Phenol Degrading Enzymes

Embed Size (px)

Citation preview

  • 8/13/2019 Phenol Degrading Enzymes

    1/18

    1. Phenylphosphate synthase-Phenylphosphate synthase consists of three proteins whose genes are located

    adjacent to each other on the phenol operon and were overproduced in Escherichia coli. The promoter region

    and operon structure of the phenol gene cluster were investigated. Protein 1 (70 kDa) resembles the central part

    of classical phosphoenolpyruvate synthase which contains a conserved histidine residue. It catalyzes the

    exchange of free [(14)C]phenol and the phenol moiety of phenylphosphate but not the phosphorylation of

    phenol. Phosphorylation of phenol requires protein 1, MgATP, and another protein, protein 2 (40 kDa), which

    resembles the N-terminal part of phosphoenol pyruvate synthase. Proteins 1 and 2 catalyze the following

    reaction: phenol + MgATP + H(2)O-->phenylphosphate + MgAMP + orthophosphate. The phosphoryl group in

    phenylphosphate is derived from the beta-phosphate group of ATP. The free energy of ATP hydrolysis obviously

    favors the trapping of phenol (K(m), 0.04 mM), even at a low ambient substrate concentration. The reaction is

    stimulated severalfold by another protein, protein 3 (24 kDa), which contains two cystathionine-beta-synthase

    domains of unknown function but does not show significant overall similarity to known proteins. The molecular

    and catalytic features of phenylphosphate synthase resemble those of phosphoenolpyruvate synthase, albeit

    with interesting modifications.

    Pathway:

    2.

  • 8/13/2019 Phenol Degrading Enzymes

    2/18

    Protein-Blast of phenylphosphate synthase subunit gamma [Geobacter metallireducensGS-15] with genome of planococcus antarcticus.

    Query-enzyme sequenceReference-Planococcus Antarcticus genome seq

    P Blast- putative phenylphosphate synthase PpsB [Clostridia bacterium enrichment cultureclone BF]

    P-Blast phenylphosphate synthase, beta subunit [Geobacter metallireducens GS-15]

    P-Blast phenylphosphate synthase, alpha subunit [Geobacter metallireducens GS-15]

  • 8/13/2019 Phenol Degrading Enzymes

    3/18

    2) Phenyl phosphate carboxylase- This enzyme consists of four proteins with molecular masses of 54, 53, 18, and

    10 kDa, whose genes are located adjacent to each other in the phenol gene cluster which codes for phenol-

    induced proteins. Three of the subunits (54, 53, and 10 kDa) were sufficient to catalyze the exchange of 14CO2

    and the carboxyl group of 4-hydroxybenzoate but not phenylphosphate carboxylation. Phenylphosphate

    carboxylation was restored when the 18-kDa subunit was added. The following reaction model is proposed. The

    14CO2 exchange reaction catalyzed by the three subunits of the core enzyme requires the fully reversible release

    of CO2 from 4-hydroxybenzoate with formation of a tightly enzyme-bound phenolate intermediate.

    Carboxylation of phenylphosphate requires in addition the 18-kDa subunit, which is thought to form the same

    enzyme-bound energized phenolate intermediate from phenylphosphate with virtually irreversible release of

    phosphate. The 54- and 53-kDa subunits show similarity to UbiD of Escherichia coli, which catalyzes the

    decarboxylation of a 4-hydroxybenzoate derivative in ubiquinone (ubi) biosynthesis. They also show similarity to

    components of various decarboxylases acting on aromatic carboxylic acids, such as 4-hydroxybenzoate or

    vanillate, whereas the 10-kDa subunit is unique. The 18-kDa subunit belongs to a hydratase/phosphatase protein

    family. Phenylphosphate carboxylase is a member of a new family of carboxylases/decarboxylases that act on

    phenolic compounds, use CO2 as a substrate, do not contain biotin or thiamine diphosphate, require K+ and a

    divalent metal cation (Mg2+or Mn2+) for activity, and are strongly inhibited by oxygen.

