW pl y

    2

    4

    = 2,48 cm

    Load is applied in top flange.z

    a= 10,00 cm

    z s = 0,00 cmz g = z a - z s = 10,00 cm

    As in Table F.1.2, interpolated.C1 = 1,00C2 = 0,80C3 = 0,70For simply supported ends fixed ends k = 0,70No measures taken toward bending k w = 1,00

    hs =-h t f

    10= 19,15 cm

    5.5.2; Section class 1+2 w = 1,00

    1 = * E sf y = 93,91LT =

    *k /l iLT

    * C 1 - +( )kkw 2 *120 +( )*k /l iLTht f 2

    ( )*2 *C 2 zgh s2 *2 *C 2 zg

    h s

    = 172,86

    trans,LT = *LT1 w = 1,841

    Apply strut curve a: As in Table 5.5.1 = 0,21 = 0,5 * (1 + * (trans,LT -0,2) + trans,LT ) = 2,37

    LT =1

    + -2 trans,LT 2= 0,26

    No longitudinal forces k z = 1,00

    No longitudinal forces k LT = 1,00

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    48/124

    Eurocode 3 Folder : Continuous Beam

    *k LT +MbyEd

    *LTMpl,y,Rd

    100

    *k zMbzEd

    Mpl,z,Rd

    100

    = 1,88 < 1

    Section is not adequate: Restrain section in quarterly points:l = l / 4 = 180,00 cm

    LT =*k /l iLT

    * C 1 - +( )kkw 2 *120 +( )*k /l iLTht f 2

    ( )*2 *C 2 zgh s2 *2 *C 2 zg

    h s

    = 85,08

    trans,LT = *LT1

    w = 0,906

    Apply strut curve a: = 0,5 * (1 + * (trans,LT -0,2) + trans,LT ) = 0,98

    LT =1

    + -2 trans,LT 2= 0,74

    *k LT +MbyEd

    *LTMpl,y,Rd

    100

    *k zMbzEd

    Mpl,z,Rd

    100

    = 0,89 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    49/124

    Eurocode 3 Folder : foot and support

    Concentrated point load of a beam in another beam:

    Design loads and propertiesP

    d = 68,00 kN

    MEd1 = 70,00 kNmMEd2 = -22,00 kNm

    Top beam (IPE180)Profil TypO = SEL("steel/Profils"; Name; ) = IPESelected ProfilO = SEL("steel/"TypO; Name; ) = IPE 180 Web thickness s o = TAB("steel/"TypO; s; Name=ProfilO) = 5,30 mmFlange thickness t o = TAB("steel/"TypO; t; Name=ProfilO) = 8,00 mmRadius r o = TAB("steel/"TypO; r; Name=ProfilO) = 9,00 mmFlange width b o = TAB("steel/"TypO; b; Name=ProfilO) = 91,00 mmWeb depth h o= TAB("steel/"TypO; h; Name=ProfilO) = 180,00 mmWeb depth h 1o = TAB("steel/"TypO; h1; Name=ProfilO) = 146,00 mmWelo = TAB("steel/"TypO; W y; Name=ProfilO) = 146,00 cmWplo = 1,14 * W elo = 166,44 cm 3

    Iyo = TAB("steel/"TypO; Iy; Name=ProfilO) = 1320,00 cm 4

    Bottom beam (HEA200)Profil TypO = SEL("steel/Profils"; Name; ) = HEASelected ProfilO = SEL("steel/"TypO; Name; ) = HEA 200 Web thickness of beam s u = TAB("steel/"TypO; s; Name=ProfilO) = 6,50 mm

    Flange thickness t u = TAB("steel/"TypO; t; Name=ProfilO) = 10,00 mmRadius r u = TAB("steel/"TypO; r; Name=ProfilO) = 18,00 mmFlange width bu = TAB("steel/"TypO; b; Name=ProfilO) = 200,00 mmWeb depth h u= TAB("steel/"TypO; h; Name=ProfilO) = 190,00 mmWeb depth h 1u = TAB("steel/"TypO; h1; Name=ProfilO) = 134,00 mmWelu = TAB("steel/"TypO; W y; Name=ProfilO) = 389,00 cmWplu = 1,14 * W elu = 443,46 cm 3

    Iyu = TAB("steel/"TypO; Iy; Name=ProfilO) = 3690,00 cm 4

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    50/124

    Eurocode 3 Folder : foot and support

    Materials and stresses:steel = SEL("steel/EC"; Name; ) = Fe 360E s = TAB("steel/EC"; E; Name=steel) = 210000,00 N/mmG = TAB("steel/EC"; G; Name=steel) = 81000,00 N/mmf y

    = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm = (235 / f y) = 1,00 M = 1,101 = 93,90 * = 93,90f yd = f y/ M = 213,64 kN/cm

    Limit plastic bearing:Stiff bearing length of top, bottom beam:

    s s1 = s o + 2 * t o + 4 * r o * (1 - 22

    ) = 31,84 mm

    f,Ed1 = 100 *

    MEd1

    W elu = 17,99 kN/cm

    bf1 = tu * 25 = 250,00 mmbf1 = MIN(b f1 ; b u ) = 200,00 mm

    s y1 = 2 * t u *b us u * -1 ( )* M *f,Ed1 10f y2

    = 59,83 mm

    Ry,Rd1 = (s s1 + s y1 ) * s u *f y d

    103

    = 127,30 kN

    P d

    R y,Rd1= 0,53 < 1

    Stiff bearing length of bottom beam:

    s s2 = s u + 2 * t u + 4 * r u * (1 - 22

    ) = 47,59 mm

    f,Ed2 = 100 *MEd2

    W elo= -15,07 kN/cm

    bf = to * 25 = 200,00 mmbf2 = MIN(b f ; b o ) = 91,00 mm

    s y2 = 2 * t o*b

    os o

    * -1 ( )* M *f,Ed2 10

    f y

    2

    = 46,99 mm

    Ry,Rd2 = (s s2 + s y2 ) * s o *f y d

    103

    = 107,09 kN

    P d

    R y,Rd2= 0,63 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    51/124

    Eurocode 3 Folder : foot and support

    Check web crushing:Bottom beam:

    m1 =s s1

    h 1u= 0,238

    m2 = 0,200mu = MIN(m 1 ; m 2 ) = 0,200

    Ra,Rd1 = *0,5 *s u2

    * *E s f y

    +tus u *3 *s u

    tum u

    * M 103

    = 219,95 kN

    P d

    R a,Rd1= 0,31 < 1

    Mc,Rd1 = W plu * f y d

    103

    = 94,74 kNm

    MEd1

    Mc,Rd1= 0,74 < 1

    Top beam:

    m1 =s s2

    h 1o= 0,326

    m2 = 0,200

    mo = MIN(m 1 ; m 2 ) = 0,200

    Ra,Rd2 = *0,5 *s o2

    * *E s f y

    +tos o *3 *s o

    tom o

    * M 103

    = 145,85 kN

    P d

    R a,Rd2= 0,47 < 1

    Mc,Rd2 = W plo *f y d

    103

    = 35,56 kNm

    abs ( )MEd2Mc,Rd2

    = 0,62 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    52/124

    Eurocode 3 Folder : foot and support

    Check web buckling for whole web:Bottom beam:

    Effective web width b eff2 = +h u2

    s s12 = 192,65 mm

    Effective web area A 2 = b eff2 *

    s u

    100 = 12,52 cm

    Moment of inertia I 2 =

    *b eff2

    10 ( )s u103

    12= 0,441 cm 4

    Radius of gyration i 2 = I2 A2 = 0,188 cmEffective slenderness trans2 =

    h u

    *i2 *1 10= 1,076

    Apply strut curve c: = 0,49

    = 0,5 * (1 + * (trans2 - 0,2) + trans2 ) = 1,294

    2 =1

    + -2 trans2 2= 0,4968

    Rb,Rd2 = 2 * A2 *f y d

    10= 132,88 kN

    P d

    R b,Rd2= 0,51 < 1

    Top beam:

    Effective web width b eff1 = +h o2

    s s12 = 182,79 mm

    Effective web area A 1 = b eff1 *s o

    100= 9,69 cm

    Moment of inertia I 1 =

    *b eff1

    10 ( )s o10

    3

    12= 0,227 cm 4

    Radius of gyration i 1 = I1 A1 = 0,153 cmEffective slenderness trans1 =

    h o

    *i1 *1 10= 1,253

    Apply strut curve c: = 0,49

    = 0,5 * (1 + * (trans1 - 0,2) + trans1 ) = 1,543

    1 =1

    + -2 trans1 2= 0,4093

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    53/124

    Eurocode 3 Folder : foot and support

    Rb,Rd1 = 1 * A1 *f y d

    10= 84,73 kN

    P d

    Rb,Rd1

    = 0,80 < 1

    Check web yield at load points:Bottom beam:

    x,Ed2 = MEd1 * 10 *-

    h u

    2tu

    Iy u= 161,25 kN/cm

    z,Ed2 =*10

    3P d

    *( )+s s1 *2 t u s u= 201,80 kN/cm

    +( )x,Ed2f yd2

    -( ) z,Ed2f yd2

    *x,Ed2

    f yd

    z,Ed2f yd

    = 0,75 < 1

    Top beam:

    x,Ed1 = -MEd2 * 10 *-

    h o

    2to

    Iy o= 136,67 kN/cm

    z,Ed1 =*10

    3P d

    *( )+s s2 *2 t o s o= 201,76 kN/cm

    +( )x,Ed1f yd2

    -( ) z,Ed1f yd2

    *x,Ed1

    f yd

    z,Ed1f yd

    = 0,70 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    54/124

    Eurocode 3 Folder : foot and support

    Column base subject to compression und bending:

    l

    Msd

    Nsd

    a

    be1

    e1p

    e

    d

    Ed

    Ed

    Plan and elevation values:Distance to edge of baseplate e = 45,00 mmDistance to edge of baseplate e 1 = 100,00 mm

    Spacing of bolts p = 300,00 mmWidth of baseplate b = 500,00 mm

    Length of baseplate a = 500,00 mmPlate thickness d = 30,00 mmProjection of plate l = 100,00 mmWeld thickness a w = 10,00 mm

    Projection of pad footing a r = 1000,00 mm

    Depth of pad footing h = 1400,00 mmas in L.3 (idR) Bearing plane factor j = 2/3 = 0,67

    Profil Typ = SEL("steel/Profils"; Name; ) = HEBSelected Profil = SEL("steel/"Typ; Name; ) = HEB 300Moment of inertia I y1 = TAB("steel/"Typ; Iy; Name=Profil) = 25170,00 cm 4

    Flange width b f = TAB("steel/"Typ; b; Name=Profil) = 300,00 mm

    Flange thickness t f = TAB("steel/"Typ; t; Name=Profil) = 19,00 mm

    Column height h t = TAB("steel/"Typ; h; Name=Profil) = 300,00 mm

    Mpl,y,Rd = TAB("steel/"Typ; Mplyd; Name=Profil) = 418,00 kNmNpl,Rd = TAB("steel/"Typ; Npld; Name=Profil) = 3250,00 kN

    Loads:NEd = 1000,00 kNMEd = 221,75 kNm

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    55/124

    Eurocode 3 Folder : foot and support

    Materials and stresses:steel = SEL("steel/EC"; Name; ) = Fe 430E s = TAB("steel/EC"; E; Name=steel) = 210000,00 N/mmf y = TAB("steel/EC"; fy; Name=steel) = 275,00 N/mmConcrete = SEL("Concrete/EC"; Name; ) = C30/37f ck = TAB("Concrete/EC"; f ck ; Name=Concrete) = 30,00 N/mm

    SC = SEL("steel/bolt"; SC; ) = 4.6Bolt = SEL("steel/bolt"; BS; ) = M 24f u = TAB("steel/bolt"; fubk; SC=SC) = 400,00 N/mm

    A s = TAB("steel/bolt"; Asp; BS=Bolt) = 3,53 cm

    Mb = 1,25 c= 1,50 M0 = 1,10

    Design:m = l - e - 0,8 * a w * 2 = 43,69 mmleff1a = MIN(4 * m + 1,25 * e; 2 * m + 0,625 * e + e 1) = 215,51 mm

    leff1b = MIN(2 * m + 0,625 * e + 0,5 * p; e 1 + 0,5 * p; b / 2) = 250,00 mm

    leff1 = MIN(leff1a ; leff1b ) = 215,51 mm

    leff2a = MIN( * 2 * m; * m + 2 * e 1) = 274,51 mm

    leff2b = MIN( * m + p; p + 2 * e 1) = 437,26 mm

    leff = MIN(leff2a ; leff2b ; leff1 ) = 215,51 mm

    Beanspruchbarkeit der Lagerplatte auf der Seite der Zugstangen:

