89
Past and Future for Micro- and Nano-Electronics Focusing on Si Integrated Circuit Technology March 6, 2008 Hiroshi Iwai, Toyo Institute of Technology @Sikkim Manipal Institute of Technology, East Sikkim

Past and Future for Micro- and Nano-Electronics Focusing

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Past and Future for Micro- and Nano-Electronics Focusing

Past and Future for Micro- and Nano-Electronics Focusing on Si Integrated Circuit Technology

March 6, 2008

Hiroshi Iwai, Toyo Institute of Technology

@Sikkim Manipal Institute ofTechnology, East Sikkim

Page 2: Past and Future for Micro- and Nano-Electronics Focusing

• There were many inventions in the 20th century:

Airplane, Nuclear Power generation, Computer,

Space aircraft, etc

• However, everything has to be controlled by electronics

• Electronics

Most important invention in the 20th century

• What is Electronics: To use electrons,

Electronic Circuits or IC (Integrated Circuits)

• Without IC, Mobile phone cannot be made, for example.  

Page 3: Past and Future for Micro- and Nano-Electronics Focusing

Karakuri (Windup Mechanical) doll (18C) in Japan

Robot (21C)

Robot cannot made without integrated circuits

Page 4: Past and Future for Micro- and Nano-Electronics Focusing

• Electronics is the

Most important invention in the 20th century

• Electronics: Electronic Circuits or IC

• Electronic Circuits in 100 years

Vacuum tube      LSI

(Large Scale Integrated circuits)

2 yeas ago, it was the 100 year anniversary

1906

Page 5: Past and Future for Micro- and Nano-Electronics Focusing

First Computer Eniac: made of huge number of vacuum tubes 1946Big size, huge power, short life time filament

Page 6: Past and Future for Micro- and Nano-Electronics Focusing

J.E.LILIENFELD

J. E. LILIENFELD

DEVICES FOR CONTROLLED ELECTRIC CURRENTFiled March 28, 1928

Page 7: Past and Future for Micro- and Nano-Electronics Focusing

ElectronSemiconductor

Gate Electrode

Gate InsulatorNegative bias

Positive bias

Capacitor structure with notch

No current

Current flows

Electricfield

Page 8: Past and Future for Micro- and Nano-Electronics Focusing

Gate ElectrodePoly Si

Gate InsulatorSiO2

Drain

SiSubstrate

Source

Channel N‐MOS (N‐type MOSFET)

Gate ElectrodePoly Si

Gate InsulatorSiO2

SubstrateSi

Use Gate Field Effect for switching

ee

Page 9: Past and Future for Micro- and Nano-Electronics Focusing

N‐MOS 

Source Drain

Source Drain

(N‐type MOSFET)Gate

P‐MOS (P‐type MOSFET)

Gate

Hole flow

Electron flow

Current flow

Current flow

Page 10: Past and Future for Micro- and Nano-Electronics Focusing

Source Channel Drain

0V

N+-Si P-Si

N-Si

0V

1V

Negative

Source Channel DrainN-Si1V

N+-Si P-Si

Surface Potential (Negative direction)

Gate Oxd

ChannelSource Drain

Gate electrode

S D

G

0 bias for gate Positive bias for gate

Surface

Electron flow

Page 11: Past and Future for Micro- and Nano-Electronics Focusing

However, no one could realize MOSFET operation for more than 30 years.

Because of very bad interface property between the semiconductor and gate insulator

Even Shockley!

Page 12: Past and Future for Micro- and Nano-Electronics Focusing

Very bad interface property between the semiconductor and gate insulator

Even Shockley!

eGe

GeO Electric Shielding

CarrierScattering

Interfacial Charges

Drain Current was several orders of magnitude smaller than expected

Page 13: Past and Future for Micro- and Nano-Electronics Focusing

1947: 1st transistor W. Bratten,

W. ShockleyBipolar using Ge

However, they found amplification phenomenon when investigatingGe surface when putting needles.This is the 1st Transistor: Not Field Effect Transistor, But Bipolar Transistor (another mechanism)

J. Bardeen

Page 14: Past and Future for Micro- and Nano-Electronics Focusing

1958: 1st Integrated Circuit Jack S. Kilby

Connect 2 bipolar transistors in theSame substrate by bonding wire.