    P-Blast-phenylphosphate carboxylase, beta subunit [Geobacter metallireducens RCH3]

    P-Blast-alpha subunit of phenylphosphate carboxylase [Aromatoleum aromaticum EbN1]

    P-Blast-putative phenylphosphate carboxylase, gamma subunit [delta proteobacterium

    NaphS2]

  • 8/13/2019 Phenol Degrading Enzymes

    4/18

    P-Blast-phenylphosphate carboxylase subunit delta [Aromatoleum aromaticum]

    Xylanase-Xylanases are hydrolytic enzymes which randomly cleave the beta 1,4 backbone of the complex plant

    cell wall polysaccharide xylan. Diverse forms of these enzymes exist, displaying varying folds, mechanisms of

    action, substrate specificities, hydrolytic activities (yields, rates and products) and physicochemical

    characteristics. Research has mainly focused on only two of the xylanase containing glycoside hydrolase families,

    namely families 10 and 11, yet enzymes with xylanase activity belonging to families 5, 7, 8 and 43 have also been

    identified and studied, albeit to a lesser extent. Driven by industrial demands for enzymes that can operate under

    process conditions, a number of extremophilic xylanases have been isolated, in particular those from

    thermophiles, alkaliphiles and acidiphiles, while little attention has been paid to cold-adapted xylanases. Here,

    the diverse physicochemical and functional characteristics, as well as the folds and mechanisms of action of all six

    xylanase containing families will be discussed. The adaptation strategies of the extremophilic xylanases isolatedto date and the potential industrial applications of these enzymes will also be presented.

    P-Blast Xylanase[Filobasidium floriforme]

    Laccase-

    P-Blast laccase [Pinus mugo]

  • 8/13/2019 Phenol Degrading Enzymes

    5/18

    Catechol 1,2-dioxygenase-

    P-Blast- catechol 1,2-dioxygenase [Acinetobacter baumannii]

    Lignin peroxidase-

    P-Blast-lignin peroxidase [Trametes versicolor]

    Manganese peroxidase-

    P-Blast-manganese peroxidase [Trametes versicolor]

  • 8/13/2019 Phenol Degrading Enzymes

    6/18

    MetaCycPathway: phenol degradation I (aerobic):

    Summary:

    Phenols and methyl-substituted phenols can be used by a number of different bacterial and fungal strains

    including Pseudomonas sp. CF600, which grows efficiently with phenol, cresols, or 3,4-dimethylphenol as the solecarbon and energy source.

    The most common first step in the aerobic degradation of phenols is hydroxylation to a catechol. In

    Pseudomonas sp. CF600 this reaction is catalyzed by a multicomponent phenol 2-monooxygenase, encoded by

    six different gene that are located on pVI150, an IncP-2 megaplasmid [Shingler92, Powlowski94].

    These genes are clustered along with 9 other genes that are involved in the catabolism of the catechol to TCA

    cycle intermediates via a meta-cleavage pathway (see catechol degradation II (meta-cleavage pathway)).

    Similar operons were found not only on plasmids but also in the chromosomes of some phenol-degrading

    bacteria such as Pseudomonas putida P35X [Ng94] and Acinetobacter calcoaceticus [Xu03], as well as fungi such

    as Trichosporon cutaneum [Gerginova].

    Phenol 2-monooxygenase:

    P-Blast: phenol 2-monooxygenase [Sulfobacillus acidophilus DSM 10332]

    http://metacyc.org/META/organism-summary?object=METAhttp://metacyc.org/META/organism-summary?object=METAhttp://metacyc.org/META/organism-summary?object=META
  • 8/13/2019 Phenol Degrading Enzymes

    7/18

    P-Blast Polyphenol oxidase:

    Conserved hypothetical protein E-Coli (243 AA):Laccase domain protein

    yfiH [Escherichia coli PMV-1]NCBI Reference Sequence: YP_008572618.1

    hypothetical protein A1A1_18242

    [Planococcus antarcticus DSM 14505]GenBank: EIM05031.1

  • 8/13/2019 Phenol Degrading Enzymes

    8/18

    laccase [Bacillus subtilis]NCBI Reference Sequence: WP_019714343.1

  • 8/13/2019 Phenol Degrading Enzymes

    9/18

    gi|518544136|ref|WP_019714343.MNTYHPFSLTTPSTLMIQDWIQTNQNNREVIAGFTTKNGGVSQKPFESLN 50gi|388462627|gb|EIM05031.1| ------------------MKAKLYVNDGQYVSGMTLKDLAEP----ESNN 28

    : *: : ::*:* *:. . ** *

    gi|518544136|ref|WP_019714343.TGLHVHDKDADVVKNREYIADMFNIDLQSWVFADQTHDNRVQKVTQRDRG 100gi|388462627|gb|EIM05031.1|MALHACENPQSVLANRKKLADFISAPVSSFICAQQTHSANFRRVSAKDKG 78