    Mpl,1,Rd = *14*leff *( )d10

    2

    f y* M0 10

    = 12,12*10 3 kNmm

    n = e = 45,00 mmn

    *1,25 m= 0,82 < 1

    Bt,Rd = 0,9 * f u * A s

    * Mb 10= 101,66 kN

    Full flange yield:

    FT,Rd1 = 4 *Mpl,1,Rd

    m= 1109,64 kN

    Bolt failure with flange yielding:

    FT,Rd2 =*2 +Mpl,1,Rd *n *2 B t,Rd

    +m n= 376,47 kN

    Bolt failure without flange yielding:

    FT,Rd3 = 2 * B t,Rd = 203,32 kN FT,Rd = MIN(F T,Rd1 ; F T,Rd2 ; F T,Rd3 ) = 203,32 kN

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    56/124

    Eurocode 3 Folder : foot and support

    Effective compression area:Limit pressure in the base plate:a 1 = MIN(a + 2 * a r ; 5 * a; a + h) = 1900,00 mm

    k j =

    a 1

    2

    *a b= 3,80

    f j = j * k j *f ck

    c= 50,92 N/mm

    A eff = *10+N Ed F T,Rd

    f j= 236,32 cm

    c = *d *f y 10*3 *f j M0 = 121,36 mmx0 = 100 *

    A eff *2 +c b f

    = 43,54 mm

    x0+t f *2 c

    = 0,17 < 1

    Limit moment at column base:

    r c = +h t2

    -cx02

    = 249,59 mm

    MRd =

    *F T,Rd *103

    +( )+h t2 -100 e * Ae f f *100 *f j r c10

    6= 342,02 kNm

    Check permissible strength of column to bending and compression.:

    MNy,Rd = 1,1 * M pl,y,Rd * (1-NEd

    Npl,Rd) = 318,32 kNm

    Analysis:

    MAX(MEd

    MNy,Rd;

    MEd

    MRd ) = 0,70 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    57/124

    Eurocode 3 Folder : Frames

    Sway frame with bracing out of plane of frame, plastic theory:

    dq

    dH

    A

    B D

    C

    h

    lPlan and elevation values:

    Frame width l = 8,00 mFrame depth h = 6,00 mNumber of column n c = 2Number of storeys n s = 1

    Beam:Profil Typ1 = SEL("steel/Profils"; Name; ) = IPESelected Profil1= SEL("steel/"Typ1; Name; ) = IPE 240

    Column height h 1 = TAB("steel/"Typ1; h; Name=Profil1) = 240,00 mmWeb thickness s 1 = TAB("steel/"Typ1; s; Name=Profil1) = 6,20 mmMoment of inertia I y1 = TAB("steel/"Typ1; Iy; Name=Profil1) = 3890,00 cm 4

    Cross-sectional area A 1= TAB("steel/"Typ1; A; Name=Profil1) = 39,10 cmMoment of resistance W y1 = TAB("steel/"Typ1; Wy; Name=Profil1) = 324,00 cmMoment of resistance Wpl y1 = 1,14 * W y1 = 369,36 cm

    Column section:Profil Typ2 = SEL("steel/Profils"; Name; ) = HEBSelected Profil2 = SEL("steel/"Typ2; Name; ) = HEB 240Flange width b 2 = TAB("steel/"Typ2; b; Name=Profil2) = 240,00 mmColumn height h

    2 = TAB("steel/"Typ2; h; Name=Profil2) = 240,00 mm

    Web thickness s 2 = TAB("steel/"Typ2; s; Name=Profil2) = 10,00 mmMoment of inertia I y2 = TAB("steel/"Typ2; Iy; Name=Profil2) = 11260,00 cm 4

    Moment of inertia I z2 = TAB("steel/"Typ2; Iz; Name=Profil2) = 3920,00 cm 4

    Moment of inertia I t2 = TAB("steel/"Typ2; IT; Name=Profil2) = 103,00 cm 4

    Moment of inertia I = 10*TAB("steel/"Typ2; I ; Name=Profil2) = 486900,00 cm 6Cross-sectional area A 2= TAB("steel/"Typ2; A; Name=Profil2) = 106,000 cmiy = TAB("steel/"Typ2; iy; Name=Profil2) = 10,30 cmiz = TAB("steel/"Typ2; iz; Name=Profil2) = 6,08 cmMoment of resistance W ely2 = TAB("steel/"Typ2;Wy; Name=Profil2) = 938,00 cmMoment of resistance W ply2 = 1,25 * W ely2 = 1172,50 cm

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    58/124

    Eurocode 3 Folder : Frames

    Loads:Hd = 9,00 kN

    qd = 9,00 kN/m

    Materials and stresses:steel = SEL("steel/EC"; Name; ) = Fe 360E s = TAB("steel/EC"; E; Name=steel) = 210000,00 N/mmG = TAB("steel/EC"; G; Name=steel) = 81000,00 N/mmf y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm = (235 / f y) = 1,00 M = 1,101 = 93,90 * = 93,90

    Frame classification as in 5.2.5.2.:Frame sways

    k = *Iy 1

    Iy 2hl

    = 0,259

    Deflection at top of frame due to horizontal load:H = 1,00 kN

    = **( )*100 h

    310

    *12 *E s Iy2

    *2 +k 1

    *k H= 0,446 cm

    Sumtotal of vertical loads:V = q d * l = 72,00 kN

    Bracing is restrained out of plane of frame

    *

    *h 100

    V

    H= 0,054 < 0,1

    Sway frame, plastic theory, restrained from moving out of plane.

