Phuong Trinh Vi Phan_Dao Ham Rieng

Embed Size (px)

Citation preview

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    1/144

    Seminar

    Phng trnhvi phno hm ring

    H Ni, 2004

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    2/144

    i Phng trnh o hm ring

    Mc lc

    Li ni u iv

    Ti liu tham kho v

    Bi 1 Phng php b in p hn v b i ton Dirichlet i vi phng trnh elliptic

    cp hai 1

    1.1 Cch t bi ton bin phn . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Bin phn v gradient ca mt phim hm . . . . . . . . . . . . . . . . 2

    1.3 iu kin cn ca cc tr . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    1.4 Ton t xc nh dng . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    1.4.1 Khng gian nng lng ca ton t xc nh dng . . . . . . . 5

    1.5 Cc tiu phim hm nng lng . . . . . . . . . . . . . . . . . . . . . . 5

    1.6 Nghim suy rng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    1.7 Bi ton Dirichlet i vi phng trnh elliptic cp 2 t lin hp . . . . 8

    1.7.1 Biu thc elliptic v biu thc elliptic cp hai t lin hp . . . . 8

    1.7.2 Bi ton Dirichlet i vi phng trnh elliptic cp 2 t lin hp 9

    Bi 2 nh l Lax-Milgr am v bi ton bin elliptic 17

    2.1 nh l Lax-Milgram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    2.2 Bi ton bin Dirichlet i vi phng trnh elliptic tuyn tnh cp hai . 21

    2.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    2.2.2 iu kin ca tnh coercitive. . . . . . . . . . . . . . . . . 23

    2.2.3 Bi ton bin Dirichlet trong min b chn . . . . . . . . . . . . 25

    Bi 3 Khng gian Sobolev Wm,p() 283.1 Mt s k hiu v khi nim . . . . . . . . . . . . . . . . . . . . . . . . 28

    3.2 i ngu ca khng gian Sobolev Wm,p() . . . . . . . . . . . . . . . . 30

    3.3 Xp x khng gian Sobolev Wm,p() bng cc hm trn trn . . . . . 36

    3.3.1 Xp x bi cc hm Cm() . . . . . . . . . . . . . . . . . . . . . 36

    3.3.2 Xp x bi cc hm Cm() . . . . . . . . . . . . . . . . . . . . . 38

    3.3.3 Xp x bi cc hm C0 () . . . . . . . . . . . . . . . . . . . . 41

    Bi 4 Bt ng thc Gar ding v bi ton Dirichlet i vi phng trnh elliptic

    i

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    3/144

    ii Mc lc

    cp cao 48

    4.1 Mt s k hiu v kt qu cn thit . . . . . . . . . . . . . . . . . . . . 48

    4.2 Bt ng thc Garding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    4.2.1 Bi ton Dirichlet . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    Bi 5 L thuyt Fredholm-Riesz-Schauder v bi ton Dirichlet thu n nht vi

    phng tr nh elliptic cp cao 57

    5.1 L thuyt Fredholm-Riesz-Schauder . . . . . . . . . . . . . . . . . . . . 57

    5.2 p dng l thuyt Fredholm - Schauder vo bi ton Dirichlet thunnht i vi phng trnh elliptic cp cao . . . . . . . . . . . . . . . . . 64

    Bi 6 Ph ca ton t Elliptic 68

    6.1 Bi ton Dirichlet i vi phng trnh Laplace . . . . . . . . . . . . . . 68

    6.1.1 Gii thiu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686.1.2 Ton t ca bi ton Dirichlet . . . . . . . . . . . . . . . . . . . 68

    6.1.3 S tn ti v tnh trn ca nghim ca bi ton Dirichlet . . . . 69

    6.2 Nguyn l cc i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    6.3 Ph ca ton t elliptic tuyn tnh cp 2 t lin hp . . . . . . . . . . . 79

    6.4 Mt s v d ng dng l thuyt ph ca ton t elliptic . . . . . . . . 85

    6.4.1 Bi ton bin i vi phng trnh truyn nhit . . . . . . . . . 85

    6.4.2 Bi ton bin i vi phng trnh truyn sng . . . . . . . . . 87

    Bi 7 Hm iu ho di v bi ton Dir ichlet 887.1 Gii thiu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

    7.2 Cc hm iu ho v iu ho di . . . . . . . . . . . . . . . . . . . . 89

    7.2.1 Biu din tch phn ca hm iu ho . . . . . . . . . . . . . . 89

    7.2.2 Cng thc tch phn biu din hm iu ho . . . . . . . . . . . 91

    7.2.3 Hm iu ha di v tnh cht . . . . . . . . . . . . . . . . . . 93

    7.3 Min chnh quy v bi ton Dirichlet . . . . . . . . . . . . . . . . . . . 100

    Bi 8 Na nhm v bi ton bin i vi phng tr nh par abolic 106

    8.1 Gii thiu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068.2 Mt s k hiu v kin thc b sung . . . . . . . . . . . . . . . . . . . . 107

    8.2.1 Na nhm G(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

    8.3 Khng gian L2(a,b,X) . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

    8.4 nh l tn ti duy nht nghim ca bi ton bin i vi phng trnhparabolic tru tng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

    8.4.1 t bi ton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

    8.4.2 Ton t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

    8.4.3 Na nhm lin hp G(s) . . . . . . . . . . . . . . . . . . . . . 116

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    4/144

    iii Mc lc

    8.4.4 nh l ng cu . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    8.4.5 S tn ti v duy nht nghim ca bi ton bin i vi phngtrnh Parabolic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

    Bi 9 Phng php im bt ng v p dng vo bi ton bin ca ph ng

    tr nh o hm r ing phi tuyn 122

    9.1 Gii thiu mt s nh l im bt ng c bn . . . . . . . . . . . . . 122

    9.1.1 Nguyn l im bt ng Brouwer . . . . . . . . . . . . . . . . 122

    9.1.2 Nguyn l nh x co Banach . . . . . . . . . . . . . . . . . . . . 122

    9.1.3 nh l im bt ng Schauder . . . . . . . . . . . . . . . . . . 123

    9.1.4 nh l im bt ng Leray-Schauder-Schaefer . . . . . . . . . 126

    9.1.5 nh l im bt ng Tikhonov . . . . . . . . . . . . . . . . . . 127

    9.2 S tn ti nghim ca bi ton Dirichlet i vi mt lp phng trnhelliptic cp 2 phi tuyn. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

    9.3 ng dng nh l Leray- Schaefer gii bi ton gi tr bin i viphng trnh HR ta tuyn tnh. . . . . . . . . . . . . . . . . . . . . . 130

    Bi 10 Dng song tuyn tnh v m r ng Fr iedr ichs 134

    10.1 Dng song tuyn tnh v dng ton phng ca ton t . . . . . . . . . 134

    10.2 Ton t lin kt vi dng ton phng. M rng Friedrichs . . . . . . . 137

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    5/144

    iv Phng trnh o hm ring

    Li ni u

    Phng trnh vi phn o hm ring l mt nhm chuyn mn c truyn thngthuc b mn Gii tch, Khoa Ton-C-Tin hc, i hc Tng hp H Ni. Sau nhiubin c, vic sinh hot chuyn mn v PTHR b gin on lm nh hng nhiun cng tc o to v nghin cu khoa hc.

    Bt u t nm 2003, chng ti c gng xy dng li seminar PTHR vi s thamgia ca thy tr thuc b mn Gii tch, Khoa Ton-C-Tin hc, trng i hc Khoa

    hc T nhin v nhiu hc vin cao hc.Trc ht chng ti bt u vi mt s bi ging v bo co nhm cung cp nhng

    kin thc c bn nht v l thuyt PTHR m trong chng trnh o to i hccng nh Cao hc cha c hc, ri dn dn nh hng mt s nghin cu, cp nhtnhng thng tin khoa hc, nhng hng nghin cu mi nht v PTHR ngy naytrong nc cng nh trn th gii.

    Bng s n lc v nhit tnh ca cc thnh vin m c bit l nhng gig vinmi c b sung cho b mn, chng ti ra c mt tuyn tp ghi li nhng biging v cc bo co trnh by seminar trong sut nm qua nh mt ti liu hc

    tp v nghin cu. V l do v thi gian, tp cc bo co ch

    a

    c bin tp mt cchk lng nn khng trnh khi nhng sai st. Hy vng nhng sai st s c honthin trong cc ln sau.

