31
Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms TTM8100 Slides edited by Steinar Andresen

Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

  • Upload
    ellema

  • View
    48

  • Download
    2

Embed Size (px)

DESCRIPTION

Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms. TTM8100 Slides edited by Steinar Andresen. QoS Mechanisms. Traffic handling mechanisms. - PowerPoint PPT Presentation

Citation preview

Page 1: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

Multimedia Wireless Networks: Technologies,

Standards, and QoSChapter 3. QoS Mechanisms

TTM8100

Slides edited by Steinar Andresen

Page 2: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

QoS Mechanisms

Page 3: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

Traffic handling mechanisms

• (sometimes called In-traffic mechanisms) are mechanisms that classify, handle, police, and monitor the traffic across the network. The main mechanisms are:

1. classification,

2. channel access,

3. packet scheduling, and

4. traffic policing.

Page 4: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

Bandwidth management mechanisms

• (sometimes called Out-of-traffic mechanisms) are mechanisms that manage the network resources (e.g., bandwidth) by coordinating and configuring network devices' (i.e., hosts, base stations, access points) traffic handling mechanisms. The main mechanisms are:

1. resource reservation signaling and

2. admission control.

Page 5: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

Classification

Page 6: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

Classification Techniques related to OSI layers

Application User/Application Identification

Transport Flow (5 tuplet IP Address)

Network IPTOS, DSCP

Data Link 802.1p/Q Classification

Physical Layer

OSI layer Classification Techniques

Page 7: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

Data Link Classification (ref. 3- bits field IEEE 802 header)Priority Service

0Default, assumed to be besteffort service

1 Less than best effort service2 Reserved3 Reserved4 Delay sensitive, no bound5 Delay sensitive, 100ms bound6 Delay sensitive, 10ms bound7 Network control

Page 8: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

Network Layer ClassificationNetwork layer, or Layer 3 classification is using Layer 3 header.s Layer 3 classification enables service differentiation in Layer 3 network.

• An example of Layer 3 classification is IPTOS (Internet protocol type of service

– IPv4 and IPv6 standard defined a prioritization field in the IP header RFC 1349 defined a TOS field in IPv4 header. The type of service field consists of a 3-bit precedence subfield, a 4-bit TOS subfield, and the final bit which is unused and is set to be 0. The 4-bit TOS subfield enables 16 classes of service. In IPv6 header there is an 8-bit class of service field

• and DSCP (Internet protocol differential service code point).

– Later IETF’s differentiated services working group redefined IPv4 IPTOS to be DSCP,. DSCP has a 6-bit field enabling 64 classes of service.

Page 9: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

Structure of IPTOS and DSCP in IPv4

4-bitversion

16-bit total length (in bytes)

16-bit identification3-bit flag

13-bit fragment offset

8-bit TOS

32-bit source IP address

32-bit destination IP address

0 31

4-bitheader l

8-bit TTL 8-bit Protocol 16-bit header checksum

DATA

3-bitPrecedence 4-bit TOS 0

6-bit DSCP 2-bitUnused

0 7

DSCP

IPTOS

Page 10: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

Structure of IPTOS and DSCP in IPv6

4-bitversion

Flow Label

Payload Length Next Header Hop Limit

8-bit traffic class

Payload Length

Payload length

0 31

Page 11: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

Transport Layer Classification

A 5-tuplet IP header

• source IP,

• destination IP,

• source port,

• destination port, and

• protocol IP)

can be used for transport layer classification.

Page 12: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

Transport Layer Classification

A 5-tuplet IP header can uniquely identify the individual application or flow. This classification provides the finest granularity and supports per-flow QoS service.

Limitations:

• OK at the EDGE, but NOT Suitable to CORE• Problems when passing firewalls using NAT

Page 13: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

Application or User Classfication

The users or applications can be uniquely identified by an ID and a central agency in the network can be made responsible to

– allow or reject

requests for new sessions, depending on the traffic situation. Normally each session also will be given a unique ID number.

Page 14: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

Channel Access Mechanisms

There is two options to channel access control:

1. Collision based access and2. Collision-free channel access

• Collision based access needs a MAC protocol that tries to avoid and resolve collisions (in the case they occur). E.g. CSMA/CD. Service level can be improved by:

– Over-provisioning or– Adding a priority scheme

Page 15: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

Collision-Free Channel Access• Polling• TDMA - illustrated here -static or dynamic

Page 16: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

Packet Scheduling Mechanisms

- Hierarchical or - Flat Packet scheduling

Page 17: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

FIFO Packet Scheduling

Page 18: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

Strict Priority Packet Scheduling

Page 19: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

Weight Fair Queue (WFQ)

Page 20: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

Traffic Policing Mechanisms(A): Incoming traffic with rate R which is less than the bucket rate r. The outgoing traffic rate is equal to R.In this case when we start with anempty bucket, the burstiness of the incoming traffic is the same as the burstiness of the outgoing trafficas long as R < r.

Page 21: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

Traffic Policing Mechanisms

(B): Incoming traffic with rate Rwhich is greater than the bucket rate r. The outgoing traffic rate is equal to r (bucket rate).

Page 22: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

Traffic Policing Mechanisms

(C): Same as (B) but the bucket is full. Non-conformant traffic is eitherdropped or sent as best effort traffic.

Page 23: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

Token Bucket Mechanism (A)

The incoming traffic rate is less than the token arrival rate. In this case the outgoing traffic rate is equal to the incoming traffic rate.

Page 24: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

Token Bucket Mechanism (B)

The incoming traffic rate is greater than the token arrival rate. In case there are still tokens in the bucket, the outgoing traffic rate is equal to the incoming traffic rate.

Page 25: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

Token Bucket Mechanism (C)

If the incoming traffic rate is still greater than the token arrival rate (e.g., long traffic burst), eventually all the tokens will be exhausted. In this case the incoming traffic has to wait for the new tokens to arrive in order to be able to send out. Therefore, the outgoing traffic is limited at the token arrival rate.

Page 26: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

Resource Reservation Signaling Mechanisms

• Provision of resource reservation signaling that notifies all devices along the communication path on the multimedia applications' QoS requirements.

• Delivery of QoS requirements to the admission control mechanism that decides if there are available resources to meet the new request QoS requirements.

• Notification of the application regarding the admission result.

Page 27: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

Resource Reservation Signaling Mechanisms

Page 28: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

Admission Control– Explicit admission control:

This approach is based on explicit resource reservation. Applications will send the request to join the network through the resource reservation signaling mechanism. The request that contains QoS parameters is forwarded to the admission control mechanism. The admission control mechanism decides to accept or reject the application based on the application's QoS requirements, available resources, performance criteria, and network policy.

– Implicit admission control: There is no explicit resource reservation signaling. The admission control mechanism relies on bandwidth over-provisioning and traffic control (i.e., traffic policing).

Page 29: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

QoS Architecture• Applications with quantitative QoS requirements: mostly require

QoS guaranteed services. Therefore, explicit resource reservation and admission control are needed, also require strict traffic control (traffic policing, packet scheduling, and channel access).

• Applications with qualitative QoS requirements: require high QoS levels but do not provide quantitative QoS requirements. We can use resource reservation and admission control. They also require traffic handling which delivers differentiated services.

• Best effort: There is no need for QoS guarantees. The network should reserve bandwidth for such services. The amount of reserved bandwidth for best effort traffic is determined by the network policy.

Page 30: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

QoS Architecture for Infrastructure based Wireless Networks

Page 31: Multimedia Wireless Networks: Technologies, Standards, and QoS Chapter 3. QoS Mechanisms

QoS Architecture for Ad Hoc Wireless Networks