Page 15: Past and Future for Micro- and Nano-Electronics Focusing

1960: First MOSFET by D. Kahng and M. Atalla

Top View 断面

Al

SiO2

Si

Si/SiO2 Interface is extraordinarily good

Page 16: Past and Future for Micro- and Nano-Electronics Focusing

History of Electronic Devices 

Transistor Concept

IC

Vacuum tube 1st Electronic circuits

Solid-State Circuits

Silicon TechnologyLSI

2000

706050

30

2010

1900TriodeDiode

MOSFETMISFET

bipolarICSi-MOSFET

1st Transistor

VLSI

LSI

CMOS

30 years

ULSI

20 years

10 years

Low Power

High Integration

Low PowerHigh speedHigh integration

Low PowerHigh speedHigh integration

Page 17: Past and Future for Micro- and Nano-Electronics Focusing

1970,71: 1st generation of LSIs

DRAM Intel 1103 MPU Intel 4004

Page 18: Past and Future for Micro- and Nano-Electronics Focusing

1960s    IC (Integrated Circuits)                           ~ 10

1970s    LSI (Large Scale Integrated Circuit)   ~1,000

1980s    VLSI (Very Large Scale IC)              ~10,000

1990s   ULSI (Ultra Large Scale IC)          ~1,000,000

2000s   ?LSI (? Large Scale IC)             ~1000,000,000

Name of Integrated Circuits Number of Transistors

Page 19: Past and Future for Micro- and Nano-Electronics Focusing

http://www.intel.com/technology/mooreslaw/index.htm

Keep increase of the number of components.Cost per components decreases!

Gordon Moore

Page 20: Past and Future for Micro- and Nano-Electronics Focusing
Page 21: Past and Future for Micro- and Nano-Electronics Focusing

1900 1950 1960 1970 2000

VacuumTube

Transistor IC LSI ULSI

10 cm cm mm 10 μm 100 nm

In 100 years, the size reduced by one million times.There have been many devices from stone age.We have never experienced such a tremendous reduction of devices in human history.

10-1m 10-2m 10-3m 10-5m 10-7m

Downsizing of the components has been the driving force for circuit evolution

Page 22: Past and Future for Micro- and Nano-Electronics Focusing

Downsizing1. Reduce Capacitance

Reduce switching time of MOSFETsReduce power consumption

2. Increase number of TransistorsIncrease functionalityParallel processing

Increase circuit operation speed

Thus, downsizing of Si devices is the most important and critical issue.

Page 23: Past and Future for Micro- and Nano-Electronics Focusing

Nano‐CMOS:

What would be the downsizing limit? 

Page 24: Past and Future for Micro- and Nano-Electronics Focusing

History of TransistorShrinking, Shrinking, and Shrinking!

Integration density:  1/L2 Increase

Switching speed  CV/I               Decrease

C, V ∝ L

Power consumption  CV2/2       Decrease

C: Capacitance V: Voltage

1970

Gate lengthGate Oxd Thickness

10,000 nm

200725 nm

100 nm 1 nm

and then, Shrinking, Shrinking, and Shrinking!

Page 25: Past and Future for Micro- and Nano-Electronics Focusing

Late 1970’s      1μm:             SCE

Early 1980’s 0.5μm:          S/D resistance

Early 1980’s  0.25μm:      Direct‐tunneling of gate SiO2

Late 1980’s 0.1μm:       ‘0.1μm brick wall’(various)

2000                 50nm:         ‘Red brick wall’ (various)

2000                10nm: Fundamental?

Period              Expected       Cause limit(size)

Many people wanted to say about the limit. Past predictions were not correct!!

Page 26: Past and Future for Micro- and Nano-Electronics Focusing

Historically, many predictions of the limit of downsizing.

VLSI text book written 1979 predict that 0.25 micro‐meter would be the limit because of direct‐tunneling current through the very thin‐gate oxide.

Page 27: Past and Future for Micro- and Nano-Electronics Focusing

VLSI textbook

Finally, there appears to be a fundamentallimit 10 of approximately quarter micronchannel length, where certain physical effectssuch as the tunneling through the gate oxideand fluctuations in the positions of impuritiesin the depletion layers begin to make thedevices of smaller dimension unworkable.

Page 28: Past and Future for Micro- and Nano-Electronics Focusing

Potential Barrier

Wave function

Direct‐tunneling effect

Page 29: Past and Future for Micro- and Nano-Electronics Focusing

Direct tunneling leakage was found to be OK! In 1994! 