    .**. :: .*: **: :**::. :.*:: *:***...::*: :*:*

    gi|518544136|ref|WP_019714343.KGAREYHTALKATDGLYTNEKNVFLALCFADCVPLFFYDPVKSLIGVAHA 150gi|388462627|gb|EIM05031.1|RGAYDTEDAFSDTDALYTYDSRVVLCSFAADCVPVIIHDRKTGLIGVVHS 128

    :** : . *:. **.*** :..*.*. *****::::*..****.*:

    gi|518544136|ref|WP_019714343.GWKGTVKQIGREMVKQWTEQEGSNPSDIYAVIGPSISGACYTVDDRVMDA 200gi|388462627|gb|EIM05031.1|GWQGTIKEIMSKLLQQLIDLEQCDPVDLDIQIGAAISQQQFEVDQDVYSK 178

    **:**:*:* ::::* : * .:* *: **.:**: **: * .

    gi|518544136|ref|WP_019714343.VRALPVSAERAVNQAAQAQYQLDLKELNRLILIDSGLVNEQISVSGLCTE 250gi|388462627|gb|EIM05031.1|LDSLGYASEFMYFNNMTKKYHIDNQATVKRQCELVGVTSGQIHIDPTCTF 228

    : :* ::* : :*::* : : *:..

    ** :. **

    gi|518544136|ref|WP_019714343. SEPSLFYSHRRDQGKTGRMMSFIGMKEA 278

  • 8/13/2019 Phenol Degrading Enzymes

    10/18

    gi|388462627|gb|EIM05031.1| LSLDGFS--YRQDRKSGRHLIFAMKK-- 252. . * *:: *:** : * *

    VSGMTLKDLAEPESNNMALHACENPQSVLANRKKLADFISAPVSSFICAQQTHSANFRRV

    SAKDKGRGAYDTEDAFSDTDALYTYDSRVVLCSFAADCVPVIIHDRKTGLIGVVHSGWQG

    TIKEIMSKLLQQLIDLEQCDPVDLDIQIGAAISQQQFEVDQDVYSKLDSLGYASEFMYFN

    NMTKKYHIDNQATVKRQCELVGVTSGQIHIDPTCTFLSLDGFSYRQDRKSGRHLIF

  • 8/13/2019 Phenol Degrading Enzymes

    11/18

    Pepstats analysis of above sequence:(for amino acid percentage content)PEPSTATS of EMBOSS_001 from 1 to 236

    Molecular weight = 26315.70 Residues = 236Average Residue Weight = 111.507 Charge = -3.5Isoelectric Point = 5.5698A280 Molar Extinction Coefficients = 17420 (reduced) 17795 (cystine bridges)A280 Extinction Coefficients 1mg/ml = 0.662 (reduced) 0.676 (cystine bridges)Probability of expression in inclusion bodies = 0.582

    Residue Number Mole% DayhoffStat

    A = Ala 18 7.627 0.887B = Asx 0 0.000 0.000C = Cys 7 2.966 1.023D = Asp 21 8.898 1.618E = Glu 9 3.814 0.636F = Phe 11 4.661 1.295G = Gly 13 5.508 0.656H = His 7 2.966 1.483I = Ile 15 6.356 1.412J = --- 0 0.000 0.000K = Lys 13 5.508 0.835L = Leu 19 8.051 1.088M = Met 5 2.119 1.246N = Asn 8 3.390 0.788

    O = --- 0 0.000 0.000P = Pro 6 2.542 0.489Q = Gln 16 6.780 1.738R = Arg 10 4.237 0.865S = Ser 21 8.898 1.271T = Thr 12 5.085 0.834U = --- 0 0.000 0.000V = Val 16 6.780 1.027W = Trp 1 0.424 0.326X = Xaa 0 0.000 0.000Y = Tyr 8 3.390 0.997Z = Glx 0 0.000 0.000

    Property Residues Number Mole%Tiny (A+C+G+S+T) 71 30.085

    Small (A+B+C+D+G+N+P+S+T+V) 122 51.695Aliphatic (A+I+L+V) 68 28.814

  • 8/13/2019 Phenol Degrading Enzymes

    12/18

    Aromatic (F+H+W+Y) 27 11.441Non-polar (A+C+F+G+I+L+M+P+V+W+Y) 119 50.424Polar (D+E+H+K+N+Q+R+S+T+Z) 117 49.576Charged (B+D+E+H+K+R+Z) 60 25.424Basic (H+K+R) 30 12.712Acidic (B+D+E+Z) 30 12.712

