Modelling Phase Change Material Thermal Storage · PDF fileMODELLING PHASE CHANGE MATERIAL THERMAL STORAGE SYSTEMS . ... (Mechanical Engineering) ... Design Methodology

Embed Size (px)

Citation preview

  • MODELLING PHASE CHANGE MATERIAL THERMAL STORAGE SYSTEMS

  • MODELLING PHASE CHANGE MATERIAL THERMAL STORAGE SYSTEMS

    By

    JOANNE M. BAILEY, B.A.Sc., P .Eng.

    A Thesis

    Submitted to the School of Graduate Studies

    in Partial Fulfillment of the Requirements

    for the Degree

    Master of Applied Science

    McMaster University

    Hamilton, Ontario, Canada

    Copyright by Joanne Bailey, January 2010

  • MASTER OF APPLIED SCIENCE (2010) (Mechanical Engineering)

    McMASTER UNNERSITY Hamilton, Ontario, Canada

    TITLE: Modelling Phase Change Material Thennal Storage Systems

    AUTHOR: Joanne M. Bailey, B.A.Sc., P. Eng.

    SUPERVISOR: Dr. J. S. Cotton

    NUMBER OF PAGES: xiv, 157

    11

  • ABSTRACT

    In order to increase the overall efficiency of energy use in a community, excess

    thermal energy from inefficient processes can be stored and used for heating applications.

    A one-dimensional analytical conduction model is therefore developed for sizing of phase

    change material thermal energy storage systems. The model addresses rectangular

    channels of phase change material separated by flow channels for the addition and

    removal of thermal energy. The analytical model assumes a planar melt front and linear

    temperature profiles throughout the thermal storage cell. Heat flux and interface

    temperatures are calculated at various melt fractions based on a quasi-steady electrical

    analogue analysis of the instant in question. Compensation is made for the sensible

    energy change between melt fractions by adding this energy at the calculated heat flux.

    A two dimensional, conduction only computational fluid dynamics model is used to

    compare the response of the analytical model to changes in the input parameters and

    shows good agreement. A test apparatus and a three dimensional computational fluid

    dynamics model are also created and melt-time results compared to analytical model

    predictions. These comparisons also show good agreement. Finally, a thermal storage

    system is sized for a specific application, H2Green Energy Corporation's Distributed

    Storage System, with sizing based on the heat load requirements of McMaster Innovation

    Park during the winter months. Technical feasibility of this system is shown with

    analysis also included on economic feasibility. It is determined that the analytical model

    is sufficient for initial assessment of phase change material thermal energy storage

    iii

  • systems where detailed geometry is unavailable. Recommendations are made for further

    validation of the model and the development of a phase change material properties

    database. Suggestions are also presented on additional sources of revenue for the

    H2Green Distributed Storage System that will increase its economic feasibility.

    IV

  • ACKNOWLEDGEMENTS

    The author would like to acknowledge the financial contributions of the Ontario

    Centres of Excellence, H2Green Energy Corporation, McMaster University Department

    of Mechanical Engineering, NSERC and the Canadian Engineering Memorial Foundation

    towards completion of this thesis.

    The author would also like to thank Dan Wright for his assistance with data

    acquisition and programming, Ron Lodewyks, J.P. Talon, Mark MacKenzie, Jim

    McLaren and Joe Verhaeghe for their help with the fabrication of the experimental

    apparatus, Dr. J.S. Cotton for his guidance and supervision over the course ofthis project

    and Dr. H.S. Sadek for his continual support and advice.

    v

  • Table of Contents

    Abstract .............................................................................................................................. iii

    Acknowledgements ............................................................................................................. v

    List of Tables ..................................................................................................................... ix

    List of Figures ..................................................................................................................... x

    Nomenclature .................................................................................................................... xii

    Glossary ........................................................................................................................... xiii

    CHAPTER 1 - Introduction ................................................................................................... 1

    1.1 - Background ............................................................................................................ 1 1.2 - Current Applications of Thermal Storage ................................................... , .......... 2 1.3 - Potential Applications of Thermal Storage ............................................................ 5 1.4 - Problem .................................................................................................................. 7 1.5 - Scope of Work ....................................................................................................... 8

    CHAPTER 2 - Thermal Storage Technologies ................................................................... 10

    2.1 - Thermal Storage Options ..................................................................................... 10 2.2 - Phase Change Material Categories ...................................................................... 12 2.3 - Low Temperature Phase Change Materials ......................................................... 13 2.4 - Recent Phase Change Material Thermal Storage Research ................................. 19 2.5 - Capture Systems ................................................................................................... 24 2.6 - Recovery Systems ................................................................................................ 26 2.7 - Temperature Mediation Systems ......................................................................... 27 2.8 - Design Methodology ............................................................................................ 27

    CHAPTER 3 ~ PCM Thermal Storage Models .................................................................... 32

    3.1 - PCM Mass ............................................................................................................ 32 3.2 - One-Dimensional Storage Cell Geometric Model ............................................... 33 3.3 - Analytical Model Single Storage Cell Time ........................................................ 34

    3.3.1 - Pseudo-Steady Heat Transfer Model ............................................................ 35 3.3.2 - Changing Temperature Profile and Sensible Energy .................................... 36 3.3.3 - Equations Used in the Analytical Model ...................................................... 37

    3.4 - Fluent Melting/Solidification Model ................................................................... 38 3.5 - Two-Dimensional Numerical Storage Cell Model .............................................. 39

    VI

  • 3.5.1- Effect ofTheffilal Conductivity .................................................................... 44 3.5.2 - Effect of Latent Heat of Fusion ..................................................................... 49 3.5.3 - Effect of Sensible Energy Storage ................................................................ 50 3.5.4 - Effect of Capture/Recovery Temperature Difference ................................... 52 3.5.5 - Effect of Dimensional Changes .................................................................... 54 3.5.6 - Effect of Capture/Recovery Convective Heat Transfer Coefficient ............. 55

    3.6 - Three-Dimensional Sample Cell Model .............................................................. 56 3.6.1 - Lauric Acid Storage Cell ............................................................................... 57

    CHAPTER 4 - Test Facility ................................................................................................. 62

    4.1 - Test Cell Design Criteria and Constraints ............................................................ 62 4.2 - Phase Change Material Chamber ......................................................................... 65 4.3 - Capture/Recovery Fluid ChanneL ........................................................................ 68 4.4 - Temperature Measurement .................................................................................. 73 4.5 - Flow Measurement and Control. .......................................................................... 75 4.6 - Heat Flux Measurement ....................................................................................... 76 4.7 - Data Acquisition .................................................................................................. 77 4.8 - Experimental Uncertainty .................................................................................... 79

    CHAPTER 5 - Experimental Results, Discussion and Comparison .................................... 82

    5.1 - Experimental Phase Change Results and Model Validation ................................ 82 5.2 - Lauric Acid Storage Cell Low Flow .................................................................... 83 5.3 - Effect of Flow Rate .............................................................................................. 89 5.4 - Effect of Flow Direction .......................................................................