Vg = 2.0V

1.5 V

1.0 V

0.5 V

0.0 V

1.6

1.2

0.8

0.4

0.0

‐0.4

0.0 0.5 1.0 1.5

Vd (V)

Vg = 2.0V

1.5 V

1.0 V

0.5 V

0.0 V

0.4

0.3

0.2

0.1

0.0

‐0.1

0.0 0.5 1.0 1.5

Vd (V)

Vg = 2.0V

1.5 V

1.0 V

0.5 V

0.0 V

0.08

0.06

0.04

0.02

0.00

‐0.02

0.0 0.5 1.0 1.5

Vd (V)

Vg = 2.0V

1.5 V

1.0 V

0.5 V

0.0 V

0.03

0.02

0.01

0.00

0.01

‐0.4

0.0 0.5 1.0 1.5

Vd (V)

Id (m

A / μm)

Lg = 10 μm Lg = 5 μm Lg = 1.0 μm Lg = 0.1μm

Gate electrode

Si substrate

Gate oxide Direct tunneling leakage current start to flow when the thickness is 3 nm.

MOSFETs with 1.5 nm gate oxide

Page 30: Past and Future for Micro- and Nano-Electronics Focusing

Gate electrode

Si substrate

Gate oxide Direct tunneling leakage current start to flow when the thickness is 3 nm.

Gate leakage:  Ig ∝ Gate Area ∝ Gate length (Lg)

Ig

Id

Drain current:  Id ∝ 1/Gate length (Lg)

Lg  small, Then, Ig  smalll, Id  large,    Thus, Ig/Id  small

Page 31: Past and Future for Micro- and Nano-Electronics Focusing

Qi Xinag, ECS 2004, AMD

Page 32: Past and Future for Micro- and Nano-Electronics Focusing

Never Give Up!

There would be a solution!

Think, Think, and Think!

Or, Wait the time!Some one will think for you

No one knows future!

Do not believe a text book statement, blindly!

Page 33: Past and Future for Micro- and Nano-Electronics Focusing

Gate Oxd

Channel

Electronwavelength

10 nm

Channel length?Downsizing limit?

Page 34: Past and Future for Micro- and Nano-Electronics Focusing

5 nm gate length CMOS

H. Wakabayashi et.al, NEC

IEDM, 2003

Length of 18 Si atoms

Is a Real Nano Device!!

5 nm

Page 35: Past and Future for Micro- and Nano-Electronics Focusing

Gate Oxd

Channel

Electronwavelength

10 nm

Tunnelingdistance

3 nm

Atomdistance

0.3 nm

Channel lengthGate oxide thickness

Downsizing limit!

Page 36: Past and Future for Micro- and Nano-Electronics Focusing

Electronwavelength

10 nm

Tunnelingdistance

3 nm

Atomdistance

0.3 nm

MOSFET operation

Lg = 2 ~ 1.5 nm?

Below this, no one knows future!

Prediction now!

Page 37: Past and Future for Micro- and Nano-Electronics Focusing

Maybe, practical limit around 5 nm.

Vg

Id

Vth (Threshold Voltage)

Vg=0V

SubthreshouldLeakage Current

When Gate length Smaller, Subthrehold Leakage Current Larger

Subthreshold CurrentIs OK at Single Tr.

But not OKFor Billions of Trs.

ONOFF

Page 38: Past and Future for Micro- and Nano-Electronics Focusing

Electronwavelength

10 nm

Tunnelingdistance

3 nm

Atomdistance

0.3 nm

Prediction at present

Practical limitbecause of off‐leakagebetween S and D?

Lg = 5 nm?

MOSFET operation

Lg = 2 ~ 1.5 nm?

But, no one knows future!

Gate length Prediction now!

Page 39: Past and Future for Micro- and Nano-Electronics Focusing

Ultimate limitation

10 ‐5

10 ‐4

10 ‐3

10 ‐2

10 ‐1

100

101

102

1970 1990 2010 2030 2050

Direct-tunneling

ITRS Roadmap(at introduction)

Wave length of electron

Distance between Si atomsSize (μ

m), Vo

ltage(V)

10 nm3 nm

0.3 nm

ULTIMATELIMIT

However,Gate oxide thickness2 orders magnitude smallerClose to limitation!!