    ProtParam Analysis of above sequence for unstability index:Number of amino acids:236

    Molecular weight:26315.7

    Theoretical pI:5.45

    Amino acid composition:CSV format

    Ala (A) 18 7.6%Arg (R) 10 4.2%Asn (N) 8 3.4%Asp (D) 21 8.9%

    Cys (C) 7 3.0%Gln (Q) 16 6.8%Glu (E) 9 3.8%Gly (G) 13 5.5%His (H) 7 3.0%Ile (I) 15 6.4%Leu (L) 19 8.1%Lys (K) 13 5.5%Met (M) 5 2.1%Phe (F) 11 4.7%Pro (P) 6 2.5%Ser (S) 21 8.9%Thr (T) 12 5.1%

    Trp (W) 1 0.4%Tyr (Y) 8 3.4%Val (V) 16 6.8%Pyl (O) 0 0.0%Sec (U) 0 0.0%

    (B) 0 0.0%(Z) 0 0.0%(X) 0 0.0%

    Total number of negatively charged residues (Asp + Glu):30Total number of positively charged residues (Arg + Lys):23

    Atomic composition:

    Carbon C 1154Hydrogen H 1810Nitrogen N 318Oxygen O 362Sulfur S 12

    Formula:C1154H1810N318O362S12Total number of atoms:3656

    Extinction coefficients:

    Extinction coefficients are in units of M-1cm-1, at 280 nm measured inwater.

  • 8/13/2019 Phenol Degrading Enzymes

    13/18

    Ext. coefficient 17795Abs 0.1% (=1 g/l) 0.676, assuming all pairs of Cys residues form cystines

    Ext. coefficient 17420

    Abs 0.1% (=1 g/l) 0.662, assuming all Cys residues are reduced

    Estimated half-life:

    The N-terminal of the sequence considered is V (Val).

    The estimated half-life is: 100 hours (mammalian reticulocytes, in vitro).>20 hours (yeast, in vivo).>10 hours (Escherichia coli, in vivo).

    Instability index:

    The instability index (II) is computed to be 42.84This classifies the protein as unstable.

    Aliphatic index:83.47

    Grand average of hydropathicity (GRAVY):-0.260

    Secondary structure elements prediction(NSP@):

    Multivariate Linear Regression Combination (SOPMA-

    GOR4-SIMPA) result for : UNK_154910

    AbstractGuermeur et al. submitted

    View MLRC in: [AnTheProt (PC),Download...][HELP]

    10 20 30 40 50 60 70| | | | | | |

    VSGMTLKDLAEPESNNMALHACENPQSVLANRKKLADFISAPVSSFICAQQTHSANFRRVSAKDKGRGAYcccceccccccccccheeeeccccchhhhhhhhhhhhhhccccchhhehhhcccceeeeeecccccccccDTEDAFSDTDALYTYDSRVVLCSFAADCVPVIIHDRKTGLIGVVHSGWQGTIKEIMSKLLQQLIDLEQCD

    cccccccccceeeecccceeeeeeccccceeeeeccccceeeeeeccchhhhhhhhhhhhhhhhhhccccPVDLDIQIGAAISQQQFEVDQDVYSKLDSLGYASEFMYFNNMTKKYHIDNQATVKRQCELVGVTSGQIHIccceeeeecccccccccccchhhhhhhhhhccccceeecccccccceecchhhhhhhhhhccccccceeeDPTCTFLSLDGFSYRQDRKSGRHLIFcccceeccccceeccccccccceeccSequence length : 236MLRC :

    Alpha helix (Hh) : 59 is 25.00%310 helix (Gg) : 0 is 0.00%Pi helix (Ii) : 0 is 0.00%Beta bridge (Bb) : 0 is 0.00%Extended strand (Ee) : 52 is 22.03%Beta turn (Tt) : 0 is 0.00%

    Bend region (Ss) : 0 is 0.00%Random coil (Cc) : 125 is 52.97%

    http://npsa-pbil.ibcp.fr/NPSA/npsa_references.html#MLRhttp://npsa-pbil.ibcp.fr/NPSA/npsa_references.html#MLRhttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.mlr.mpsa&gui=antheprothttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.mlr.mpsa&gui=antheprothttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.mlr.mpsa&gui=antheprothttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.mlr.mpsa&gui=antheprothttp://antheprot-pbil.ibcp.fr/http://antheprot-pbil.ibcp.fr/http://antheprot-pbil.ibcp.fr/http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSAHLP/npsahlp_locsoft.htmlhttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSAHLP/npsahlp_locsoft.htmlhttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSAHLP/npsahlp_locsoft.htmlhttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSAHLP/npsahlp_locsoft.htmlhttp://antheprot-pbil.ibcp.fr/http://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.mlr.mpsa&gui=antheprothttp://npsa-pbil.ibcp.fr/NPSA/npsa_references.html#MLR
  • 8/13/2019 Phenol Degrading Enzymes

