42
Modern Control Systems Bode plot 1 Emam Fathy Department of Electrical and Control Engineering email: [email protected] http://www.aast.edu/cv.php?disp_unit=346&ser=68525

Modern Control Systems - AAST

  • Upload
    others

  • View
    29

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Modern Control Systems - AAST

Modern Control Systems

Bode plot

1

Emam FathyDepartment of Electrical and Control Engineering

email: [email protected]://www.aast.edu/cv.php?disp_unit=346&ser=68525

Page 2: Modern Control Systems - AAST

Introduction

• Frequency response is the steady-state response of asystem to a sinusoidal input.

r(t) c(t)

R

C)sin(r 0 tA

Page 3: Modern Control Systems - AAST

jssGjG

)()(

22

21

)( sin

)())((

)(

)(

)()( :

s

AsRtAr(t)and

pspsps

sM

sR

sCsGassume

n

))(()())((

)(

)()()(

21

jsjs

A

pspsps

sM

sRsGsCthen

n

))(sin()( )( jGtjGAtc

Page 4: Modern Control Systems - AAST

Frequency Domain Plots

• Bode Plot

• Nyquist Plot

• Nichol’s Chart

Page 5: Modern Control Systems - AAST

Bode Plot

• A Bode diagram consists of two graphs:

– One is a plot of the logarithm of the magnitude ofa sinusoidal transfer function.

– The other is a plot of the phase angle.

– Both are plotted against the frequency on alogarithmic scale.

Page 6: Modern Control Systems - AAST
Page 7: Modern Control Systems - AAST

Decade

Page 8: Modern Control Systems - AAST

Definitions

• The decibel (dB) is a logarithmic unit used to express the ratio of two values of a physical quantity.

• A logarithmic scale is a nonlinear scale used when there is a large range of quantities.

– Log–log plots If both the vertical and horizontal axis of a plot is scaled logarithmically, the plot is referred to as a log–log plot.

– Semi logarithmic plots If only one axis is scaled logarithmically, the plot is referred to as a semi logarithmic plot.

)sG(M |)(|log20

Page 9: Modern Control Systems - AAST

Basic Factors of a Transfer Function

• The basic factors that very frequently occur inan arbitrary transfer function are

1. Gain K

2. Integral and Derivative Factors (jω)±1

3. First Order Factors (jωT+1)±1

4. Quadratic Factors

))((

)()(

251

13202

ssss

ssG

)1)2/5(2/)(1(

)13(102

ssss

s

Page 10: Modern Control Systems - AAST

Basic Factors of a Transfer Function

1. Gain K

• The log-magnitude curve for a constant gain K is a horizontalstraight line at the magnitude of 20 log(K) decibels.

• The phase angle of the gain K is zero.

• The effect of varying the gain K in the transfer function is thatit raises or lowers the log-magnitude curve of the transferfunction by the corresponding constant amount, but it has noeffect on the phase curve.

Page 11: Modern Control Systems - AAST

-15

-5

5

15

Mag

nit

ud

e (d

ecib

els)

Frequency (rad/sec)0.1 1 10 100

5KIf db)((K) 1452020 loglog Then

103 104 105 106 107 108 109

Page 12: Modern Control Systems - AAST

-90o

-300

30o

90o

Ph

ase

(deg

rees

)

Frequency (rad/sec)0.1 1 10 100

5KIf 0 )5

0(tan)

Re

Im(tan Then 1-1-

103 104 105 106 107 108 109

0o

Page 13: Modern Control Systems - AAST

Basic Factors of a Transfer Function

2. Integral and Derivative Factors (jω)±1

jswheressG ,)(

)log()( 20jG

900

1 )(tan)(

jG

Derivative Factor

Magnitude

Phase

ω 0.1 0.2 0.4 0.5 0.7 0.8 0.9 1

db -20 -14 -8 -6 -3 -2 -1 0

Slope=20db/decade

Page 14: Modern Control Systems - AAST

-30

-10

10

30

Mag

nit

ud

e (d

ecib

els)

Frequency (rad/sec)0.1 1 10 100

decadedb20

103 104 105 106 107 108 109

0

-20

Page 15: Modern Control Systems - AAST

-180o

-600

60o

180o

Ph

ase

(deg

rees

)

Frequency (rad/sec)0.1 1 10 100

90 )0

(tan 1-

103 104 105 106 107 108 109

0o

900

Page 16: Modern Control Systems - AAST

Basic Factors of a Transfer Function

2. Integral and Derivative Factors (jω)±1

• When expressed in decibels, the reciprocal of a numberdiffers from its value only in sign; that is, for the number N,

)log()log(N

N1

2020

)log()(

201

j

jGMagnitude

• Therefore, for Integral Factor the slope of the magnitude line wouldbe same but with opposite sign (i.e -6db/octave or -20db/decade).