Lg: Gate length downsizing will continue to another 10‐15 years

Page 40: Past and Future for Micro- and Nano-Electronics Focusing

By Robert Chau, IWGI 2003

0.8 nm Gate Oxide Thickness MOSFETs operates!!

0.8 nm:  Distance of 3 Si atoms!!

Page 41: Past and Future for Micro- and Nano-Electronics Focusing

So, we are now in the limitation of downsizing?

Do you believe this or do not?

Page 42: Past and Future for Micro- and Nano-Electronics Focusing

There is a solution!To use high‐k dielectrics

Thin gate SiO2Thick gate high‐k dielectrics

Almost the same electric characteristics

However, very difficult and big challenge!Remember MOSFET had not been realized without Si/SiO2!

K: Dielectric Constant

Thick

Small leakageCurrent

Page 43: Past and Future for Micro- and Nano-Electronics Focusing

R. Hauser, IEDM Short Course, 1999Hubbard and Schlom, J Mater Res 11 2757 (1996)

● Gas or liquidat 1000 K

●H

○ Radio activeHe

● ● ● ● ● ●Li BeB C N O F Ne

① ● ● ● ●Na Mg Al Si P S Cl Ar

② ① ① ① ① ① ① ① ① ① ① ● ● ● ●K Ca Sc Ti V Cr Mn Fc Co Ni Cu Zn Ga Ge As Se Br Kr● ① ① ① ① ① ● ① ① ① ① ① ● ●Rh Sr Y Zr Nb Mo Tc Ru Rb Pd Ag Cd In Sn Sb Te I Xe● ③ ① ① ① ① ① ● ● ● ● ① ① ○ ○ ○Cs Ba ★ Hf

Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn○ ○ ○ ○ ○ ○ ○ ○Fr Ra ☆ Rf Ha Sg Ns Hs Mt

○La Ce Pr Nd PmSmEu Gd Tb Dy Ho Er Tm Yb Lu○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Candidates

● ●Na Al Si P S Cl Ar

② ① ① ① ① ① ① ① ① ① ● ● ● ●K Sc Ti V Cr Mn Fc Co Ni Cu Zn Ga Ge As Se Br Kr● ① ① ① ① ① ● ① ①

○ ○ ○ ○ ○ ○Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Unstable at Si interfaceSi + MOX M + SiO2①

Si + MOX MSiX + SiO2

Si + MOX M + MSiXOY

Choice of High-k elements for oxide

HfO2 based dielectrics are selected as the first generation materials, because of their merit in1) band-offset, 2) dielectric constant3) thermal stability

La2O3 based dielectrics are thought to be the next generation materials, which may not need a thicker interfacial layer

Page 44: Past and Future for Micro- and Nano-Electronics Focusing

0 10 20 30 40 50Dielectric Constant

4

2

0

-2

-4

-6

SiO2

Ban

d D

isco

ntin

uity

[eV]

Si

XPS measurement by Prof. T. Hattori, INFOS 2003

Conduction band offset vs. Dielectric Constant

Band offset

Oxide

Leakage Current by Tunneling

Page 45: Past and Future for Micro- and Nano-Electronics Focusing

45

PMOS

High‐k gate insulator MOSFETs for Intel:  EOT=1nm

EOT: Equivalent Oxide Thickness

Page 46: Past and Future for Micro- and Nano-Electronics Focusing

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

0 0.5 1 1.5 2 2.5 3

EOT ( nm )

Cur

rent

den

sity

( A

/cm

2 )

Al2O3HfAlO(N)HfO2HfSiO(N)HfTaOLa2O3Nd2O3Pr2O3PrSiOPrTiOSiON/SiNSm2O3SrTiO3Ta2O5TiO2ZrO2(N)ZrSiOZrAlO(N)

Gate Leakage vs EOT, (Vg=|1|V)

La2O3

HfO2

Page 47: Past and Future for Micro- and Nano-Electronics Focusing

EOT = 0.48 nm

Transistor with La2O3 gate insulator

Our results

Page 48: Past and Future for Micro- and Nano-Electronics Focusing

New material research will give us many future possibilities and the most importantfor Nano‐CMOS!

New material for Metal gate electrodeNew material for High‐k gate dielectric

New materialFor Metal S/D

New channel material

Not only for high‐k!