    14/18

    Ambigous states (?) : 0 is 0.00%Other states : 0 is 0.00%

    Prediction result file (text): [MLRC]Intermediate result files (text) : [GOR4][SIMPA96][SOPMA]

    View intermediate result files in MPSA : [GOR4][SIMPA96][SOPMA]View intermediate result files in ANTHEPROT : [GOR4][SIMPA96][SOPMA]

    Prediction of Secondary Structural Content from Amino Acid Composition

    # with Analytic Vector Decomposition

    # ----------------------------------------------------------------------

    #

    Input-Type: Sequence

    VSGMTLKDLAEPESNNMALHACENPQSVLANRKKLADFISAPVSSFICAQQTHSANFRRV

    SAKDKGRGAYDTEDAFSDTDALYTYDSRVVLCSFAADCVPVIIHDRKTGLIGVVHSGWQG

    TIKEIMSKLLQQLIDLEQCDPVDLDIQIGAAISQQQFEVDQDVYSKLDSLGYASEFMYFNNMTKKYHIDNQATVKRQCELVGVTSGQIHIDPTCTFLSLDGFSYRQDRKSGRHLIF

    #

    # Thank you for using the WWW-server for SSCP !

    #

    #

    #

    # 1st METHOD

    # The first method relies only on the average amino acid composition

    # of secondary structural segments (helix, sheet, coil) in a learning

    # set of proteins.

    #

    method : 1

    http://npsa-pbil.ibcp.fr/tmp/b7737141cbc5.mlrhttp://npsa-pbil.ibcp.fr/tmp/b7737141cbc5.mlrhttp://npsa-pbil.ibcp.fr/tmp/b7737141cbc5.gor4http://npsa-pbil.ibcp.fr/tmp/b7737141cbc5.gor4http://npsa-pbil.ibcp.fr/tmp/b7737141cbc5.gor4http://npsa-pbil.ibcp.fr/tmp/b7737141cbc5.simpa96http://npsa-pbil.ibcp.fr/tmp/b7737141cbc5.simpa96http://npsa-pbil.ibcp.fr/tmp/b7737141cbc5.simpa96http://npsa-pbil.ibcp.fr/tmp/b7737141cbc5.sopmahttp://npsa-pbil.ibcp.fr/tmp/b7737141cbc5.sopmahttp://npsa-pbil.ibcp.fr/tmp/b7737141cbc5.sopmahttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.gor4.mpsa&gui=mpsahttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.gor4.mpsa&gui=mpsahttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.gor4.mpsa&gui=mpsahttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.simpa96&gui=mpsahttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.simpa96&gui=mpsahttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.simpa96&gui=mpsahttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.sopma&gui=mpsahttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.sopma&gui=mpsahttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.sopma&gui=mpsahttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.gor4.mpsa&gui=antheprothttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.gor4.mpsa&gui=antheprothttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.gor4.mpsa&gui=antheprothttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.simpa96&gui=antheprothttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.simpa96&gui=antheprothttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.simpa96&gui=antheprothttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.sopma&gui=antheprothttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.sopma&gui=antheprothttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.sopma&gui=antheprothttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.sopma&gui=antheprothttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.simpa96&gui=antheprothttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.gor4.mpsa&gui=antheprothttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.sopma&gui=mpsahttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.simpa96&gui=mpsahttp://npsa-pbil.ibcp.fr/cgi-bin/npsa_mpsaview.pl?fn=/tmp/b7737141cbc5.gor4.mpsa&gui=mpsahttp://npsa-pbil.ibcp.fr/tmp/b7737141cbc5.sopmahttp://npsa-pbil.ibcp.fr/tmp/b7737141cbc5.simpa96http://npsa-pbil.ibcp.fr/tmp/b7737141cbc5.gor4http://npsa-pbil.ibcp.fr/tmp/b7737141cbc5.mlr
  • 8/13/2019 Phenol Degrading Enzymes

