29
Nonequilibrium thermodynamics at the microscale C. Jarzynski T-13 Complex Systems , LANL LAUR-05-2386 The entropy of a closed system never decreases. Clausius inequality Carnot limit on the efficiency of heat engines

New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

Nonequilibrium thermodynamicsat the microscale

C. JarzynskiT-13 Complex Systems , LANL

LAUR-05-2386

• The entropy of a closed system never decreases.• Clausius inequality• Carnot limit on the efficiency of heat engines

Page 2: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

The entropy of a closed system never decreases.

fluid

paddles weight

potential energy of weight

thermal energy of fluid

~10 23 molecules

!

S

!

t

!

dS

dt= "mg

dz

dt#1

T> 0

Joule experiment (1845)

Page 3: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

Scale down to the microscopic level …

fluid

paddles weight

potential energy of weight

thermal energy of fluid

~10 3 molecules

!

S

!

t

!

dS

dt> 0

Quantify the fluctuations!τ

Page 4: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

Distribution of entropy generated

!

"# S( )

0

!

S

Page 5: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

Fluctuation Theorem

!

"# S( )

0

!

S

!

"# $S( )

Distribution of entropy generated

Page 6: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

Fluctuation Theorem

!

"# S( )

0

!

S

!

"# $S( )

!

"# +S( )"# $S( )

= exp S /kB( )

• very general• valid far from equilibrium• reduces to linear response near equilibrium

Evans & Searles, PRE 1994Gallavotti & Cohen PRL 1995Kurchan, 1998Lebowitz & Spohn, J Stat Phys 1999 + many others

Distribution of entropy generated

Page 7: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

Sheared fluid

!

dS

dt= "

1

T# $VPxy t( )

shear rate pressure tensorvolume

Evans, Cohen, Morriss, Phys Rev Lett (1993)

moving wall

fixed wall

fluid

!

P xy

!

0.0

!

"1.0

!

"4.0

!

"3.0

!

"2.0

!

1.0

!

0.000

!

0.004!

0.006

!

0.002

!

p P xy( ) !

S"#P xy

!

"# +S( )"# $S( )

= exp S /kB( )

Page 8: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

r

k ~ 0.1 pN/µm

!

Fopt= -kr

!

dS

dt=1

T

r F opt "

r v opt

vopt

!

˙ S

!

t

Optically dragged beads

focusedlaser light

bead

Wang et al, Phys Rev Lett (2002)

Page 9: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

Demonstration of (integrated) Fluctuation Theorem

!

"# +S( )"# $S( )

= exp S /kB( )

!

˙ S

!

t

!

"

!

P S" < 0( )P S" > 0( )

= exp #S" /kB( )S" >0

Wang et al, Phys Rev Lett (2002)

l.h.s.

r.h.s.Ideally: divide the trajectory into many segments of duration τ, compute S for each segment, & construct histogram … not enough data !

Page 10: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

More recently …

!

V z;I( ) = A " exp(#$z) + B + CI( ) " z

Parameter-dependent potential:

laser intensity

displacement of bead from wall

Drive the system away from equilibrium with a time-symmetric pulse (squeeze, then relax) … measure the work performed on the bead

Blickle et al, Phys Rev Lett (2006)

Page 11: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

displacement (λ)

isothermal& reversible

irreversible

!

W = f d"A

B

#$Wrev

= %F = FB & FA

A

B

Illustration of Clausius inequality: stretched rubber band

rubber band

spring

particlewall

λ

air

force (f)

Page 12: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

Single-molecule pullingexperiment

RNA strand

bead bead

!

H2O

micro-pipette

lasertrapDNA handles

!

"

1. Begin in equilibrium2. Stretch the molecule W = work performed3. End in equilibrium4. Repeat

λ = Α λ : Α Β

λ = Β

Irreversible process:

Page 13: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

After infinitely many repetitions …

“violations”of 2ndLaw

distribution ofwork values

!

"F = FB# F

A

average workperformed

Page 14: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

Nonequilibrium work theorem

!

e"#W

= e"#$F

!

dW" #(W )e$%W

!

1/kBT

• valid far from equilibrium• fluctuations in W satisfy strong constraint• nonequilibrium measurements reveal equilibrium properties

C.J., Phys Rev Lett (1997)Crooks, J Stat Phys (1998)Hummer & Szabo, PNAS (2001) & others

Page 15: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

Derivation for isolated system,p. 1

!

H(x;")microstateHamiltonian !

"

Derivation (isolated system)

!

x positions, momentainternal energy

In equilibrium …

!

peq(x;") =

1

Z"

e#$H (x;") Boltzmann-Gibbs distribution

!

Z" = dx# e$%H (x;" ) partition function

!

F" = #$#1lnZ"

free energy

Page 16: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

Derivation for isolated system,p. 2

!

"

Derivation (isolated system)

protocoltrajectory

work!

"t

!