Page 49: Past and Future for Micro- and Nano-Electronics Focusing

PMOS 1kbit DRAM Toshiba(1974)

NMOS 1k bit SRAM Toshiba (1974)

1970s:  10 years after single MOSFETs,

Page 50: Past and Future for Micro- and Nano-Electronics Focusing

1k SRAM 2 inch wafer1974

64k DRAM 4 inch wafer1980

64k DRAM 3 inch wafer1979

Page 51: Past and Future for Micro- and Nano-Electronics Focusing

Toshiba Corporation

1970’s

Page 52: Past and Future for Micro- and Nano-Electronics Focusing

300 mm Super clean room in Tsukuba,Selete

Toshiba OitaWorks

300 mm Fab TSMC

Now

Page 53: Past and Future for Micro- and Nano-Electronics Focusing

In a futureNo person is necessary!

Page 54: Past and Future for Micro- and Nano-Electronics Focusing

magnification

6 μm NMOS LSI in 1974

5. S/D

Layers

3. Gate oxide

1. Si substrate2. Field oxide

4. Poly Si

6. Interlayer7. Aluminum 8. Passivation

Materials

1. Si

3. BPSG

5. PSG4. Al

2. SiO2

Atoms

1. Si

4. B

(H, N, Cl)

2. O

3. P

5. Al

Page 55: Past and Future for Micro- and Nano-Electronics Focusing

Y. Nishi, Si Nano Workshop, 2006,

(S. Sze, Based on invited talk at Stanford Univ., Aug. 1999)

Al

SiO2

Si

Poly Si

Si3N4

Air

HSQ

Polymer

TiN

TaN

Cu

Low-kdielectrics

Metals

La2O3

Ta2O5

HfO2

ZrO2

ZrSixOy

RuO2

Pt

IrO2

Y1

PZT

BST

High-kdielectrics

Electrode materials

Ferroelectrics

PtSi2WSi2CoSi2TiSi2MoSi2TaSi2

Silicides

W

1970 1980 1990 20001950 2010

Al

SiO2

Si

Ge SemiconductorsIII-V

Just examples!Many other candidates

New materials

NiSi silicide

SiGe Semiconductor

Page 56: Past and Future for Micro- and Nano-Electronics Focusing

32 Gb and 16Gb NAND, SAMSUNG

Now: After 45 Years from the 1st single MOSFETs

Page 57: Past and Future for Micro- and Nano-Electronics Focusing

Capacity     Node 1st Fabrication Production 

512Mbit  120nm 2000 2001

1Gbit 100nm 2001 2002

2Gbit 90nm 2002 2003

4Gbit 70nm 2003 2004

8Gbit 60nm 2004 2005

16Gbit 50nm 2005 2006

32Gbit 40nm 2006 2007?

256Gbit   20nm            2010                   2011?

Even Tbit is possible!

Samsung’s NAND flash trend

Page 58: Past and Future for Micro- and Nano-Electronics Focusing

Already 32 Gbit: larger than that of world populationcomparable for the numbers of neuronsin human brain

Samsung announced 256 Gbit will be produced in 2010.Only 4 years from now.256Gbit: larger than  those of # of stars in galaxies

Page 59: Past and Future for Micro- and Nano-Electronics Focusing

JEITA IC Handbook

150mmwafer

200mmwafer

300mmwafer

Front-end processing equipmentsFront-end processing buildings

Back-end processing equipments

Front-end ancillary facility

Back-end processing buildings

1M 4M 16M 64M 256M 1G Bit DRAM

Am

ount

of c

apita

l inv

estm

ent (

M U

S$)

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000Amount of capital investment on Each of DRAM generation

Problem is the huge production cost and investment!

Page 60: Past and Future for Micro- and Nano-Electronics Focusing

Examples of foundry facility: UMC

UMC

Page 61: Past and Future for Micro- and Nano-Electronics Focusing

TSMC

Volume production with lager wafer is a solution

Page 62: Past and Future for Micro- and Nano-Electronics Focusing

9 yrs + 2 yrs delay* 9 yrs? + 2 yrs delay?  9 yrs + ?yrs delay

675mm/2021?450mm/2012?300mm/2001200mm/1990 (125/150mm ‐ 1981)

We are hereWhen does this happen?

When do we start planning for next wafer size transition?