    15/18

    alpha-contents : 33.3 %

    beta-contents : 26.2 %

    coil-contents : 40.5 %

    class : mixed

    #

    ##

    # 2nd METHOD

    # The second method relies also on composition fluctuations in the

    # secondary structural segments (helix, sheet, coil) of a learning

    # set of proteins.

    #

    method : 2

    alpha-contents : 54.3 %

    beta-contents : 7.2 %

    coil-contents : 38.5 %

    class : alpha

    #

    #

    CLUSTAL W Alignment

    Multiple Alignment of Phenylphosphate synthase alpha subunit:

    Sequences from:-

    phenylphosphatesynthasesubunit alpha[Desulfobacula toluolica Tol2]

    putative phenylphosphatesynthase, alphasubunit [Azoarcus sp. KH32C]

    phenylphosphatesynthase, alphasubunit [Geobacter metallireducens GS-15]

    putative phenylphosphate synthase alpha subunit PpsA [Clostridia bacterium enrichment culture clone BF]

    Phenylphosphate synthasealphasubunit [Aromatoleum aromaticum EbN1]

    Editing in Box shade:-gi|470203970|ref|YP_007598069. 1YDGLHYPEPLYPFDTIWDEAWYLALSQFNNRIFQVPPVRGVDHRIINGYV 97YISPVPVgi|56313243|emb|CAI07888.1| 1YDGLHYPEPLYPFDTIWDEAWYLALSQFNNRIFQVPPVRGVDHRIINGYV 97YISPVPVgi|78194562|gb|ABB32329.1| 1

    YDGLHYPEPIYPFDTIWDEAWYLGLSQYNNRIFQVPPVRGVDHRIINGYV95YISPVPVgi|408419048|ref|YP_006760462. 1NDALHYPEPLYPFDIIWDEAWFLALSQFNTRIFSVPPVYGVDHRIINGNV98YISPVPVgi|300245771|gb|ADJ93943.1| 1 HDSVHFNPPCTPMGASLNINCMRG-SHWAAEWFSLPFSLGFETQVYNGYV77YHAVNPI

    gi|470203970|ref|YP_007598069. 58KDPDEIGRRVPNFMERAGYYYKNWDELEAKWKTKMEGTIAELE147ALQIPRLPEVEDLgi|56313243|emb|CAI07888.1| 58KDPAEIGARVPNFMERAGFYYKNWDALEAKWKVKMEAAIAELE147ALEIPPLPDVEALgi|78194562|gb|ABB32329.1| 58TDPEEVGSRVPNFMERAGYYYKNWNELEAKWELKMKGIIKQIE145ELPIPSLPDLEDI

    gi|408419048|ref|YP_006760462. 58TDPEEVQKRIPMFMERAGYYYENWDDLHNQWENKMKGIISEIE148NLEIASLPDMEDIgi|300245771|gb|ADJ93943.1| 57

    http://www.ncbi.nlm.nih.gov/protein/YP_006760462.1http://www.ncbi.nlm.nih.gov/protein/YP_006760462.1http://www.ncbi.nlm.nih.gov/protein/YP_006760462.1http://www.ncbi.nlm.nih.gov/protein/YP_006760462.1http://www.ncbi.nlm.nih.gov/protein/YP_006760462.1http://www.ncbi.nlm.nih.gov/protein/YP_006760462.1http://www.ncbi.nlm.nih.gov/protein/YP_006760462.1http://www.ncbi.nlm.nih.gov/protein/YP_007598069.1http://www.ncbi.nlm.nih.gov/protein/YP_007598069.1http://www.ncbi.nlm.nih.gov/protein/YP_007598069.1http://www.ncbi.nlm.nih.gov/protein/YP_007598069.1http://www.ncbi.nlm.nih.gov/protein/YP_007598069.1http://www.ncbi.nlm.nih.gov/protein/YP_007598069.1http://www.ncbi.nlm.nih.gov/protein/YP_007598069.1http://www.ncbi.nlm.nih.gov/protein/YP_007598069.1http://www.ncbi.nlm.nih.gov/protein/ABB32329.1http://www.ncbi.nlm.nih.gov/protein/ABB32329.1http://www.ncbi.nlm.nih.gov/protein/ABB32329.1http://www.ncbi.nlm.nih.gov/protein/ABB32329.1http://www.ncbi.nlm.nih.gov/protein/ABB32329.1http://www.ncbi.nlm.nih.gov/protein/ABB32329.1http://www.ncbi.nlm.nih.gov/protein/ABB32329.1http://www.ncbi.nlm.nih.gov/protein/CAI07888.1http://www.ncbi.nlm.nih.gov/protein/CAI07888.1http://www.ncbi.nlm.nih.gov/protein/CAI07888.1http://www.ncbi.nlm.nih.gov/protein/CAI07888.1http://www.ncbi.nlm.nih.gov/protein/CAI07888.1http://www.ncbi.nlm.nih.gov/protein/CAI07888.1http://www.ncbi.nlm.nih.gov/protein/CAI07888.1http://www.ncbi.nlm.nih.gov/protein/ABB32329.1http://www.ncbi.nlm.nih.gov/protein/YP_007598069.1http://www.ncbi.nlm.nih.gov/protein/YP_006760462.1
  • 8/13/2019 Phenol Degrading Enzymes