    Chng ti rt mong s gip v tham gia ca cc cn b v ging vin trong bmn cng nh trong ton khoa.

    Qu kh ngt ngo, nhng tm li hng v ca n qu l kh khn, i hi thigian, ngh lc v c s nhit tnh. Nhng chng ti tin rng chng ti s lm c.

    H Ni, thng 09 nm 2004

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    6/144

    v Phng trnh o hm ring

    Ti liu tham kho

    [1] R. Adams, Sobolev spaces, Academic Press, New York, San Francisco, London,1975.

    [2] L. Schwartz, Thories des Distributions, Hermann, 1978.

    [3] S. Stuckless, Brouwers fixed point theorem: Method of proof and generalizations,B. Sc., Memorial University of Newfoundland, 1999.

    [4] Hng Tn, Nguyn Th Thanh H, Cc nh l im bt ng, NXB HSP2003.

    [5] Trn c Vn, Phng trnh vi phn o hm ring, Tp 2, NXB HQGHN 2001.

    [6] E. Zeidler, Nonlinear Functional Analysis and its Applications, I: Fixed-Point The-orems. Springer-Verlag New York Berlin Heidelberg, 1992.

    [7] E. Zeidler, Introduction to applied functional analysis and mathematical physics,Chapter 1. Springer-Verlag, 1993.

    [8] M. Taylor, Partial Differential Equations, Vol I. Basic theory, Springer-Verlag,1997.

    [9] M. Taylor, Partial Differential Equations, Vol II. Qualitative Studies of LinearEquations, Springer-Verlag, 1997.

    [10] M. Taylor, Partial Differential Equations, Vol III. Nonlinear Equations, Springer-Verlag, 1997.

    [11] M. Strunwe, Variational methods, 2nd Edition, Springer-Verlag, 2000.

    [12]

    v

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    7/144

    1 Phng trnh o hm ring

    Bi 1Phng php bin phn v bi ton Dirichlet

    i vi phng trnh elliptic cp hai

    1.1 Cch t bi ton bin phn

    Gi sX l mt khng gian Hilbert thc, F(u) l phim hm thc trn X, D(F) Xl min xc nh ca phim hm F(u). Bi ton t ra l: Tm u0 D(F) sao cho

    F(u0) = inf uD(F)

    F(u), (1.1)

    hay

    F(u0) = supuD(F)

    F(u). (1.2)

    Nu X l khng gian hu hn chiu th bi ton t ra tr thnh bi ton cc tr hmnhiu bin, v vy ta lun gi thit rng X l khng gian v hn chiu.

    nh ngha 1.1. Phim hm F(u) t cc tiu tuyt i ti u0 nu

    F(u0) F(u), u D(F),

    Phim hm F(u) t cc tiu a phng ti u0 nu

    > 0 : F(u

    0)

    F(u),

    u

    D(F)

    B(u0, ),

    trong B(u0, ) = {u X : u u0 < }.

    Gi s u X l im c nh, M l tp tuyn tnh ca X. Ta nh ngha

    M = {u X : u = u + , M}.

    Ta chng minh c M tr mt trong X khi v ch khi M tr mt trong X. M cgi l a tp tuyn tnh trong X.

    Xt phim hm F tho mn cc iu kin sau

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    8/144

    2 Bi 1. Phng php bin phn

    iu kin 1 Min xc nh D(F) l a tp tuyn tnh tr mt trong X, c ngha lD(F) tr mt trong X v

    D(F) =

    {u

    X : u = u + ,

    M

    X

    }.

    iu kin 2 Ly 1, 2, . . . , n l n phn t c nh trong M. Khi F(u + c11 +c22 + cnn) = F(c1, c2, . . . , cn) l mt hm kh vi theo c = (c1, c2, . . . , cn) cpk 1.

    1.2 Bin phn v gradient ca mt phim hm

    Gi thit phim hm F(u) tho mn cc iu kin 1,2, u0 D(F), M, R.Khi u0 + D(F). Tht vy, do u0 D(F) nn c dng u0 = u + 0, 0 M.Vy

    u0 + = u + 0 + = u

    + (0 + ).

    V 0 + M nn u = u + (0 + ) D(F). Theo iu kin 2, F(u0 + ) lphim hm kh vi theo .

    nh ngha 1.2. i lng

    F(u0, ) =dF(u0 + )

    d =0c gi l bin phn (hay bin phn cp 1) ca phim hm F(u) ti im u0 D(F).Nhn xt.

    (i) Vi u0 c nh, F(u0, ) l mt phim hm i vi .

    (ii) F(u0, ) l phim hm thun nht i vi , tc l F(u0, t) = tF(u0, ). Tht

    vy,

    F(u0, t) = lim

    0

    F(u0 + t) F(u0)

    = t lim0

    F(u0 + ) F(u0)

    = tF(u0, ).

    (iii) Ni chung F(u0, ) khng phi l mt phim hm tuyn tnh.

    iu kin 3 Gi thit ti im u0 bt k, F(u0, ) l phim hm tuyn tnh i vi .

    (iv) Vi u0 bt k, ni chung F(u0, ) khng phi l mt phim hm gii ni theo .

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    9/144

    3 Bi 1. Phng php bin phn

    Ta k hiu

    N = {u D(F) : F(u0, ) l phim hm tuyn tnh gii ni theo },

    gi thit N = . Vi mi u N, tn ti phim hm tuyn tnh gii ni gu trn M saocho

    F(u, ) = gu(), M.V D(F) tr mt trong X nn M tr mt trong X, gu xc nh trn M c th m rngthnh phim hm gu X. Nh vy tn ti ton t

    P :N Xu gu = P u X.

    nh ngha 1.3. Ton t P c gi l gradient ca phim hm F(u):

    gu = P u = gradientF(u) = grad F(u).

    Khi X l khng gian Hilbert, X = X, ta xem grad F(u) N = D(grad F). Do vi u N D(F),

    F(u, ) = gu() = grad F(u) = (grad F(u), ), M.

    1.3 iu kin cn ca cc tr

    Gi sF(u) l phim hm xc nh trn X tho mn ba iu kin phn trc. Githit phim hm F(u) t cc tiu a phng ti im u0 D(F), tc l F(u) F(u0),u : u u0 < . Khi vi mi M, R sao cho || b th

    F(u0 + ) F(u0),

    c ngha l F(u0 + ) t cc tiu ti = 0. Do

    dF(u0 + )

    d =0 = F(u0, ) = 0.Vy nu phim hm F(u) t cc tiu ti u0 D(F) th

    F(u0, ) = 0 M.

    Nh vy u0 N = D(grad F). Do

    F(u0, ) = gu0() = (grad F(u0), ) = 0 M.

    V M tr mt trong X nn ta suy ra grad F(u0) = 0. Ta c nh l sau y ni ln

    iu kin cn ca cc tr

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    10/144

    4 Bi 1. Phng php bin phn

    nh l 1.1. Nu phim hm F(u) tho mn cc iu kin 1,2,3 v t cc tiu aphng ti u0 D(F) th u0 D(grad F) v

    grad F(u0) = 0 (phng trnh Euler.)

    Ch . iu kin ny trng vi iu kin cn ca cc tr hm nhiu bin.

    Chng minh. Gi s F(x) = F(x1, x2, . . . , xn) t cc tr a phng ti

    x0 = (x01, x02, . . . , x

    0n).

    Khi

    F(x0, x) =dF(x0 + x

    d =0 = ddF(x01 + x1, x02 + x2, . . . , x0n + xn)= Fx1(x

    0)x1 + Fxn(x0)xn= grad F(x0)x = 0 (x = (x1, . . . , xn).

    T , grad F(x0) = 0, suy ra

    F(x0)

    xi= 0, (i = 1, 2, . . . , n).

    1.4 Ton t xc nh dng

    nh ngha 1.4. X l khng gian Hilbert, A : X X l ton t tuyn tnh. Ton tA c gi l ton t i xng nu

    1. Min xc nh D(A) tr mt X,

    2. u, v D(A), (Au,v) = (u,Av).