Page 63: Past and Future for Micro- and Nano-Electronics Focusing

FurnaceHeight: 12 mWeight: 36 tonHot zone: 40 inchCusp-type super conductive magnet

CrystalDiameter: 400 mmWeight: over 400 kgBody length: over 1m

Provided by Super Silicon Crystal Research Institute Corp.(SSi)

Crystal pulling furnace becomes too hugeSi crystal height cannot be very long because of its weight 

Page 64: Past and Future for Micro- and Nano-Electronics Focusing

Logic Tech Node (nm)??

‘05 ‘07 ‘09 ‘11 ‘13 ‘15 ‘17 ‘19

65 45 32 22 15 11 8 6

90 68 52 40 32 25 20 16

54 42 34 27 21 17 13 11

32 25 20 16 13 10 8 6 Gate Length (nm)

Year

Printed GateLength (nm)

ArF 193 nm

EUVL 13 nmLithography (nm)

Metal 1 LineHalf Pitch (nm)

Page 65: Past and Future for Micro- and Nano-Electronics Focusing

World beyond 2020:

Totally, new paradigm after reachingthe downsizing limit.

What will be?

Page 66: Past and Future for Micro- and Nano-Electronics Focusing

After 2020

There is no decrease in gate length around at 10 ~ 5 nm.

4 reasons.

Page 67: Past and Future for Micro- and Nano-Electronics Focusing

After 2020

3 reasons for no downsizing anymoreor No decrease in gate length

1. No increase of On-current (Drain current) because of already semi-ballistic conduction.Ballistic No scattering of carriers in channelThus, all the carrier from the source reach drain

2. Increase of Off-current (Subthreshold current)

3. No decrease of Gate capacitance by parasitic components

4. Increase in production cost.

Page 68: Past and Future for Micro- and Nano-Electronics Focusing

After 2020

What will be the world with no gate length reduction?

Page 69: Past and Future for Micro- and Nano-Electronics Focusing

Moore’s Law & More

More Moore and More than Moore

http://strj-jeita.elisasp.net/pdf_ws_2005nendo/9A_WS2005IRC_Ishiuchi.pdf

ITRS 2005 EditionQuestion what is the other side of the cloud?

Page 70: Past and Future for Micro- and Nano-Electronics Focusing

70

Device

FET RSFQ 1D structures

Resonant Tunneling Devices

SET Molecular QCA Spin transistor

Cell Size 100 nm 0.3 µm 100 nm 100 nm 40 nm Not known 60 nm 100 nm

Density (cm-2) 3E9 1E6 3E9 3E9 6E10 1E12 3E10 3E9

Switch Speed

700 GHz 1.2 THz Not

known 1 THz 1 GHz Not known 30 MHz 700 GHz

Circuit Speed 30 GHz 250–

800 GHz 30 GHz 30 GHz 1 GHz <1 MHz 1 MHz 30 GHz

Switching Energy, J 2×10–18 >1.4×10–17 2×10–18 >2×10–18 >1.5×10–17 1.3×10–16 >1×10–18 2×10–18

Binary Throughput, GBit/ns/cm2

86 0.4 86 86 10 N/A 0.06 86

We HAVE IDENTIFIED NO VIABLE EMERGING LOGIC TECHNOLOGIES for Information Processing beyond CMOS

Victor V. Zhirnov and Ralph K. Cavin III, ECS 207 Washington DC 

Page 71: Past and Future for Micro- and Nano-Electronics Focusing

We could keep the Moore’s law after 2020Without downswing the gate length

What is Moore’s law.to increase the number (#) of Tr. In a chip

Now, # of Tr. in a chip is limited by power.key issue is to reduce the power.to reduce the supply voltage is still effective

To develop devices with sufficiently high drain current under low supply voltage is important.

Page 72: Past and Future for Micro- and Nano-Electronics Focusing

F.-L.Yang, VLSI2004

FinFET to Nanowire

Ion/Ioff=230000Ion/Ioff=52200

Channel conductance is well controlled by Gateeven at L=5nm

Page 73: Past and Future for Micro- and Nano-Electronics Focusing

Selection of MOSFET structure for high conduction:Nano-wire or Nano-tube FETs is promising

3 methods to realize High-conduction at Low voltageM1.Use 1D ballistic conduction

M2.Increase number of quantum channel

M3.Increase the number of wire or tube per area3D integration of wire and tubes

For suppression of Ioff, the Nanowire/tube is also good.