    Design with plastic theoryImperfection:

    0 =1

    200= 0,005

    kc = MIN( +0,5 1n c ; 1) = 1,00ks = MIN( +0,2

    1

    n s; 1) = 1,00

    = 0 * kc * ks = 0,0050Hd = * V = 0,36 kNHEd = Hd + Hd = 9,36 kN

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    59/124

    Eurocode 3 Folder : Frames

    Design calculations:Reactions at column bases:

    Hl=

    *q d l2

    *4 *h ( )*2 +k 3= 6,82 kN

    Vl = q d *l

    2= 36,00 kN

    MBl = -Hl * h = -40,92 kNmH2 = HEd / 2 = 4,68 kN

    V2 = HEd *h

    l= 7,02 kN

    MB2 = H2 * h = 28,08 kNm

    Analysis of column

    NEd = Vl + V 2 = 43,02 kNVEd = Hl + H 2 = 11,50 kNMD = MBl - MB2 = -69,00 kNmMC = 0,00 kNm

    Buckling in the plane of frame as in section E:

    kc =Iy2

    *h 100= 18,77 cm

    k1 = 1,5 *Iy1

    *l 100= 7,29 cm

    k2 = 0,02 = 1 (Hinge)

    1 =k c

    +k c +k 1 k2 = 0,72

    Slenderness ratio as in Fig. E.2.1.:

    l = 3,2 * h = 19,20 m

    y = *100l

    iy= 186,41

    trans,y =y

    *1 = 1,99

    h 2

    b 2= 1,00 < 1,2

    Apply strut curve b: = 0,34 A = 1,000

    = 0,5 * (1 + * (trans,y - 0,2) + trans,y ) = 2,784

    y =1

    + -2 trans,y 2= 0,2114

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    60/124

    Eurocode 3 Folder : Frames

    Buckling outside the plane of frame

    z= 100 *h

    iz= 98,68

    trans,z = z

    *1 = 1,05

    Apply strut curve c: = 0,49 A = 1,000 = 0,5 * (1 + * (trans,z - 0,2) + trans,z ) = 1,260

    z =1

    + -2 trans,z 2= 0,5111

    min = MIN( y; z) = 0,2114

    Check bending and buckling: = 0,00My = 1,8 - 0,7 * = 1,80

    y = trans,y * (2 * My - 4) +-W ply2 W ely2

    W ely2= -0,546 < 0,9

    ky = 1 -*y NEd

    * y * A 2 f y= 1,004 < 1,5

    +NEd

    * min * A 2 f y

    * M 10

    *100 *k yabs ( )MD

    *W ply2f y* M 10

    = 0,37 < 1

    Check torsional-flexural buckling:C1 = 1,879

    Mcr = *C 1 **

    2*E s Iz2

    *( )*h 1002

    10 +IIz2 *( )*h 100

    2*G I t2

    *2

    *E s Iz2

    = 94241,31 kNm

    As in Table: F.1.1 = 0,00w = 1,00

    k = 1,00

    LT = *2 *E s10 W ply2Mcr = 50,78trans,LT = *

    LT1

    w = 0,541

    Apply strut curve a

    = 0,21 = 0,5 * (1 + * (trans,LT - 0,2) + trans,LT ) = 0,682

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    61/124

    Eurocode 3 Folder : Frames

    LT =1

    + -2 trans,LT 2= 0,911

    M,LT = 1,8 - 0,7 * = 1,80

    LT = 0,15 * trans,z * M,LT - 0,15 = 0,134 < 0,9

    kLT = 1 -*LT NEd

    * LT * A 2 f y= 1,000 < 1,5

    +NEd

    * z * A 2f y

    * M 10

    *100 *kLTabs ( )MD

    ** LT W ply2f y

    * M 10

    = 0,340 < 1

    Section analysis at D:Column:

    A v = 1,04 * h 2 * s 2 / 10 = 24,96 cm

    Vpl,Rd = * Avf y

    * 3 * M 10= 307,86 kN

    VEd

    Vpl,Rd= 0,037 < 0,5

    No interaction

    Npl,Rd = * A 2f y

    * M 10= 2264,55 kN

    n =N Ed

    N pl,Rd= 0,02

    Mpl,y,Rd = *W ply2f y

    * M 103

    = 250,49 kNm

    MNy,Rd = 1,11 * M pl,y,Rd * (1 - n) = 272,48 kNm

    MAX(abs ( )MDMpl,y,Rd

    ;abs ( )MD

    MNy,Rd) = 0,28 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    62/124

    Eurocode 3 Folder : Frames

    Beam:

    A v = 1,04 * h 1 * s 1 / 10 = 15,48 cm

    Vpl,Rd = * Avf y

    * 3 * M 10= 190,93 kN

    N Ed

    Vpl,Rd= 0,225 < 0,5

    No interaction

    Npl,Rd = A1 * f y / 10 / M = 835,32 kNn = V Ed / N pl,Rd = 0,014

    Mpl,y,Rd = *W ply1f y

    * M 103

    = 78,91 kNm

    MNy,Rd = 1,11 * M pl,y,Rd * (1 - n) = 86,36 kNm

    MAX(abs ( )MDMpl,y,Rd

    ;abs ( )MD

    MNy,Rd) = 0,87 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    63/124

    Eurocode 3 Folder : Frames

    Frame, plastic with magnifying factor

    dP dP

    dq

    dH

    A

    B D

    C

    h

    lPlan and elevation values:

    Frame width l= 8,00 mFrame depth h= 6,00 mNumber of column n c= 2Number of storeys n s= 1

    Beam:Profil Typ1 = SEL("steel/Profils"; Name; ) = IPE

    Selected Profil1= SEL("steel/"Typ1; Name; ) = IPE 240Column height h 1 = TAB("steel/"Typ1; h; Name=Profil1) = 240,00 mmFlange thickness s 1 = TAB("steel/"Typ1; s; Name=Profil1) = 6,20 mmMoment of inertia I y1 = TAB("steel/"Typ1; Iy; Name=Profil1) = 3890,00 cm 4

    Cross-sectional area A 1= TAB("steel/"Typ1; A; Name=Profil1) = 39,10 cmMoment of resistance W y1 = TAB("steel/"Typ1; Wy; Name=Profil1) = 324,00 cmMoment of resistance Wpl y1 = 1,14 * W y1 = 369,36 cm

    Column section:Profil Typ2 = SEL("steel/Profils"; Name; ) = HEBSelected Profil2 = SEL("steel/"Typ2; Name; ) = HEB 240Flange width b 2 = TAB("steel/"Typ2; b; Name=Profil2) = 240,00 mmColumn height h 2 = TAB("steel/"Typ2; h; Name=Profil2) = 240,00 mmFlange thickness s 2 = TAB("steel/"Typ2; s; Name=Profil2) = 10,00 mmMoment of inertia I y2 = TAB("steel/"Typ2; Iy; Name=Profil2) = 11260,00 cm 4