    T iu kin 2, (Au,v) l phim hm i xng v (Au,u) l mt dng ton phngi xng.

    nh ngha 1.5. Ton t i xng A c gi l ton t dng nu

    (Au,u) 0, u D(A),(Au,u) = 0 u = 0.

    Ton t dng A c gi l xc nh dng nu tn ti R sao cho

    (Au,u) 2

    u2

    , u D(A).

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    11/144

    5 Bi 1. Phng php bin phn

    1.4.1 Khng gian nng lng ca ton t xc nh dng

    Gi s X l khng gian Hilbert, A l ton t xc nh dng trong X. Vi miu, v

    D(A) ta xc nh phim hm song tuyn tnh

    a(u, v) = (Au,v)

    tho mn cc tnh cht

    (i) a(u, v) = (Au,v) = (u,Av) = a(v, u), u, v D(A),(ii) a(u1 + u2, v) = a(u1, v) + a(u2, v),

    (iii) a(u, u) 0, u D(A), du bng xy ra khi v ch khi u = 0.Vi cc tnh cht trn, a(u, v) l mt tch v hng trong D(A). t

    |||u||| = (a(u, u))1/2 = (Au,u)1/2

    Khi |||||| l mt chun trong D(A).K hiu HA l b sung ca D(A) theo chun ||||||, ch rng v A l ton t xc

    nh dng nn(Au,u) 2u2, u D(A).

    T

    u 1|||u|||, u D(A).

    Vy, nu {un} D(A) hi t trong HA th cng hi t trong X, do HA X. Khnggian HA l khng gian Hilbert, c gi l khng gian nng lng ca ton t xcnh dng A.

    1.5 Cc tiu phim hm nng lng

    Cho X l khng gian Hilbert, A : X X l ton t xc nh dng, f X. Xtphng trnh

    Au = f. (1.3)

    Cng vi phng trnh (1.3) ta xt phim hm

    F(u) = (Au,u) 2(u, f). (1.4)Phim hm F(u) c gi l phim hm nng lng ca ton t xc nh dng A,min xc nh ca A v F l trng nhau.

    nh l 1.2. iu kin cn v phn tu0 D(A) lm phim hm F(u) t cctiu l u0 l nghim ca phng trnh Au0 = f. ng thi u0 l phn t duy nht.

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    12/144

    6 Bi 1. Phng php bin phn

    Chng minh.

    iu kin cn Gi s u0 D(A) lm cc tiu phim hm F(u), u0 D(grad F). Khi grad F(u0) = 0. Vi u D(F), R, X, ta c

    F(u, ) =d

    dF(u + )

    =0

    .

    Ch rng

    F(u + ) = A(u + ,u + ) 2(u + ,f)= (Au,u) + (Au,) + (u,A) + 2(A,) 2(u, f) 2(, f)= (Au,u)

    2(u, f) + 2(Au,)

    2(, f) + 2(A,)

    = F(u) + 2(Au f, ) + 2(A,)

    Suy ra F(u, ) = 2(Au f, ). V Au X, f X, X nn (Au f, ) latch v hng, do vi mi u D(A), (Au f, ) l phim hm tuyn tnhgii ni i vi X, tc l u D(grad F). Vy D(grad F) = D(A) = D(F).T suy ra grad F(u) = 2(Au f) m rng thnh phim hm trn X v ta c

    F(u0, ) = 2(Au0 f, = 0, X, Au0 f = 0 Au0 = f.

    iu kin Gi s u0 D(A) l nghim ca phng trnh Au = f. Ly u D(A),u = u0. t = u u0 X. Ta c

    F(u) = F(u0 + ) = F(u0) + (A,)

    V A xc nh dng nn (A,) > 0, t suy ra F(u) > F(u0), vy u0 l phnt cc tiu ca F.

    Chng minh duy nht Gi s tn ti u1 D(A) sao cho F(u) > F(u1) vi miu D(A). Khi ta c F(u0) > F(u1) > F(u0), v l.

    1.6 Nghim suy r ng

    Cho X l khng gian Hilbert, A l ton t xc nh dng, f X. Xt

    F(u) = (Au,u) 2(u, f) (1.5)

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    13/144

    7 Bi 1. Phng php bin phn

    l phim hm nng lng ca ton t A. Vi u D(A) ta c (Au,u) = |||u|||2. Khi phim hm nng lng c th vit di dng

    F(u) =

    |||u

    |||2

    2(u, f). (1.6)

    ng thc ny chng t rng phim hm F(u) c th m rng thnh phim hm trnHA. Vy vn t ra l ta i tm cc tiu phim hm nng lng F(u) vi u HA.nh l 1.3. Trong khng gian nng lng HA, tn ti mt v ch mt phn t u0 lmphim hm F(u) t cc tiu.

    Chng minh. Xt F(u) = |||u|||2 2(u, f), f X, u HA X. Ta c

    |(u, f) uf f

    |||u|||.

    iu c ngha l |(u, f) M|||u|||, u HA, tc l F(u) l phim hm tuyn tnhb chn trong HA. Theo nh l Riesz-Frchet, tn ti u0 HA sao cho

    (f, u) = a(u, u0), u HA.

    T

    F(u) =|||

    u|||

    2

    2a(u, u0)

    = a(u, u) 2a(u, u0) + a(u0, u0) a(u0, u0)= a(u u0, u u0) a(u0, u0)= |||u u0|||2 |||u0|||2

    T , F(u0) = |||u0|||2 v F(u) > F(u0) vi mi u HA. Nh vy u0 l phn tlm cc tiu phim hm nng lng F(u). R rng u0 l nghim duy nht (theo nhl 1.2, u0 l nghim duy nht thuc HA.)

    nh ngha 1.6. Phn t u0 lm cc tiu phim hm nng lng

    F(u) = |||u|||2 2(u, f)

    c gi l nghim suy rng ca phng trnh Au = f. Nu u0 D(A) th u0 lnghim c in ca phng trnh

    Ch . nh l trn vn ng nu F(u) = |||u|||2 2(u), trong (u) l phim hmtuyn tnh gii ni trong HA.

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    14/144

    8 Bi 1. Phng php bin phn

    1.7 Bi ton Dir ichlet i vi phng trnh elliptic cp 2 t lin hp

    1.7.1 Biu thc elliptic v biu thc elliptic cp hai t lin hp

    Gi s Rn l tp m vi bin trn . Ta xt biu thc vi phn cp hai tuyntnh trong :

    Au =n

    i,j=1

    aij(x)2u

    xixj+

    nj=1

    aj(x)u

    xj+ c(x)u. (1.1)

    trong aij, aj, c l nhng hm xc nh trong , tho mn

    aij = aji, c, cj , aji C1().Ta ni A l biu thc vi phn elliptic (hoc ton t (vi phn) elliptic) trong nu:

    ni,j=1

    aijij ||2 Rn, = 0, > 0.

    Gi s u, v C0 (). Xt biu thc:

    (Au,v) =

    Au.vdx

    =

    ni,j=1

    aij2u

    xixjvdx +

    nj=1

    aju

    xjvdx +

    c(x)uvdx

    Ch rng:

    aij2u

    xixjv =

    xj

    aijv

    u

    xi

    xj(aijv)

    u

    xi.

    p dng cng thc Green v ch v

    = 0, ta c:

    aij2u

    xixjvdx =

    xj(aijv)

    u

    xidx +

    aijvu

    xicos(xiv)dx

    =

    xj(aijv)

    u

    xidx

    =

    u2(a

    ijv)

    xjxi dx

    Tng t:

    aju

    xjvdx =

    u

    xj(ajv)dx.

    Kt hp li ta c:

    (Au,v) =

    n

    i,j=1

    2(aijv)

    xixj

    nj=1

    xj(ajv) + cv

    udx

    = (u, Av)

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    15/144

    9 Bi 1. Phng php bin phn

    trong

    Av =n

    i,j=12(aijv)

    xixj

    n

    j=1

    xj(ajv) + cv (1.2)

    c gi l biu thc vi phn cp hai lin hp ca Au. Mt cch tng qut, A cgi l biu thc vi phn lin hp (hoc ton t lin hp) ca A nu:

    (Au,v) = (u, Av) u, v C0 (). (1.3)

    Ch rng biu thc Au c th vit di dng:

    Au =

    n

    i,j=1

    xi aij

    u

    xj+

    n

    j=1 aj aij

    xi u

    xj+ cv.