    16/18

    TDPAKIEARAVEFGPKLQKALDNWNDFYGEGVQEWSDLLNYLA 127GFQKETLP-----

    gi|470203970|ref|YP_007598069. 114RVVTDGVGESTAYHLLKNYDDLINLGIRCWQYHFEFL197NLGYAAYVFFMDFTQKLFPgi|56313243|emb|CAI07888.1| 114

    SVVTDGVGESKGYHLLKNYDDLINLGIKCWQYHFEFL197NLGYAAYVFFMDFTQKLFPgi|78194562|gb|ABB32329.1| 114SVVTEGIGESKGFHLIKAYDDLINLGIQCWQYHFEFL195NLGYAAYVFFLDFVQKLFPgi|408419048|ref|YP_006760462. 114SVVKNGLGTSSGYELLKNYDKLIDLGIRCWQYHFEFL198NLGYASYVTFVDFCTKAFPgi|300245771|gb|ADJ93943.1| 108 --------FDRLHELLKDAEKTFKR---SWELHFIYM161YPSFFGYMNFEAICQKYN-

    gi|470203970|ref|YP_007598069. 170 SIPLQRVTQMISGIDVIMYKSDDELKELAKK247AVALEVD-DIVTAHREWADVKAAMAgi|56313243|emb|CAI07888.1| 170 SIPMQRVTQMISGIDVIMYRPDDELKELAKK247AVKLEVD-DIVAGHREWADVKAALA

    gi|78194562|gb|ABB32329.1| 170 SIPLQRVTQMIAGIDVIMYRSDDELKKLAKK245AIELGVD-LILTNCGEWQDAETALKgi|408419048|ref|YP_006760462. 170 DIPLQKVTQMVAGIDVILYRPDDELRKLAKL248AIELGIDSQIGGDTKDIDDVISELQgi|300245771|gb|ADJ93943.1| 152 -INERDMRTFLQGFETKMFEIDREMWHLADL209AREMGLQ-TVFDVAQKSEDIKGLMK

    gi|470203970|ref|YP_007598069. 225 GRRHGDEWLAAFEKARYPWFNISSG296TGWFHTDRSWNDNLNLPLDGIQTYIGKLRDGgi|56313243|emb|CAI07888.1| 225 GHRHGIEWLAAFEKARYPWFNISSG296TGWFHTDRSWNDNLDIPLDGIQTYIGKLRAGgi|78194562|gb|ABB32329.1| 225 AHPKGRTWLDALEEARYPWFHVSTG294TGWSHSDKSWNDDLNIPLSGIATYINQLRQGgi|408419048|ref|YP_006760462. 226 GSENGKKWVAAWDEAKYPWFNISTG298TGWYHQDVSWNDNLNIPLSSVRIYIGKLNEGgi|300245771|gb|ADJ93943.1| 206 EKKLGVVWWDQFERFLSKYGKRSTA258ALFDMYYKTWNEDPYPVLFTIKTYIQKG--G

    gi|470203970|ref|YP_007598069. 281 VAIDRPMEAVRAERDRVTA346EYRDLIDNDQDRKQFDELLGCARTVFPYVENHLFYVEgi|56313243|emb|CAI07888.1| 281 VSIDRPMEAVRAERERITA346EYRELIDSDEDRKQFDELLSCAKTVFPYVENHLFYVEgi|78194562|gb|ABB32329.1| 281 MDIERPMEKVRAERDRITE344EYRDLITSDEDRKTFDELLGTAKTVFPYVENHLFYVEgi|408419048|ref|YP_006760462. 282 KSIDRPLEQIKIERKKLIV348EYRGLLKTDEDRQTFDQLHGTAELVFPYVENHMFYVEgi|300245771|gb|ADJ93943.1| 260 FDFEEHTKKITDEREKLIE 306ETIARIPAE-NREEFRIALKHAQDSYPFNEDHNFYVE