    Moment of inertia I z2 = TAB("steel/"Typ2; Iz; Name=Profil2) = 3920,00 cm 4

    Moment of inertia I t2 = TAB("steel/"Typ2; IT; Name=Profil2) = 103,00 cm 4

    Moment of inertia I = 10*TAB("steel/"Typ2; I ; Name=Profil2) = 486900,00 cm 6Cross-sectional area A 2= TAB("steel/"Typ2; A; Name=Profil2) = 106,000 cmiy = TAB("steel/"Typ2; iy; Name=Profil2) = 10,30 cmiz = TAB("steel/"Typ2; iz; Name=Profil2) = 6,08 cmMoment of resistance W ely2 = TAB("steel/"Typ2;Wy; Name=Profil2) = 938,00 cm

    Moment of resistance W ply2 = 1,25 * W ely2 = 1172,50 cm

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    64/124

    Eurocode 3 Folder : Frames

    Loads:Hd = 9,00 kNqd = 8,00 kN/mP d= 100,00 kN

    Materials and stresses:steel = SEL("steel/EC"; Name; ) = Fe 360E s = TAB("steel/EC"; E; Name=steel) = 210000,00 N/mmG = TAB("steel/EC"; G; Name=steel) = 81000,00 N/mmf y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm

    = 235f y = 1,00 M = 1,101 = 93,90 * = 93,90

    Frame classification as in 5.2.5.2.:Frame swaysClassification of stiffness:

    k = *Iy 1

    Iy 2

    h

    l= 0,259

    Deflection at top of frame due to horizontal load:H = 1,00 kN

    = **( )*100 h

    310

    *12 *E s Iy2

    *2 +k 1

    *k H= 0,446 cm

    Sumtotal of vertical loads:V = P d * 2 + q d * l = 264,00 kN

    *

    *h 100

    V

    H= 0,1962 < 0,1

    Frame, laterally unrestrained!;restrained from moving out of plane. mit Vergrerungsfaktor!

    Design with plastic theory and magnifying factor Imperfection:

    0 =1

    200= 0,005

    kc = MIN( +0,51

    n c ; 1) = 1,00

    ks = MIN( +0,2 1n s ; 1) = 1,00 = 0 * kc * ks = 0,0050Hd = * V = 1,32 kNHEd = Hd + Hd = 10,32 kN

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    65/124

    Eurocode 3 Folder : Frames

    Design calculations:Reactions at column bases:

    Hl =*q d l

    2

    *4 *h ( )*2 +k 3= 6,06 kN

    Vl = q d *l

    2= 32,00 kN

    MBl = -Hl * h = -36,36 kNmH2 = HEd / 2 = 5,16 kN

    V2 = HEd *h

    l= 7,74 kN

    MB2 = H2 * h = 30,96 kNm

    Analysis of columnDischinger factor:

    D = 1

    -1 *

    *h 100

    V

    H

    = 1,244

    MD = MBl - D * M B2 = -74,87 kNmNEd = Vl + D * V 2 + P d = 141,63 kNVEd = Hl + D * H 2 = 12,48 kN

    Buckling in the plane of frame:

    kc =Iy2*h 100

    = 18,77 cm

    k1 =Iy1

    *l 100= 4,86 cm

    k2 = 0,02 = 1 (Hinge)

    1 =k c

    +k c +k1 k2 = 0,79

    Slenderness ratio as in Fig. E.2.1.:l = 0,92 * h = 5,52 m

    y = *100l

    iy= 53,59

    trans,y =y

    *1 = 0,57

    h 2b 2

    = 1,00 < 1,2

    Apply strut curve b: = 0,34 A = 1,000 = 0,5 * (1 + * (trans,y - 0,2) + trans,y ) = 0,725

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    66/124

    Eurocode 3 Folder : Frames

    y =1

    + -2 trans,y 2= 0,8525

    Buckling outside the plane of frame

    z= 100 *h

    iz= 98,68

    trans,z =z

    *1 = 1,05

    Apply strut curve c: = 0,49 A = 1,000 = 0,5 * (1 + * (trans,z - 0,2) + trans,z ) = 1,260

    z =1

    + -2 trans,z 2= 0,5111

    min = MIN( y; z) = 0,5111

    Check bending and buckling: = 0,00My = 1,8 - 0,7 * = 1,80

    y = trans,y * (2 * My - 4) +-W ply2 W ely2

    W ely2= 0,022 < 0,9

    ky = 1 -*y NEd

    * y * A 2 f y= 1,000 < 1,5

    +NEd

    * min * A 2f y* M 10

    *100 *k yabs ( )MD

    *W ply2f y* M 10

    = 0,42 < 1

    Check torsional-flexural buckling:C1 = 1,879

    Mcr = *C 1 **

    2*E s Iz2

    *( )*h 1002

    10 +

    I

    Iz2

    *( )*h 1002

    *G I t2

    *2 *E s Iz2= 94241,31 kNm

    As in Table: F.1.1 = 0,00w = 1,00k = 1,00

    LT = *2 *E s10 W ply2Mcr = 50,78trans,LT = *

    LT1

    w = 0,541

    Apply strut curve a = 0,21

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    67/124

    Eurocode 3 Folder : Frames

    = 0,5 * (1 + * (trans,LT - 0,2) + trans,LT ) = 0,682

    LT =1

    + -2 trans,LT 2= 0,911

    M,LT = 1,8 - 0,7 * = 1,80LT = 0,15 * trans,z * M,LT - 0,15 = 0,134 < 0,9

    kLT = 1 -*LT NEd

    * LT * A 2 f y= 0,999 < 1,5

    +NEd

    * z * A 2f y

    * M 10

    *100 *kLTabs ( )MD

    ** LT W ply2f y

    * M 10

    = 0,450 < 1

    Section analysis at D:Column:

    A v = 1,04 * h 2 * s 2 / 10 = 24,96 cm

    Vpl,Rd = * Avf y

    * 3 * M 10= 307,86 kN

    VEd

    Vpl,Rd= 0,041 < 0,5

    No interaction

    Npl,Rd = * A 2f y* M 10

    = 2264,55 kN

    n =N Ed

    N pl,Rd= 0,063

    Mpl,y,Rd = *W ply2f y

    * M 103

    = 250,49 kNm

    MNy,Rd = 1,11 * M pl,y,Rd * (1 - n) = 260,53 kNm

    MAX(abs ( )MDMpl,y,Rd

    ;abs ( )MD

    MNy,Rd) = 0,30 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    68/124

    Eurocode 3 Folder : Frames

    Beam:

    A v = 1,04 * h 1 * s 1 / 10 = 15,48 cm

    Vpl,Rd = * Avf y

    * 3 * M 10= 190,93 kN

    N Ed

    Vpl,Rd= 0,742 < 0,5

    No interactionNpl,Rd = A1 * f y / 10 / M = 835,32 kNn = V Ed / N pl,Rd = 0,015

    Mpl,y,Rd = *W ply1f y

    * M 103

    = 78,91 kNm

    MNy,Rd = 1,11 * M pl,y,Rd * (1 - n) = 86,28 kNm

    MAX(abs ( )MDMpl,y,Rd

    ;abs ( )MD

    MNy,Rd) = 0,95 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    69/124

    Eurocode 3 Folder : Frames

    Sway frame with bracing out of plane of frame, plastic theory:

    dq

    dH

    A

    B D

    C

    h

    lPlan and elevation values:

    Frame width l= 8,00 mFrame depth h= 6,00 mNumber of column n c= 2Number of storeys n s= 1

    Beam:Profil Typ1 = SEL("steel/Profils"; Name; ) = IPESelected Profil1= SEL("steel/"Typ1; Name; ) = IPE 240Column height h 1 = TAB("steel/"Typ1; h; Name=Profil1) = 240,00 mm

    Web thickness s 1 = TAB("steel/"Typ1; s; Name=Profil1) = 6,20 mmMoment of inertia I y1 = TAB("steel/"Typ1; Iy; Name=Profil1) = 3890,00 cm 4

    Cross-sectional area A 1= TAB("steel/"Typ1; A; Name=Profil1) = 39,10 cmMoment of resistance W y1 = TAB("steel/"Typ1; Wy; Name=Profil1) = 324,00 cmMoment of resistance Wpl y1 = 1,14 * W y1 = 369,36 cm

    Column section:Profil Typ2 = SEL("steel/Profils"; Name; ) = HEBSelected Profil2 = SEL("steel/"Typ2; Name; ) = HEB 240Flange width b 2 = TAB("steel/"Typ2; b; Name=Profil2) = 240,00 mmColumn height h 2 = TAB("steel/"Typ2; h; Name=Profil2) = 240,00 mm

    Web thickness s 2 = TAB("steel/"Typ2; s; Name=Profil2) = 10,00 mmMoment of inertia I y2 = TAB("steel/"Typ2; Iy; Name=Profil2) = 11260,00 cm 4

    Moment of inertia I z2 = TAB("steel/"Typ2; Iz; Name=Profil2) = 3920,00 cm 4

    Moment of inertia I t2 = TAB("steel/"Typ2; IT; Name=Profil2) = 103,00 cm 4

    Moment of inertia I = 10*TAB("steel/"Typ2; I ; Name=Profil2) = 486900,00 cm 6Cross-sectional area A 2= TAB("steel/"Typ2; A; Name=Profil2) = 106,000 cmiy = TAB("steel/"Typ2; iy; Name=Profil2) = 10,30 cmiz = TAB("steel/"Typ2; iz; Name=Profil2) = 6,08 cmMoment of resistance W ely2 = TAB("steel/"Typ2;Wy; Name=Profil2) = 938,00 cmMoment of resistance W ply2 = 1,25 * W ely2 = 1172,50 cm

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    70/124

    Eurocode 3 Folder : Frames

    Loads:Hd = 9,00 kNqd = 9,00 kN/m

    Materials and stresses:steel = SEL("steel/EC"; Name; ) = Fe 360E s = TAB("steel/EC"; E; Name=steel) = 210000,00 N/mmG = TAB("steel/EC"; G; Name=steel) = 81000,00 N/mmf y = TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm

    = 235f y = 1,00 M = 1,101 = 93,90 * = 93,90

    Frame classification as in 5.2.5.2.:

    Frame sways

    k = *Iy 1

    Iy 2

    h

    l= 0,259

    Deflection at top of frame due to horizontal load:H = 1,00 kN

    = **( )*100 h

    310

    *12 *E s Iy2

    *2 +k 1

    *k H= 0,446 cm

    Sumtotal of vertical loads:V = q d * l = 72,00 kNBracing is restrained out of plane of frame

    **h 100

    VH

    = 0,0535 < 0,1

    Sway frame, plastic theory;restrained from moving out of plane.

    Design with plastic theory and magnifying factor Imperfection:

    0 =1

    200= 0,005

    kc = MIN( +0,5 1n c ; 1) = 1,00ks = MIN( +0,2 1n s ; 1) = 1,00 = 0 * kc * ks = 0,0050Hd = * V = 0,36 kNHEd = Hd + Hd = 9,36 kN

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    71/124

    Eurocode 3 Folder : Frames

    Design calculations:Reactions at column bases:

    Hl =*q d l

    2

    *4 *h ( )*2 +k 3= 6,82 kN

    Vl = qd *l

    2= 36,00 kN

    MBl = -Hl * h = -40,92 kNmH2 = HEd / 2 = 4,68 kN

    V2 = HEd *h

    l= 7,02 kN

    MB2 = H2 * h = 28,08 kNm

    Analysis of columnNEd = Vl + V 2 = 43,02 kN

    VEd = Hl + H 2 = 11,50 kNDischingerfaktor:

    D =1

    -1 *

    *h 100

    V

    H

    = 1,057

    MD = MBl - D * M B2 = -70,60 kNmBuckling in the plane of frame:

    kc =Iy2

    *h 100= 18,77 cm

    k1 =

    Iy1

    *l 100 = 4,86 cm

    k2 = 0,02 = 1 (Hinge)