    T , ta thy nu bj = aj aijxi = 0 (j = 1, 2, . . . , n) th

    (Au,v) = (u,Av) u, v C0 ().

    tc l A = A. Khi , ta ni A l biu thc vi phn t lin hp (ton t t lin hp).

    Tng qut, ta c nh ngha: Nu

    (Au,v) = (u,Av) u, v C0 (). (1.4)

    th A l biu thc vi phn t lin hp.Vy Au l biu thc vi phn t lin hp khi v ch khi Au c dng

    Au =n

    i,j=1

    xi

    aij

    u

    xj

    + cu, aij = aji. (1.5)

    1.7.2 Bi ton Dir ichlet i vi phng trnh elliptic cp 2 t lin hp

    Cho tp m, b chn Rn vi bin trn . Xt bi ton Dirichlet:

    Au = n

    i,j=1

    xj

    aij

    u

    xi

    + c(x)u = f trong , (1.6)

    u

    = 0, (1.7)

    trong A l ton t elliptic t lin hp trong , c(x) 0, aij = aji L().

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    16/144

    10 Bi 1. Phng php bin phn

    1.7.2.1 Dng song tuyn tnh

    Gi s u C2() v v(x) C0 (). p dng cng thc Green, ta c:

    (Au,v) = n

    i,j=1

    xj

    aij uxi

    vdx +

    cuvdx

    =

    n

    i,j=1

    aiju

    xi

    v

    xj+ cuv

    dx

    Vi mi u C2(), v C0 (), ta t

    a(u, v) =

    n

    i,j=1aij

    u

    xi

    v

    xj+ cuv

    dx.

    Nhn xt rng nu u C2() l nghim ca bi ton Dirichlet (1.6)-(1.7), trong f C() th:

    (Au,v) = a(u, v) = (f, v) v C0 ().B 1.4. Vi mi u, v C0 (), a(u, v) l mt dng song tuyn tnh i xng xcnh dng.

    Chng minh b .

    a) T nh ngha suy ra a(u, v) l dng song tuyn tnh trong C0 ().

    b) Ta ch ra rng a(u, v) l dng song tuyn tnh i xng trong C0 (). Tht vy,

    a(u, v) = (Au,v) =n

    i,j=1

    aiju

    xi

    v

    xjdx +

    cuvdx.

    V aij = aji nn t ta suy ra u, v C0 ()

    (Au,v) = (u,Av) hay l a(u, v) = a(v, u).

    c) a(u, v) l dng song tuyn tnh xc nh dng.

    Trc ht, ta chng minh bt ng thc Friedrichs: Cho gii ni Rn, bin trn. Khi vi mi u C1(), u| = 0, tn ti 1 > 0 sao cho:

    u2(x)dx 1ni=1

    u

    xi

    2dx.

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    17/144

    11 Bi 1. Phng php bin phn

    Chng minh bt ng thc Friedrichs. = {x : 0 xi ai}, . tu = 0 x .

    u(x) = u(x1, x) = u(x1, x

    )

    u(0, x) = x1

    0

    u(t, x)

    tdt

    u2(x) =

    x10

    u(t, x)

    tdt

    2x10

    dt

    x10

    u(t, x)

    t

    2dt

    a10

    u

    x1

    2dx1.

    u2dx a10

    dx1

    a20

    dx2 . . .

    an0

    u2(x)dxn

    a1

    0

    . . .

    an

    0

    dx

    a1

    a1

    0 u

    x12

    dx

    a21

    u

    x12

    dx.

    T ,

    u2(x)dx 1

    nk=1

    u

    xk

    2dx, 1 = a

    21.

    p dng tnh elliptic v bt ng thc Friedrichs,

    a(u, u) = (Au,u) =

    n

    i,j=1

    aiju

    xi

    u

    xj+ cu2

    dx

    nj=1

    uxk2

    dx +

    cu2dx

    1 .

    Ch rng nu c(x) 0 x , chn 0 < 0 < ,

    a(u, u)

    nj=1

    u

    xk

    2dx

    ( 0)

    nj=1

    u

    xk

    2dx +

    01

    |u|2dx

    20

    k = 1n uxk

    2 + |u|2 dxa(u, u) 20

    (|u|2 + |u|2)dx = 20u2H10 ().

    Ch rng theo cch chng minh trn, khi c(x) 0 th dng a(u, v) vn xcnh dng.

    Vy ta c kt lun ca b .

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    18/144

    12 Bi 1. Phng php bin phn

    1.7.2.2 Ton t ca bi ton Dirichlet

    nh l Lax-Milgram Cho [u, v] l phim hm song tuyn tnh trong khng gian HilbertX nhn gi tr thc tho mn cc iu kin

    i) |[u, v]| cuv, u, v X.ii) u2 k[u, v] u X, v X.

    Khi , mi phim hm tuyn tnh gii ni F(u) trn X u tn ti f X saocho:

    F(u) = [u, f] u X.Khng gian H10 () Trong khng gian C

    0 (), ta a vo chun

    uH10() = |u|2dx1/2

    u C

    0 ().

    vi

    u =

    x1,

    u

    x2, . . . ,

    u

    xn

    l vector gradient v tch v hng

    (u, v)1 =

    u vdx, u, v C0 ().

    Ch rng trong C0 (), ta c th xc nh mt chun tng ng (nh btng thc Friedrichs):

    uH10() =

    (|u|2 + |u|2)dx1/2

    , u C0 ().

    v tch v hng:

    (u, v)1 =

    (u v + u v)dx, u C0 ().

    nh ngha 1.7. Khng gian H10 () c coi l b sung ca C0 () theo

    chun H10 (). Php nhng H10 () L2(), l tr mt v compact.

    Mt cch khc, ta c th nh ngha khng gian H10 () gm cc hm u H

    1

    ()trit tiu trn bin cng vi cc o hm suy rng theo ngha vt:

    H10 () =

    u H1()|u = 0, u

    xi= 0 trn theo ngha vt

    .

    Ta xc nh ton t A : H10 () L2() sao cho min xc nhD(A) = {u H10 () : Au L2()}

    (Au,v) = a(u, v) u D(A), v C0 ().

    Ch rng:

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    19/144

    13 Bi 1. Phng php bin phn

    i) V C0 () D(A) H10 () nn D(A) tr mt trong H10 (), do tr mttrong L2(). Do ,

    (Au,v) = a(u, v)

    u

    D(A),

    v

    H10 ().

    ii) Vi u C2() l nghim ca bi ton (1.6)- (1.7), ta c:

    a(u, v) =

    n

    i,j=1

    aiju

    xi

    u

    xj+ cuv

    dx v C0 ()

    =

    ni,j=1

    xj

    aij

    u

    xi

    + cu

    vdx

    = (Au,v) = (f, v), v C0 (),

    trong

    Au = n

    i,j=1

    xj

    aij

    u

    xi

    + cu

    Ton t A c xy dng nh trn c gi l ton t ca bi ton (1.6)- (1.7).

    nh ngha 1.8. Vi f L2(), hm u0 H10 () c gi l nghim suy rngca bi ton (1.6)- (1.7) nu

    a(u0, v) = (f, v) v

    C0 ()

    hay

    (Au0, v) = (f, v) v C0 ()(Au0 f, v) = 0 v C0 ()

    Nh vy, vic tn ti nghim suy rng ca bi ton Dirichlet (1.6)- (1.7) cquy v vic tn ti nghim ca phng trnh ton t Au = f trong L2().

    1.7.2.3 p dng php tnh bin phn gii bi ton Dirichlet i vi

    phng trnh vi phn tuyn tnh cp hai t lin hp

    Gi s l tp m b chn Rn c bin trn. Ta xt bi ton Dirichlet

    Au = n

    i,j=1

    xj

    aij

    u

    xj

    + c(x)u = f trong , (1.8)

    u = 0 trn , (1.9)

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    20/144

    14 Bi 1. Phng php bin phn

    trong A : H10 () L2() l ton t elliptic, t lin hp trong , aij = aji, c(x) 0thuc C(), f L2(), xc nh dng song tuyn tnh tng ng

    (Au,v) = a(u, v)

    v

    C0 ()

    c min xc nh D(A) tr mt trong H10 ().