900

1 )(tan)(

jGPhase

Page 17: Modern Control Systems - AAST

-30

-10

10

30

Mag

nit

ud

e (d

ecib

els)

Frequency (rad/sec)0.1 1 10 100

decadedb20

103 104 105 106 107 108 109

0

20

Page 18: Modern Control Systems - AAST

-180o

-600

60o

180o

Ph

ase

(deg

rees

)

Frequency (rad/sec)0.1 1 10 100

90 )0

(tan 1-

103 104 105 106 107 108 109

0o

-900

Page 19: Modern Control Systems - AAST

Basic Factors of a Transfer Function

2. First Order Factors (jωT+1)

– For Low frequencies ω<<1/T

– For high frequencies ω>>1/T

)log()( TjM 120

)log()( 22120 TM

0120 )log()(M

)log()( TM 20

)()()( 13

13 sssG

T

T

1

Page 20: Modern Control Systems - AAST

Basic Factors of a Transfer Function

2. First Order Factors (jωT+1)

)(tan-1 T )(

000 )(tan when -1)(,

4511

)(tan when 1-)(, T

90 )(tan when -1)(,

Page 21: Modern Control Systems - AAST

-30

-10

10

30

Mag

nit

ud

e (d

ecib

els)

Frequency (rad/sec)0.1 1 10 100 103 104 105 106 107 108 109

0

20

)()()( 13

13 sssG

ω=3

6 db/octave

20 db/decade

Page 22: Modern Control Systems - AAST

-90o

-300

30o

90o

Ph

ase

(deg

rees

)

Frequency (rad/sec)0.1 1 10 100 103 104 105 106 107 108 109

0o

45o

Page 23: Modern Control Systems - AAST

Basic Factors of a Transfer Function

3. First Order Factors (jωT+1)-1

– For Low frequencies ω<<1/T

– For high frequencies ω>>1/T

)log()( TjM 120

)log()( 22120 TM

0120 )log()(M

)log()( TM 20

)()(

3

1

ssG

Page 24: Modern Control Systems - AAST

Basic Factors of a Transfer Function

3. First Order Factors (jωT+1)-1

)(tan-1 T )(

000 )(tan when -1)(,

4511

)(tan when 1-)(, T

90 )(tan when -1)(,

Page 25: Modern Control Systems - AAST

-30

-10

10

30

Mag

nit

ud

e (d

ecib

els)

Frequency (rad/sec)0.1 1 10 100 103 104 105 106 107 108 109

0

-20

)()(

3

1

ssG

ω=3

-6 db/octave

-20 db/decade

Page 26: Modern Control Systems - AAST

-90o

-300

30o

90o

Ph

ase

(deg

rees

)

Frequency (rad/sec)0.1 1 10 100 103 104 105 106 107 108 109

0o

-45o

Page 27: Modern Control Systems - AAST

Example

)1100/(

)1(10)()(

2

ss

ssHsG

Page 28: Modern Control Systems - AAST

0dB1001010.1

)(log

20dB

-20dB

-40dB

40dB

-60dB

-40dB/dec

-20dB/dec

-40dB/dec

)1100/(

)1(10)()(

2

ss

ssHsG

Page 29: Modern Control Systems - AAST

0o

1001010.1

)(log

)(

45o

-45o

-90o

90o

-180o

-135o

)1100/(

)1(10)()(

2

ss

ssHsG

Page 30: Modern Control Systems - AAST

Basic Factors of a Transfer Function

4. Quadratic Factors

– For Low frequencies ω<< ωn

– For high frequencies ω>> ωn

2

2

2

2120 )()(log)(nn

M

0120 )log()(M

decdbMn

/)log()( 4040

Page 31: Modern Control Systems - AAST

Example

)(

)()(

1

123

s

ssG

8

10

12

14

16

Magnitu

de (

dB

)

10-2

10-1

100

101

0

5

10

15

20

Phase (

deg)

Bode Diagram

Frequency (rad/sec)

Page 32: Modern Control Systems - AAST

Example

))((

))(()(

151

171310

ss

sssG

20

25

30

35

Magnitu

de (

dB

)

10-2

10-1

100

101

102

0

10

20

30

40

Phase (

deg)

Bode Diagram

Frequency (rad/sec)

Page 33: Modern Control Systems - AAST

Example

))((

)()(

1513

446 2

ss

sssG

-10

0

10

20

30

Magnitu

de (

dB

)

10-2

10-1

100

101

102

-135

-90

-45

0

Phase (

deg)

Bode Diagram

Frequency (rad/sec)

Page 34: Modern Control Systems - AAST

Example

)(

)()(

1

123

s

ssG 8

10

12

14

16

Magnitu

de (

dB

)

10-2

10-1

100

101

102

0

45

90

135

180

Phase (

deg)

Bode Diagram

Frequency (rad/sec)

Page 35: Modern Control Systems - AAST

Example

)(

))(()(

1682

121510

sss

sssG

0

10

20

30

40

Magnitu

de (

dB

)

10-2

10-1

100

101

102

-90

-45

0

45

90

Phase (

deg)

Bode Diagram

Frequency (rad/sec)

Page 36: Modern Control Systems - AAST

Relative Stability

Page 37: Modern Control Systems - AAST

3/15/2020 47

Gain cross-over point

ωg

Phase cross-over point

ωp

Page 38: Modern Control Systems - AAST

3/15/2020 48

ωp

Gain Margin

Unstable Stable

Stable

Unstable Stable

Stable

ωg

Phase Margin

Page 39: Modern Control Systems - AAST

Example#3

• Obtain the phase and gain margins of thesystem shown in following figure for the twocases where K=10 and K=100.

Page 40: Modern Control Systems - AAST
Page 41: Modern Control Systems - AAST

End of Lecture

Page 42: Modern Control Systems - AAST

Example

0dB, 0o

1001010.1)(log

)( ),( L

20dB, 45o

-20dB, -45o

-40dB, -90o

40dB, 90o

-80dB,-180o

-60dB.-135o

-100dB,-225o

-120dB,-270o

-60dB/dec

-20dB/dec

)101.001.0)(11.0(

)1(10)(

22

ssss

ssG

-20dB/dec