    1 =k c

    +k c +k 1 k 2 = 0,79

    Slenderness ratio as in Fig. E.2.1.:l = 0,92 * h = 5,52 m

    y = *100l

    iy= 53,59

    trans,y =y

    *1 = 0,57

    h 2b 2

    = 1,00 < 1,2

    Apply strut curve b: = 0,34 A = 1,000= 0,5*(1+ *(trans,y -0,2)+ trans,y ) = 0,725

    y =1

    + -2 trans,y 2= 0,8525

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    72/124

    Eurocode 3 Folder : Frames

    Buckling outside the plane of frame

    z= 100 *h

    iz= 98,68

    trans,z =

    z*1 = 1,05

    Apply strut curve c:= 0,49 A = 1,000 = 0,5 * (1 + * (trans,z - 0,2) + trans,z ) = 1,260

    z =1

    + -2 trans,z 2= 0,5111

    min = MIN(y; z) = 0,5111

    Check bending and buckling: = 0,00My = 1,8 - 0,7 * = 1,80

    y = trans,y * (2 * My - 4) +-W ply2 W ely2

    W ely2= 0,022 < 0,9

    ky = 1 -*y NEd

    *y * A 2 f y= 1,000 < 1,5

    +NEd

    * min * A 2f y

    * M 10

    *100 *k yabs ( )MD

    *W ply2f y

    * M 10

    = 0,32 < 1

    Check torsional-flexural buckling:C1 = 1,879

    Mcr = *C 1 **

    2*E s Iz2

    *( )*h 1002

    10 +I Iz2 *( )*h 1002

    *G I t2

    *2

    *E s Iz2

    = 94241,31 kNm

    As in Table: F.1.1 = 0,00w = 1,00

    k = 1,00

    LT = * 2 *E s10 W ply2Mcr = 50,78trans,LT = *

    LT1

    w = 0,541

    Apply strut curve a = 0,21

    = 0,5 * (1 + * (trans,LT - 0,2) + trans,LT ) = 0,682

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    73/124

    Eurocode 3 Folder : Frames

    LT =1

    + -2 trans,LT 2= 0,911

    M,LT = 1,8 - 0,7 * = 1,80LT = 0,15 * trans,z * M,LT - 0,15 = 0,134 < 0,9

    kLT = 1 -*LT NEd

    *LT * A 2 f y= 1,000 < 1,5

    +NEd

    * z * A 2f y

    * M 10

    *100 *k LTabs ( )MD

    ** LT W ply2f y

    * M 10

    = 0,347 < 1

    Section analysis at D:Column:

    A v = 1,04 * h 2 * s 2 / 10 = 24,96 cm

    Vpl,Rd = * Avf y

    * 3 * M 10= 307,86 kN

    VEd

    Vpl,Rd= 0,037 < 0,5

    No interaction

    Npl,Rd = * A 2f y

    * M 10= 2264,55 kN

    n = NEd

    N pl,Rd= 0,02

    Mpl,y,Rd = *W ply2f y

    * M 103

    = 250,49 kNm

    MNy,Rd = 1,11 * M pl,y,Rd * (1 - n) = 272,48 kNm

    MAX(abs ( )MDMpl,y,Rd

    ;abs ( )MD

    MNy,Rd) = 0,28 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    74/124

    Eurocode 3 Folder : Frames

    Beam: A v = 1,04 * h 1 * s 1 / 10 = 15,48 cm

    Vpl,Rd = * Avf y

    * 3 * M 10= 190,93 kN

    N Ed

    Vpl,Rd= 0,225 < 0,5

    No interaction

    Npl,Rd = A1 * f y / 10 / M = 835,32 kNn = V Ed / N pl,Rd = 0,014

    Mpl,y,Rd = *W ply1f y

    * M 103

    = 78,91 kNm

    MNy,Rd = 1,11 * M pl,y,Rd * (1 - n) = 86,36 kNm

    MAX(abs ( )MDMpl,y,Rd

    ;abs ( )MD

    MNy,Rd) = 0,89 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    75/124

    Eurocode 3 Folder : Single-span beam

    Pos.: Flexural-torsional buckling of a single-span beam:End supports are laterally fixed.

    s

    b

    h

    b

    t

    t

    o

    o

    u

    u

    ts

    qd

    Load diagram:Span length l = 24,00 mtop width b o= 40,00 cmbottom width b u= 50,00 cmDepth of web h= 100,00 cmtop Flange thickness t o= 3,50 cmbottom Flange thickness t u= 3,50 cmWeb thickness s= 2,00 cmWeld thickness t s= 1,00 cm

    Loads:q = 4,04 kN/m

    Materials and stresses:steel = SEL("steel/EC"; Name; ) = Fe 510E s= TAB("steel/EC"; E; Name=steel) = 210000,00 N/mmG= TAB("steel/EC"; G; Name=steel) = 81000,00 N/mmf y= TAB("steel/EC"; fy; Name=steel) = 355,00 N/mm

    = 235f y = 0,81Partial safety factors: M= 1,10 g= 1,35

    Section classification as in Table 5.3.1: A = (b o * to + b u * tu + h * s) = 515,00 cmPlastic neutral axis:

    x =

    - A

    2*b o to

    s= 58,75 cm

    xs = h - x = 41,25 cm

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    76/124

    Eurocode 3 Folder : Single-span beam

    Flange:

    c =

    --b o s

    2*t s 2

    to= 5,02 cm

    c

    *9 = 0,69 < 1

    Section class 1Web:

    =x

    h= 0,59 cm

    h

    *s *456

    *13 - 1

    = 0,90 < 1

    h

    *s *396

    *13 - 1

    = 1,04 > 1

    Section class 2

    Check bending moment strength:

    MEd = g **q l

    2

    8= 392,69 kNm

    Critical torsional-buckling moment:

    Iz= *to +b o

    3

    12*tu

    b u3

    12= 55125,00 cm 4

    As in Table: F.1.2(2)k= 1,00

    As in Table: F.1.1(4)kw= 1,00

    As in Table: F.1.2C1= 1,132C2= 0,459C3= 0,525Location of center of gravity:

    e=

    *b u *t u +( )+h t o *h *s( )+h t o

    2

    A= 55,27 cm

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    77/124

    Eurocode 3 Folder : Single-span beam

    Location of shear centre:

    s s= *( )+h +to t u2b u

    3

    +b o3

    b u3

    = 68,45 cm

    z s= -(s s - e) = -13,18 cm

    It=1

    3 * (bu * tu + b o * to + h * s) = 1552,92 cm 4

    z a = 0,00 cmz g= z a -z s = 13,18 cmas in F 1.4:

    f =b o

    3

    +b o3

    b u3

    = 0,339 < 0,5

    z j= (2 * f - 1) *

    +h+to tu

    22

    = -16,66 cm

    Iw= f * (1 - f ) * Iz *( )+h +to tu22

    = 132,32*10 6 cm 6

    P 1= *C 1**

    2E s Iz

    ( )*k *l 1002

    = 22453,85

    P 2=

    *( )kk w

    2

    +IwIz

    +*( )*k *l 100

    2*G I t

    *2

    *E s Iz

    ( )*C 2 -zg *C 3 z j2

    = 94,66

    P 3= C 2 * zg - C 3 * z j = 14,80

    Mcr = *P 1-P 2 P 3

    103

    = 1793,16 kNm

    Wpl = b u * tu * (xs +tu

    2 ) + x s *

    s

    2 + b o * to * (x +

    to

    2 ) + x *

    s

    2= 21148,13 cm

    Section class 2 w= 1,00

    trans,LT = *w *W pl f y*10 3 Mcr = 2,046 As in Table 5.5.1 = 0,49= 0,5 * (1 + * (trans,LT -0,2) + trans,LT ) = 3,05