    Theo chng minh ca b 1.4, ta suy ra: dng song tuyn tnh

    a(u, v) =

    n

    i,j=1

    aiju

    xi

    u

    xj+ cuv

    dx

    xc nh mt tch v hng trong D(A) v

    |||u

    |||= a(u, u) u D(A)

    l chun lin kt vi tch v hng a(u, v) trong D(A).

    Hn na:

    i) A l ton t i xng

    (Au,v) = a(u, v) = a(v, u) = (u,Av), u, v D(A).

    ii) A l ton t xc nh dng

    (Au,u) 20u2H10() u D(A).

    K hiu HA l b sung ca D(A) theo chun ||||||. Ta gi HA l khng gian nnglng ca ton t A.

    nh l 1.5. Khng gian nng lng HA bao gm cc hm u(x) c tnh cht:

    1. u(x) L2() c cc o hm suy rng uxi

    L2().2. Tn ti dy {uk} D(A) sao cho:

    limk

    uk u = 0, limk

    ukxj uxj = 0

    Chng minh. Nu u(x) HA, c hai kh nng

    1. Nu u D(A) th u L2(), uxj

    L2(). iu khng nh lun ng.

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    21/144

    15 Bi 1. Phng php bin phn

    2. Nu u HA, u / D(A). Khi , tn ti dy {uk} D(A) H10 () sao choliml,k

    |||uk ul||| = 0

    tc l

    liml,k

    ni,j=1

    aij(uk ul)

    xi

    (uk ul)xj

    dx +

    c(uk ul)2dx = 0

    T suy ra: limk

    uk u = 0 u L2() v

    liml,k

    ni,j=1

    aij(uk ul)

    xi

    (uk ul)xj

    dx = 0

    Mt khc, ta c:

    ni,j=1

    aij(uk ul)

    xi

    (uk ul)xj

    dx

    nj=1

    ukxj

    ulxj

    2dx

    T , ta suy ra:ukxj

    k=1

    l dy c bn trong L2() nn tn ti vj L2() sao cho:

    limk

    ukxj vj = 0.

    Theo tnh cht ca o hm suy rng, ta suy ra: vj =ukxj

    v

    limk

    ukxj uxj = 0.Vy HA() H10 ()

    Phim hm nng lng ca ton t xc nh dng A l phim hm

    F(u) = a(u, u) 2(u, f), u HA.T chng minh nh l 1.2, ta suy ra:

    i) Phn t u0

    D(A) lm cc tiu phim hm F(u) khi v ch khi u0 l nghim

    ca phng trnh Au0 = f.

    ii) Trong khng gian nng lng HA, tn ti duy nht mt phn t u0 lm cc tiuphim hm nng lng F(u). Phn t u0 l nghim suy rng ca phng trnhAu0 = f, tc l

    (Au0 f, v) = 0, v C0 (),hay

    (Au0, v) = (f, v), v C0 (),a(u0, v) = (f, v),

    v

    C

    0

    ().

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    22/144

    16 Bi 1. Phng php bin phn

    Vy u0 l nghim suy rng ca bi ton Dirichlet. T cc chng minh trn, ta cnh l:

    nh l 1.6. Bi ton Dirichlet (1.6)- (1.7) c duy nht nghim suy rng u0

    HA

    H10 () vi mi f L2().Ch . Vi mi f L2(), v HA L2(), ta c:

    |(f, v)| fv f|||v|||A.

    Nh vy, (f, v) l phim hm tuyn tnh lin tc trong HA. Theo nh l Riesz, tn ti duy

    nht u0 HA H10 () sao cho

    (f, v) = a(u0, v) v HA.

    T suy ra

    (f, v) = a(u0, v) v C0 ().Theo nh ngha, u0 l nghim suy rng ca bi ton Dirichlet (1.6)- (1.7).

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    23/144

    17 Phng trnh o hm ring

    Bi 2nh l Lax-Milgram v bi ton bin elliptic

    2.1 nh l Lax-Milgram

    nh l 2.1. Gi s X l khng gian Hilbert thc, a(u, v) l phim hm song tuyntnh thc trn X. Gi thit rng a(u, v) tho mn cc iu kin:

    (i) Tn ti c > 0 sao cho |a(u, v)| cuv u, v X,(ii) Tn ti > 0 sao cho a(u, u) u2 u X.

    Khi , mi phim hm tuyn tnh lin tc F(u) trn X u tn ti f X sao cho

    F(u) = a(u, f) u X.

    Ch . nh l Lax- Milgram suy ra t nh l Riesz-Frchet.

    Chng minh. Ly u X c nh. Khi , u(v) = a(u, v) l phim hm tuyn tnh trnX. Theo (i), ta c:

    |u(v)| = |a(u, v)| uv v X.iu chng t u(v) l phim hm tuyn tnh lin tc trn X. Theo nh l Riesz-Frechet, tn ti mt phn t, k hiu l Au X sao cho:

    u(v) = (Au,v)

    v

    X.

    Nh vy, a(u, v) = (Au,v) v X, v ta c mt ton t

    A : X Xu Au

    R rng A l ton t tuyn tnh. Theo gi thit (ii), ta c:

    Au2 = (Au,Au)

    a(u,Au)

    c

    u

    Au

    v

    X.

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    24/144

    18 Bi 2. nh l Lax-Milgram v bi ton bin elliptic

    T , ta c: Au cu u X. Bt ng thc ny chng t rng A : X X lton t lin tc. Hn na, vi u1, u2 X m

    Au1

    = Au2

    u1

    = u2 (2.1)

    Mt khc, vi mi u X,

    u2 a(u, u) = 1

    (Au,u) cAuu.

    T ,

    u cAuu X.

    Do , vi u1, u2

    X m

    u1 = u2 Au1 = Au2. (2.2)

    T (2.1)-(2.2), suy ra: A : X X l nh x 1-1. K hiu A(X) = {u X : Au X}.Ta chng minh A(X) l ng trong X. Tht vy, gi s{Auj} l dy hi t n v X.V {Auj} l dy Cauchy trong X, ta c

    limj,k+

    Auj Auk = 0.

    T (2.1), ta c uj uk cAuj Auk. iu ny chng t {uj} l dy Cauchy

    trong X, cho nn tn ti u X sao cho: limj+ uj = u trong X.Do A l nh x lin tc nn Au = v A(X), tc l A(X) ng trong X.By gi, ta chng minh A(X) = X. Gi sA(X) X, A(X) ng. Ta ly u X

    m u A(X), trc giao vi A(X), tc l

    (u,Au) = a(u, u) = 0

    V u2 1

    a(u, u) = 0 nn u = 0, tc l A(X) = X. Vy A : X X l song nh.Gi s F(u) l phim hm tuyn tnh lin tc trn X. Theo nh l Riesz-Frecht,

    tn ti duy nht g

    X sao cho

    F(u) = (g, u).

    Khi , tn ti f X sao cho g = Af. Do ,

    F(u) = (g, u) = (Au,u) = a(f, u), u X.

    nh l c chng minh.

    Ch .

    - ng cu A : X X c xy dng trong nh l Lax-Milgram sao cho:

    (Au,v) = a(u, v) u, v X

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    25/144

    19 Bi 2. nh l Lax-Milgram v bi ton bin elliptic

    c gi l ton t lin kt vi dng song tuyn tnh a(u, v) trn khng gian Hilbert X,

    hay ngc li, a(u, v) c gi l dng song tuyn tnh lin kt vi ton t A.

    - Khng gian Banach X c gi l khng gian Hilbertian hay l khng gian Hilbert

    ho cnu c th xy dng mt tch v hng sinh ra mt chun tng ng.

    Xt V l khng gian Hilbert phc v tch v hng (u, v), u, v V, tho mn iukin

    (u, v) = (v, u), u, v V.V l khng gian i ngu ca V, (khng gian cc phim hm tuyn tnh lin tc

    trong V).