    gi|470203970|ref|YP_007598069. 337 HWFHSVFWNKMRE396VAAIMQEHGVIAEIEDIWLLRRDEIKQALWDIVTAWATGVTPRgi|56313243|emb|CAI07888.1| 337 HWFHSVFWNKMRE396VAAIMKEHRMIADIEDIWLLRRDEIKQALWDVVTAWATGVTPRgi|78194562|gb|ABB32329.1| 337 HWFHTVFWRKMRE394VAAIMKEHGMFEDVEDVWYLRRDEIKQGLWDMVTAWATGVKPRgi|408419048|ref|YP_006760462. 338 HWFHSVFWNKMRA398VAAIMADNNFLEGQEDIWYMSRSEIKEALWDLVTAWASGTKGY

    gi|300245771|gb|ADJ93943.1| 315 HWTHCEIRYVILE355CGRRLVEMGILKEADDVFFLTIGELKGFMEEIIMDERVGIQYF

  • 8/13/2019 Phenol Degrading Enzymes

    17/18

    gi|470203970|ref|YP_007598069. 393 GTKTWPA446EIEWRKGVMQKFREWAPPPAIGIAPE-VIQEPFTIVLWGVTNSSLSAWAgi|56313243|emb|CAI07888.1| 393 GTATWPA446EIEWRKGVMQKFREWNPPPAIGVAPE-VIQEPFTIVLWGVTNNSLSDWA

    gi|78194562|gb|ABB32329.1| 393 GTAVWPK444EIAWRKGVMKKFQEWSPPPAVGIPPE-VIREPFTIVLWGVTNSSISDWSgi|408419048|ref|YP_006760462. 394 GPLHWPE448EIQWRKGVYQKFKENIPIPAVGKPPE-TIAEPFTIVLWGITNESMSAWAgi|300245771|gb|ADJ93943.1| 371 GTKVTNT 405VYERKQ-VWQDMHEFDAPPFIGTIPEHKIEDPVFIKVFGMTDEVIRGSA

    gi|470203970|ref|YP_007598069. 448 S495VQEVADPDSITELKGFPASPGTVEGKARVCRSAEEIRDLQEGEILVAPTT545Sgi|56313243|emb|CAI07888.1| 448 A495VQDIGDPDSITELKGFAASPGTVEGRARVCRSAEDIRDLQEGEILVAPTT545Sgi|78194562|gb|ABB32329.1| 448 E

    493VQDISDPDSITTLKGFAGSPGVVEGKARVCRSADDIRLLQEGEILVAPTT543Sgi|408419048|ref|YP_006760462. 449 K497LKEIGDPDKVNEMEGFAGSPGVAEGIARVCRSVEDIGELKEGEILVAPTT547Sgi|300245771|gb|ADJ93943.1| 426 R 454NTEHVAG----HFEGFPGAPGTVEGVARVVFNYEDFSTVQPDELLVAPFT500T

    gi|470203970|ref|YP_007598069. 500PSWAPAFAKIKACITDVGGVMSHAAIVCREYGMPAVVGTGHS----TRV591IKTGMTLgi|56313243|emb|CAI07888.1| 500PSWAPAFAKIKACVTDVGGVMSHAAIVCREYGMPAVVGTGVS----TRV591IRTGMTLgi|78194562|gb|ABB32329.1| 500PSWAPAFARIKGAITDVGGVMSHAAIVCREYGMPAVVGTGHA----TKI589IRTGMMLgi|408419048|ref|YP_006760462. 501PSWAPVFQKIKAVVTDVGGIMCHAAIVCREYGMPAVVGTGQG----TTI593IKSGMKIgi|300245771|gb|ADJ93943.1| 474PAWTPLFSKIRGVVTDSGGMLAHAAICAREYDIPAVVGTITRGVKVTEH 550IKTGDRI

  • 8/13/2019 Phenol Degrading Enzymes

    18/18

    gi|470203970|ref|YP_007598069. 552 RVDGSSGLVTIVQ- 611gi|56313243|emb|CAI07888.1| 552 RVDGSSGVISIITD 612gi|78194562|gb|ABB32329.1| 552 RVDGATGVVTIDR- 609gi|408419048|ref|YP_006760462. 553 KVNGDTGKIHIER- 613gi|300245771|gb|ADJ93943.1| 530 RIDGTNGKVEIIV- 570