0 " t " #

how we act on the systemhow the system responds

!

xt

One realization …

!

W = H(x" ;B) #H(x0;A)

1st law : ΔE = W + Q

… now take average of e-βW over many realizations

Page 17: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

!

W (x0) = H(x" (x0);B) #H(x0;A)

!

e"#W

= dx0$1

ZA

e"#H (x0 ;A ) e

"#W (x0 )

!

=1

ZA

dx0" e

#$H (x% (x0 );B )

!

=1

ZA

dx"

#x"#x

0

$1

% e$&H (x" ;B )

=1 (Liouville’s thm.)

!

=ZB

ZA

= e"#$F QED

λ=A λ=Btrajectory

!

x0

!

x" = x" (x0)

Derivation for isolated system,p. 3

Page 18: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

Various derivations• C.J. PRL & PRE 1997, J.Stat.Mech. 2004• G.E. Crooks J.Stat.Phys. 1998, PRE 1999, 2000• G. Hummer & A. Szabo PNAS 2001• S.X. Sun J.Chem.Phys. 2003• D. J. Evans Mol.Phys. 2003• S. Mukamel PRL 2003 … & others

Hamiltonian evolution, Markov processes,Langevin dynamics, deterministic thermostats,quantum dynamics … robust

related result: G.N. Bochkov & Y.E. Kuzovlev JETP 1977

see also S. Park & K. Schulten, J. Chem. Phys. 2004 R.C. Lua & A.Y. Grosberg, J. Phys. Chem. B 2005

Page 19: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

Experimental verification: unfolding a single RNA molecule

Liphardt et al, Science (2002)

unfolding / refolding cycles

slow

fast

hysteresis(irreversibility)

Page 20: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

Results: equilibrium ΔF from nonequilibrium work values

• three pulling rates: 2-5 pN/s , 34 pN/s , 52 pN/s• ~ 300 cycles at each rate• slow cycles (reversible) used to determine ΔF

Ener

gy (k

T)

Extension (nm)5 10 15 20 25 30

J.Liphardt et al, Science (2002)

!

W "#F

!

W "#

2$W

2 "%F

!

"#"1ln e

"#W "$F

Page 21: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

Relation to Second Law

!

P[W < "F #$ ] = dW %(W )#&

"F#$

'

!

" dW #(W )$%

&F$'

( e) (&F$' $W )

!

" e# ($F%& ) dW '(W )%(

+(

) e%#W

= exp(%& /kT)

What is the probability thatthe 2nd law will be “violated”by at least ζ units of energy?!

e"#W

= e"#$F

!

W " #F

exponentially rare

Page 22: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

Crooks fluctuation theorem

Forward process … λ : A -> BReverse process … λ : B -> A

(unfolding) (folding)

!

"A#B

W( )!

"B#A

$W( )

!

"A#B

(+W )

"B#A

($W )= exp % W $&F( )[ ]

Crooks, Phys Rev E (1999)

Experimental verification:Collin et al, Nature (2005)

Page 23: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

3-helix junction force-extension curves

3-helix junction of ribosomal RNA of E. coli

!

Wdiss

" 50kBT

wild type mutant

Collin et al, Nature 2005

Page 24: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

Verification of CFT!

"A#B

(+W )

"B#A

($W )= exp % W $&F( )[ ]

!

ln"A#B

(+W )

"B#A

($W )= %(W $&F)

Page 25: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

Macroscopic machines

steam engine Carnot cycle

textbook thermodynamics

Page 26: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

Molecular machines

RNA polymerase

ATP synthasekinesin

What are the underlying thermodynamics?How is chemical energy converted to mechanical motion?

Page 27: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

Simple explanation ofmolecular machines

ADP

ATP

ADP

ATP track

currents:

!

˙ x

!

˙ "

stepping velocity

ATP -> ADP conversion rate

!

˙ " = #" /$

!

˙ x = "x /#

equilibriumfluctuations

!

p"eq +#x,+#$( ) = p"

eq %#x,%#$( )(detailed balance)

however …

!

"x # "$ % 0 (generically)

increase cATP

!

" + ˙ #

!

" + ˙ x motion!

A similar argument can be made far from equilibrium.

Page 28: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

Minimal molecular motors Van den Broeck, Meurs, Kawai Phys Rev Lett (2004)

T2T2

T1 T1

“Triangula” “Triangulita”

Directed motion?

YES !

Page 29: New Nonequilibrium thermodynamics at the microscaleonline.itp.ucsb.edu/online/biomachine06/jarzynski/pdf/... · 2006. 5. 26. · Nonequilibrium thermodynamics at the microscale C

Summary

New & interesting thermodynamics at the microscale

• Fluctuation theorem symmetry between entropy generation & consumption

• Nonequilibrium work theorem equilibrium thermodynamic information encoded in fluctuations far from equilibrium

• Molecular motors “generic”

!

"# +S( )"# $S( )

= exp S /kB( )

!

e"#W

= e"#$F