    Theo inh l Riesz, vi mi L V, tn ti duy nht u V sao cho L(v) =(u, v)V, u, v V.V d 1. l tp m trong Rn, H1

    0

    () l b sung ca C0

    () trong H1(). t V =

    H10 (), V = H1() l i ngu ca H10 (), ng nht vi khng gian cc hm suy rng

    f D():|(f, )| cH1 C0 ().

    Gi sa(u, v), u, v V l dng song tuyn tnh lin tc trong V. Vi mi u V,ta c th xc nh mt phim hm tuyn tnh L trn V theo cng thc:

    L(v) = a(u, v) v V.

    R rng L l phim hm tuyn tnh lin tc trn V:

    L(v) |a(u, v)| uv v V.

    Theo nh l Riesz, tn ti duy nht Au V sao cho:

    L(v) = (Au, v)V = a(u, v) v V,

    trong A : V V l ton t lin kt vi dng song tuyn tnh a(u, v).nh ngha 2.1. Dng song tuyn tnh lin tc a(u, v) c gi l c tnh cht coerci-tive nu tn ti hng s c > 0 sao cho

    |a(u, u)| cu2, u V. (2.3)

    nh l 2.2 (nh l Lax - Milgram). Nu a(, ) l dng song tuyn tnh lin tc ctnh cht coercitive th ton t A lin kt vi dng song tuyn tnh a(u, v) l mt ngcu tV ln V.

    Chng minh. Chng minh hon ton tng t nh trng hp a(u, v) thc. Ta c

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    26/144

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    27/144

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    28/144

    22 Bi 2. nh l Lax-Milgram v bi ton bin elliptic

    Gi s a(u, v) l dng song tuyn tnh lin tc:

    a(u, v) =

    n

    i,j=1aij

    u

    xi

    v

    xj+

    n

    i=1bi

    u

    xiv +

    n

    i=1biu

    v

    xi+ cuv

    vdx (2.3)

    u, v C0 ().

    K hiu V = H10 (), H = L2(). Khi , V H v php nhng l lin tc v tr

    mt, ng thi dng song tuyn tnh xc nh trn V c th m rng vi u, v H10 ().Hn na, vi u H10 () = V, phim hm a(u, v) = l(v), v V l phim hm tuyntnh lin tc trn V = H10 (). Do , ta xc nh ton t:

    A : V V = H10 = H1()sao cho (Au, v)L2() = a(u, v) v V. Khi , A l ton t tuyn tnh lin tctrn V:

    Au2 = (Au, Au) = a(u,Au) uAu u H Au u u V

    nh l 2.1. Tn ti mt hng s0 R sao cho vi 0 th ton tA + I l mtng cu t H10 () ln H

    1().

    Chng minh. Theo gi thit (2.1) v tnh elliptic, ta c:

    Re

    ni,j=1

    aiju

    xi

    u

    xjdx

    |u|2dxu =

    u

    x1, . . . ,

    u

    xn

    l vector gradient

    Mt khc, cc h s ca ton t A xc nh bi (2.1) l b chn trong nn ta c:

    bi uxi udx , biu uxidx c uxiL2 uL2v cu2dx u cu2T , ta suy ra tn ti cc hng s c1, c2 sao cho:

    Re a(u, u) u2L2() c1uL2()uL2() c2u2L2().

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    29/144

    23 Bi 2. nh l Lax-Milgram v bi ton bin elliptic

    Ch bt ng thc:

    |ab| a2 + ( 14

    )b2, > 0

    Ta c: uL2uL2 u2 + ( 14)u2.t =

    2c1, ta nhn c bt ng thc

    Re a(u, u) u2L2() c1

    2c1u2 + ( 1

    4)u2

    c2u2L2()

    2u2L2()

    2c21

    + c2

    u2L2().

    Vy tn ti hng s c > 0 sao cho:

    Re a(u, u) 2u2L2() cu2L2()

    hay l

    Re a(u, u) + cu2L2()

    2u2H10 (), u V (2.4)

    p dng h qu ca nh l Lax - Milgram, ta suy ra ton t A + I l ng cu tV = H10 () ln V

    vi > c.

    2.2.2 iu kin ca tnh coercitive

    Ch rng vi gi thit bi, bi C1() nn bi, bi v cc o hm ca chng b chntrong . Do , vi f H1(), b H1() v k(bif) = (kbi)f + bi(kf). Ta chngminh b sau y:

    B 2.2. Gi sf, g H1() v mt trong chng thuc H10 (). Ta c:

    (kf)gdx =

    (kg)fdx.

    Chng minh. Nu f H10 (), xp x f bi dy hm j C0 () theo chun trongH1() v p dng tch phn tng phn

    (kj)gdx =

    jgdx

    (kg)jdx

    =

    (kg)jdx.

    Cho j , ta nhn c ng thc cn chng minh.

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    30/144

    24 Bi 2. nh l Lax-Milgram v bi ton bin elliptic

    p dng b , ta c:

    bi(iu)udx =

    (ibi)uudx

    biuudx

    Do ,

    Re

    bi(iu)udx = 12

    (ibi)|u|2dx.

    Tng t ta cng c:

    Re

    bi(iu)dx = 1

    2

    (ibi)|u|2dx.

    p dng tnh elliptic, vi u V = H10 (),

    Re a(u, u) = Re

    ni,j=1

    aijuxi

    uxj

    + Re

    ni=1

    biuxi

    u +ni=1

    biuuxi

    dx ++ Re

    c|u|2dx

    u2L2 +

    c 1

    2

    ni=1

    bixi

    12

    ni=1

    bixi

    |u|2dx.

    K hiu B = (b1, b2, . . . , bn), B = (b1, b2, . . . , b

    n). Ta nhn c c lng:

    Re a(u, u) u2L2() + c 12 div(B + B ) |u|2 dx, u H10 ()Vy nu tn ti > 0 sao cho:

    c 12

    div(B + B )

    x , (2.5)

    th dng song tuyn tnh a(u, v) l coercitive

    Re a(u, u)

    c0

    u

    2H10()

    u

    H10 (),

    c0 = min(, ).

    nh l 2.3. Gi thit tn ti hng s > 0 sao choc 1

    2div (B + B)

    x .

    Khi , ton t A lin kt vi dng song tuyn tnh a(u, v) l mt ng cu t H10 ()ln H1().

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    31/144

    25 Bi 2. nh l Lax-Milgram v bi ton bin elliptic

    p dng: Gi s l min khng b chn vi bin trn. Ta xt bi ton Dirichleti vi phng trnh elliptic cp 2:

    Au =

    n

    i,j=1 xj aij uxi +n

    i=1 bi uxi n

    i=1 xi (biu) + cu = f trong (2.6)u

    = 0, u(x) 0 khi |x| + (2.7)nh ngha 2.2. Vi f L2(), hm u0 H10 () l nghim suy rng ca bi ton(2.6) - (2.7) nu:

    a(u0, v) = (f, v)L2() v C0 ().T nh l 2.3, ta suy ra:

    nh l 2.4. Gi thit: tn ti hng s > 0 sao cho

    c(x) 1

    2div (B + B)

    x .Khi , vi mi f L2(), tn ti duy nht nghim suy rng u0 H10 () ca bi ton(2.6) - (2.7).

    Vi iu kin ca nh l, ton t A lin kt vi dng song tuyn tnh a(u, v) lng cu tH10 () ln H

    1().

    Gi s f L2(), f H1(), tn ti u0 H10 () sao cho: Au0 = f trongL2(), tc l

    (Au0, v) = (f, v) v C0 ()

    Do , a(u0, v) = (f, v) v C0 ().iu c ngha l: u0 l nghim suy rng ca bi ton (2.6) - (2.7).

    2.2.3 Bi ton bin Dir ichlet trong min b chn

    Gi s l tp m b chn. Trong cho ton t Au xc nh bi (2.1) v dngsong tuyn tnh a(u, v) xc nh bi cng thc (2.2).