Page 74: Past and Future for Micro- and Nano-Electronics Focusing

1D conduction per one quantum channel:G = 2e2/h = 77.5 μS/wire or tuberegardless of gate length and channel material

That is 77.5 mA/wire at 1V supply

This an extremely high value

However, already 20mA/wire was obtained experimentaly by Samsung

Page 75: Past and Future for Micro- and Nano-Electronics Focusing

Off Current

Page 76: Past and Future for Micro- and Nano-Electronics Focusing

Increase the Number of quantum channels

Energy band of Bulk Si

Eg

By Prof. Shiraishi of Tsukuba univ.

Energy band of 3 x 3 Si wire

4 channels can be used

Eg

Page 77: Past and Future for Micro- and Nano-Electronics Focusing

Maximum number of wires per 1 µm

Surrounded gate type MOS

Front gate type MOS 165 wires /μm

33 wires/μm

High-k gate insulator (4nm)Si Nano wire (Diameter 2nm)

Metal gate electrode(10nm)

Surrounded gate MOS

30nm

6nm6nm pitchBy nano-imprint method

30nm pitch: EUV lithograpy

Page 78: Past and Future for Micro- and Nano-Electronics Focusing

Increase the number of wires towards vertical dimension

Page 79: Past and Future for Micro- and Nano-Electronics Focusing

2015 2020 2025 2030 20352015 2020 2025 2030 2035

Cloud

Beyond the horizon

2010

?More Moore

ITRS Beyond CMOS

? ? ?? ? ? More Moore ??

ITRS

PJT(2007~2012)

2007

Horizo

n

Extended CMOS: More Moore + CMOS logic

Ribbon

Tube

Extended CMOS

Si Fin, Tri-gate

Si Nano wire

III-V及びGe Nano wire

製品段階

開発段階

研究段階

Production

Research

Development

Natural direction of downsizing

Diameter = 2nm

Si Channel

Nanowire

Tube, Ribbon

Selection

-

Problem:Mechanical Stress, Roughness

1D - High conduction

More perfect crystal

CNT

Graphene

Diameter = 10nm Problem:Hiigh-k gate oxides, etching of III-V wire

Further higher conductionBy multi quantum channel Selection

Our new roadmap

High conductionBy 1D conduction

Page 80: Past and Future for Micro- and Nano-Electronics Focusing

Charles M. Lieber, IEDM Short Course, 2008

Page 81: Past and Future for Micro- and Nano-Electronics Focusing
Page 82: Past and Future for Micro- and Nano-Electronics Focusing
Page 83: Past and Future for Micro- and Nano-Electronics Focusing

3D Chip Stacking LSI

ASET

Page 84: Past and Future for Micro- and Nano-Electronics Focusing
Page 85: Past and Future for Micro- and Nano-Electronics Focusing

Test

Test

Test

client

Interconnects

Complete

DRAM

Microprocessor

Flash

SRAMDSP

AnalogRF

SensorPhoto DetectorLaser

Chip embedded chip(CEC) technology for SOC.

Page 86: Past and Future for Micro- and Nano-Electronics Focusing

Size

(Gat

e lengt

h e

tc)

Saturation of Downsizing

2020?

5 nm

New Materials, New Process, New Structure(Logic, Memory)

Hybrid integration of different functional Chip Increase of SOC functionality

3D integration of memory cell3D integration of logic devices

Low cost for LSI processRevolution for CR,Equipment, Wafer

Miniaturization of Interconnects on PCB(Printed Circuit Board)

Introduction of algorithmof bio-systemBrain of insects, human

Page 87: Past and Future for Micro- and Nano-Electronics Focusing

Brain Ultra small volumeSmall number of neuron cellsExtremely low power

Real time image processing

(Artificial) Intelligence

3D flight control

Sensor

InfraredHumidity

CO2

Mosquito

Dragonfly is further highperformance 

System andAlgorism becomes more important!

But do not know how?

Page 88: Past and Future for Micro- and Nano-Electronics Focusing

USA

population in million people

China

Russia

0200 150 100 50

India

Indonesia

PakistanBangladesh

Japan

Brazil

Data Source: UN

Great opportunityFor other developingCountries for 2020, 30

Page 89: Past and Future for Micro- and Nano-Electronics Focusing

Thank you for your attention!