    LT =1

    + -2 trans,LT 2= 0,1883

    Mb,Rd = *w *LT *W plf y

    * M2

    103

    = 1168,33 kNm

    MEd

    Mb,Rd= 0,34 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    78/124

    Eurocode 3 Folder : Single-span beam

    Pos.: Single-span beam with biaxial bending:

    N

    qd

    t,d

    qd

    Span length l = 5,80 m Angle of slope = 8,53

    Loads:qd= 7,00 kN/mN

    t,d= 100,00 kN

    Materials and stresses:steel = SEL("steel/EC"; Name; ) = Fe 360E s= TAB("steel/EC"; E; Name=steel) = 210000,00 N/mmf y= TAB("steel/EC"; fy; Name=steel) = 235,00 N/mm

    = 235f y = 1,00platischer Formbeiwert pl y = 1,14platischer Formbeiwert pl z = 1,25 M= 1,10

    Profil Typ = SEL("steel/Profils"; Name; ) = HEASelected Profil = SEL("steel/"Typ; Name; ) = HEA 140

    Section classification:Column height h = TAB("steel/"Typ; h; Name=Profil) = 133,00 mmDepth of web h 1 = TAB("steel/"Typ; h1; Name=Profil) = 92,00 mmWeb thickness s = TAB("steel/"Typ; s; Name=Profil) = 5,50 mmFlange width b = TAB("steel/"Typ; b; Name=Profil) = 140,00 mmFlange thickness t = TAB("steel/"Typ; t; Name=Profil) = 8,50 mmMoment of inertia I = TAB("steel/"Typ; Iy; Name=Profil) = 1030,00 cm 4Cross-sectional area A= TAB("steel/"Typ; A; Name=Profil) = 31,40 cmWel y= TAB("steel/"Typ; Wy; Name=Profil) = 155,00 cmWpl y = pl y * W el y = 176,70 cmWel z = TAB("steel/"Typ; Wz; Name=Profil) = 55,60 cmWpl z = pl z * W el z = 69,50 cm

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    79/124

    Eurocode 3 Folder : Single-span beam

    Design loads:Plastic limit force:

    Npl,Rd = * Af y

    * M 10= 670,82 kN

    Limit force that plasticizes the web

    Npl,w,Rd = (h - 2 * t) * s *f y

    * M 103

    = 136,30 kN

    MAX(Nt,d

    *0,5 N pl,w,Rd;

    Nt,d*0,25 N pl,Rd

    ) = 1,47 > 1

    Reduce plastic limit force as in 5.4.8.1:

    =

    - A *2 *bt

    100

    A= 0,242 < 0,5

    =N t, d

    N pl,Rd= 0,149

    MNy,Rd = *W pl y *f y

    * M 103

    -1 -1 *0,5

    = 36,55 kNm

    = 0,62 < 1

    MNz,Rd = W plz *f y

    * M 103

    = 14,85 kNm

    Design momente:

    qdy = q d * COS( ) = 6,92 kN/mqdz = q d * SIN() = 1,04 kN/m

    My,Ed = q dy *l

    2

    8= 29,10 kNm

    Mz,Ed = q dz *l

    2

    8= 4,37 kNm

    Check section strength:for I-Profile gilt = 2,00

    1= 5 * = 0,75 < 12= 1,00 = MAX(1 ;2 ) = 1,00

    +( )My,EdMNy,Rd

    ( )Mz,EdMNz,Rd

    = 0,93 < 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    80/124

    Eurocode 3 Folder : Single-span beam

    Pos.: flexural-torsional buckling:End supports are laterally fixed, load is applied in the middle of the bottom flange.

    s

    b

    h

    t

    tts

    qd

    Load diagram:

    Span length l = 8,00 mBeam width b= 20,00 cmColumn height h= 50,00 cmFlange thickness t= 2,50 cmWeb thickness s= 1,20 cmWeld thickness t s = 0,50 cm

    Loads:qd = 50,00 kN/m

    Materials and stresses:steel = SEL("steel/EC"; Name; ) = Fe 510

    E s= TAB("steel/EC"; E; Name=steel) = 210000,00 N/mmG= TAB("steel/EC"; G; Name=steel) = 81000,00 N/mmf y= TAB("steel/EC"; fy; Name=steel) = 355,00 N/mm

    = 235f y = 0,81Partial safety factors: M= 1,10

    Section classification:Flange:

    c =

    -b2

    *t s 2

    t= 3,72 cm

    c

    *9 = 0,51 < 1

    Section class 1Web:d= -h *2 *t s 2 = 48,59 cm

    d

    *s *72 = 0,69 < 1

    Section class 1

    Pdf-Overview: Templates for Structural Engineering

  • 8/9/2019 Mnogo zajebana stvar

    81/124

    Eurocode 3 Folder : Single-span beam

    Check bending moment strength:

    Wpl = *( )*b *t ++h t2 *h2 *s h4 2 = 3375,00 cmM

    c,Rd=

    *W pl f y

    * M 103

    = 1089,20 kNm

    MEd =*q d l

    2

    8= 400,00 kNm

    MEdMc,Rd

    = 0,37 < 1

    Check shear strength:

    Av= h * s = 60,00 cm

    Vpl,Rd = * A vf y

    ** 3 M 10= 1117,96 kN

    VEd = *q dl

    2= 200,00 kN

    VEdVpl,Rd

    = 0,18 < 1

    Check torsional buckling strength:

    I