    Trc ht, ta ch vi l min b chn, nh x nhng H10 () vo L2() (cng

    chnh l nh x nhng H10 () vo H1()) l ton t compact.Ta c nh l sau y.

    nh l 2.5. Gi s l tp m b chn trong Rn. Ton t vi phn tuyn tnh ellipticcp 2 c xc nh theo cng thc (2.1) v dng song tuyn tnh a(u, v) xc nh bi(2.2). Khi ,

    a) Ton tA lin kt vi dng song tuyn tnh a(u, v) l mt ng cu tH10 () lnH1()) nu

    c

    1

    2

    div(B + B )

    0

    x

    .

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    32/144

    26 Bi 2. nh l Lax-Milgram v bi ton bin elliptic

    b) Trong trng hp tng qut, ton tA l ton t Fredholm vi ch s 0 tH10 ()ln H1().

    Chng minh. Theo gi thit,

    c 12

    div(B + B ) 0 x .

    T bt ng thc c chng minh trn y:

    Re a(u, u) u2L2 +

    c 1

    2div(B + B )

    |u|2 dx

    ta suy ra

    Re a(u, u) u2L2 u H10 ().p dng bt ng thc Poincareq:

    u2L2 ku2L2 u H10(), k > 0.

    ( l tp m b chn), ta nhn c c lng

    Re a(u, u) u2L2

    2u2L2 +

    k

    2u2L2

    u2H10() u H10 ().

    T suy ra a(u, u) l coercitive.

    Theo nh l Lax - Milgram, A l ng cu tH10 () ln H1().

    Trong trng hp tng qut: A + I l ng cu t H10 () ln H1() vi

    ln, cn I l ton t compact t H10 () vo H1(). Do , A = (A + I) I l

    tng ca mt ng cu vi mt ton t compact, cho nn A l ton t Fredholm vich s 0. nh l c chng minh.

    nh l 2.6. Gi s m Rn, ton t A v dng song tuyn tnh a(u, v) xc nhbi (2.1) v (2.1). Gi thit rng a(u, v) l coercitivetrn H10 (). Khi , vi

    f H1(), tn ti mt v ch mt u H1() sao choAu = f

    u w H10 () (u w) = 0

    Chng minh. t v = u w, Av = Au Aw Av = f Aw H1().Khi , tn ti duy nht v H10 () sao cho:

    Av = f

    Aw

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    33/144

    27 Bi 2. nh l Lax-Milgram v bi ton bin elliptic

    hay

    A(v + w) = f, u = v + w H1()

    tho mn iu kin ca dnh l: u w = v H10 ().nh l 2.7. Gi s l tp m b chn vi bin trn, A l ton t xc nhbi (2.1). Khi :

    a) nh x u (Au,u) l mt ton t Fr edholm vi ch s 0 tH1() ln H1()H

    12 ().

    b) Vi gi thit

    c(x)

    1

    2div (B + B )

    0

    x

    ,

    nh x u (Au,u) l mt ng cu tH1() ln H1() H12 (), c nghal vi f H1() v h H12 (), tn ti duy nht u H1() sao cho

    Au = f trong

    u = h trn

    Chng minh. a) Ton t (A, ) l tng ca ton t ((A + I), ) vi ln l mt

    ton t ng cu vi ton t compact (I, 0). Vy nn(A, ) = ((A + I), ) + (I, 0)

    l ton t Fredholm vi ch s 0.

    b) Vi iu kin b) th a(u, v) l coercitive. Do , p dng nh l 2.6, vi H1() sao cho = h, tn ti duy nht u H1() sao cho: Au = f vu w H10 () hay u = h. nh l c chng minh.

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    34/144

    28 Phng trnh o hm ring

    Bi 3Khng gian Sobolev Wm,p()

    3.1 Mt s k hiu v khi nim

    Trong phn ny, l mt tp m trong Rn, m l s nguyn khng m, p l s thctho mn 1 p . Khi , ta nh ngha cc phim hm sau:

    um,p = 0||m

    Dupp1/p

    , 1 p < ,

    um,p = max0||mDu, p = .

    Cc khng gian Hm,p(), Wm,p(), Wm,p0 () c xc nh nh sau:

    Hm,p() = bao y ca {u Cm() : um,p < } theo chun m,p,

    W

    m,p

    () = {u Lp

    () : D

    u Lp

    (), 0 || m} vi chun m,p,Wm,p0 () = bao ng ca C

    0 () trongW

    m,p().

    Nhn xt. (i) W0,p() = Lp(), 1 p .(ii) Khi 1 p < , C0 () tr mt trong Lp() nn

    W0,p0 () = Lp(), 1 p < .

    Ch , khi p = ni chung W0,0 () = L(). Chng hn, khi = R, d cf(x) = 1

    L(R). Nhng,

    f 1, C0 (R).

    (iii) Wm,p0 () Wm,p(), 1 p .(iv) Wm

    ,p() Wm,p() Lp() = W0,p(), 0 m m, 1 p .(v) Khi Rn l tp m b chn, t php nhng Lp() Lq(), 1 q p, ta c

    php nhng Wm,p() Wm,q(), 1 q p.

    nh l 3.1. Wm,p

    () l khng gian Banach.

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    35/144

    29 Bi3. Khng gian Sobolev Wm,p()

    Chng minh. Ly {uk}k=1 l mt dy Cauchy trong Wm,p(). Ta phi chng minh:

    u Wm,p

    () ukm,p

    u.Do {uk}k=1 l dy Cauchy trong Wm,p(), nn t nh ngha c {Duk}k=1 l dyCauchy trong Lp(), vi 0 || m. M Lp() l khng gian nn

    u Lp() : Duk p u, 0 || m. (3.1)

    Nu c Du = u(u = u0) theo ngha suy rng, ngha l

    Du u, = 0 C0 () (3.2)

    th

    Du = u Lp(),Duk

    p u, 0 || m,

    hay

    u Wm,p(),Duk

    m,p u.

    Nh vy ta ch cn phi chng minh (3.2). Vi mi k, 0 || m, C0 (), c|Du u, | | Du Duk, | + |Duk u, |

    m p dng bt ng thc Holder

    |Du Duk, | = |u uk, D | u ukpDp,|Du u, | Duk upp,

    v C0 () : Dp C, 0 || m, nn

    |Du u, | C(u ukp + Duk up).

    Do , t (3.1) cho k tin ra v cng

    Du u, = 0, C0 (), 0 || m.

    Ch C0 () {u Cm() : um,p < } Wm,p(),

    ta d c nh l sau

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    36/144

    30 Bi3. Khng gian Sobolev Wm,p()

    nh l 3.2. Wm,p0 () Hm,p() Wm,p().K hiu

    LpN =

    p

    j=1 Lp() (N = 0||m 1),vi chun c xc nh nh sau, u = (u1, . . . , uN) LpN,

    u; LpN =

    Nj=1

    ujpp1/p

    , 1 p < ,

    u; LN = max1jNuj.D thy, nh x

    P : Wm,p() LpNP u = (Du)0||m

    l mt ng c n cu. Do , Wm,p() ng c ng cu vi khng gian con ngW = ImP ca LpN.M khng gian LpN l khng gian kh li khi 1 p < , l khng gian phn x, liu khi 1 < p < . c bit khi p = 2, khng gian L2N l khng gian Hilbert kh livi tch trong(hay tch v hng)

    (u, v)m =

    0jN

    uj(x)vj(x)dx

    nn ta c nh l sau.nh l 3.3. (i) Wm,p() l khng gian kh li khi 1 p < .

    (ii) Wm,p() l khng gian phn x, li u khi 1 < p < .(iii) Khi p = 2, khng gian Wm() = Wm,2() l khng gian Hilbert kh li vi tch

    trong

    (u, v)m =

    0||m

    Du(x)Dv(x)dx.

    3.2 i ngu ca khng gian Sobolev Wm,p()

    B 3.4. (LpN) = LpN, 1 p < ,

    ngha l

    L (LpN)!v Lp

    N

    L(u) =

    Nj=1

    uj , vj =Nj=1

    uj(x)vj(x)dx, (3.3)

    L; (Lp

    N

    )

    =

    v; Lp

    N. (3.4)

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    37/144

    31 Bi3. Khng gian Sobolev Wm,p()

    Chng minh. Vi w Lp() k hiu w(j) = (0, . . . , w

    j

    , . . . , 0).

    t Ljw = L(w(j)). T gi thit L (Lp

    N)

    , c Lj (Lp

    ())

    .Khi , c duy nht mt hm vj Lp() sao cho Lj(w) = w, vj.t v = (v1, . . . , vN), c v LpN v vi mi u = (u1, . . . , uN) LpN

    L(u) = L(Nj=1

    uj(j)) =Nj=1

    L(uj(j))

    =

    Nj=1

    Lj(uj) =

    Nj=1

    uj , vj.

    Nh

    vy, c duy nht mt hm v Lp

    N c (3.3).Ta ch cn phi chng minh (3.4). Theo bt dng thc Hoder, vi u LpN

    |L(u)| = |Nj=1

    uj , vj| Nj=1

    ujpvjp

    Nj=1

    ujpp1/p N

    j=1

    vjpp1/p

    u; LpN v; Lp

    N

    nnL; (LpN) v; Lp

    N. (3.5)Khi 1 < p < , t

    uj(x) =

    |vj(x)|p2vj(x), nu vj(x) = 00, nu vj(x) = 0,

    c

    uj, vj = |vj(x)|p2vj(x)vj(x)dx = |vj(x)|pdx = vjpp,ujpp =

    |vj(x)|(p1)pdx = vjp

    p,

    nn

    u; LpN v; Lp

    N = Nj=1

    ujpp1/p N

    j=1

    vjpp1/p

    =

    N

    j=1vjpp

    =N

    j=1uj, vj = L(u).

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    38/144

    32 Bi3. Khng gian Sobolev Wm,p()

    Do , t (3.5), c (3.4) khi 1 < p < .Khi p = 1, p = , c

    k

    {1, . . . , N

    }:

    vk

    = max

    1jN

    vj

    =

    v; Lp

    N

    ,

    > 0, A , (A) > 0 : |vk(x)| vk , x A.

    Nu vk = 0 th v = 0. Do , t (3.3), L = 0 v L; (LpN) = 0 = v; Lp

    N.Nu vk = 0, ly 0 < < vk. t

    uj(x) =

    vj(x)/|vj(x)|, nu x A0, nu x / A,

    c

    L(u(k)) = u, vk = A

    (vj(x)/|vj(x)|)vk(x)dx

    =

    A

    |vk(x)|dx (vk )(A),

    u(k); L1N =A

    vj(x)/|vj(x)|dx = (A),nn vi mi 0 < < vk : L(u(k)) (v; LN )u(k); L1N.Do , t (3.5), c (3.4) khi p = 1.

    nh l 3.5. Vi 1 p < , cL (Wm,p()) v LpN

    L(u) =

    0||m

    Du, v, u Wm,p(), (3.6)

    L; (Wm,p()) = infv; LpN, (3.7)

    trong , infimum ly, v t c, trn tt c cc hm v LpN tho mn (3.6).

    Chng minh. tL(P u) = Lu,u Wm,p().

    Do L (Wm,p()),v W = P(Wm,p()) l ng cu ng c vi Wm,p()nn

    L W, L; W = L; (Wm,p()). (3.8)Theo nh l Hahn-Banach

    L

    (Lp

    N

    ) : L|W = L

    ,

    L; (Lp

    N

    )

    =

    L; W

    . (3.9)

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    39/144

    33 Bi3. Khng gian Sobolev Wm,p()

    Theo B 4, c duy nht mt hm v LpN sao cho

    L(u) =

    0||mu, v, u LpN, (3.10)

    L; (LpN) = v; LpN. (3.11)

    T (3.8), (3.9), (3.10) v (3.11), c mt hm v LpN sao cho vi mi u Wm,p()

    L(u) = L(P u) = L(P u) =

    0||m

    Du, v, u LpN,

    L; (Wm,p()) = v; LpN. (3.12)

    Nh vy, ta ch cn phi chng minh nu v LpN tho mn (3.6) th

    L; (Wm,p()) v; Lp

    N.Tht vy, p dng bt dng thc Holder, vi mi u Wm,p()

    |L(u)| =

    0||m

    u, v

    0||m

    Dup vp

    um,pvm,p

    nn L; (Wm,p()) v; LpN.Ch . Do vi L

    W c th c nhiu thc trin L

    (Lp

    N) tho mn (3.9), nn vi mi

    L Wm,p() c th c nhiu hm v LpN tho mn (3.6), (3.12).Tuy nhin, khi 1 < p < , th vi mi L Wm,p() c duy nht mt hm v LpN thomn (3.6), (3.12). Tng ng ny l mt ng cu ng c t(Wm,p()) vo Lp

    N.

    Tht vy, vi 1 < p < , LpN, Lp

    N=(LpN) l cc khng gian li u, v khng gian conng W ca LpN cng li u. Khi , vi mi L

    W c duy nht mt hm u Wsao cho

    u; W = 1, L(u) = L; W.Nu c L, L (LpN) l cc thc trin bo ton chun ca L th

    L(u) = L(u) = L; W = L; (LpN),L(u) = L(u) = L; W = L; (LpN),

    nn

    L + L2

    ; (LpN) L(u) + L(u)

    2=

    1

    2(L; (LpN) + L; (LpN)).

    iu ny ch xy ra khi L = L, v (LpN) l li u. Do , vi L W c duy nht mt

    thc trin L (LpN) tho mn (3.9).Nh vy, c th coi (Wm,p()) l khng gian con ng ca khng gian Lp

    N, khi 1 < p 1/k}, 0 = 1 = ,Uk = k+1 (k1)c.

    C Uk v {Uk}k=1 l mt ph m ca nn t ch ta c th chn mt h{k}k=1 tho mn

    (i) k C

    0 (Rn

    ), 0 k(x) 1, x Rn

    , k = 1, 2, . . . ,

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    44/144

    38 Bi3. Khng gian Sobolev Wm,p()

    (ii) suppk Uk, k = 1, 2, . . . ,(iii) K ch c hu hn k sao cho k|K = 0,

    (iv) k=1 k(x) = 1, x .Ly > 0. Vi k(chn sau), 0 < k < 1(k+1)(k+2) c

    Jk (ku) Vk = k+2 (k2)c,supp(ku) Uk Vk ,

    nn theo B 3.9 ta c th chn k sao cho

    Jk (ku) kum,p, = Jk (ku) kum,p,Vk 0 nh

    u 1,p

    |u(x) (x)|pdx1/p

    > , C1().

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    45/144

    39 Bi3. Khng gian Sobolev Wm,p()

    iu ny l do khi i qua {x = 0, 0 < y < 1} hm u c gin on, cn hm C1()th lin tc. Hay do nm c v hai pha i vi mt phn ca bin {x = 0, 0 < y < 1}.Nh vy c th xp x khng gian Wm,p() bi Cm(), th t nht ch nm vmt pha i vi mt phn ca bin. C th l ta cn n khi nim sau.Tp m Rn c gi l c tnh cht segmentnu vi mi x c mt tpm Ux cha x, v mt vecto yx khc 0 sao cho

    nu z Ux th z+ tyx , 0 < t < 1.

    Nhn xt. Tp m c tnh cht segmentth phi c bin (n 1)chiu v khng thnm c hai pha i vi bt k phn no ca bin .

    nh l sau khng nh tnh cht segmentl iu kin C0 (Rn) tr mt

    trong Wm,p(), v do Cm() tr mt trong Wm,p().

    nh l 3.11. Nu c tnh cht segmentth tp cc hn ch xung ca cchm thuc khng gian C0 (R

    n) l tr mt trong Wm,p(), vi 1 p < .

    Chng minh. Vi mi u Wm,p() t

    Ku = {x : u(x) = 0},

    u(x) = u(x), nu x ,0, nu x c.

    Trc ht ta chng minh tp cc hm u Wm,p() c Ku b chn l tr mt trongWm,p().Ly f C0 (Rn) c nh tho mn

    (i) f(x) = 1, |x| 1,(ii) f(x) = 0, |x| 2,

    (iii) f(x) 0, 1 < |x| < 2.

    Khi , c M > 0 sao cho

    |Df(x)| M, x Rn, 0 || m.

    Vi 1 > > 0 t f(x) = f(x) c

    (i) f(x) = 1, |x| 1/,(ii) f(x) = 0,

    |x|

    2/,

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    46/144

    40 Bi3. Khng gian Sobolev Wm,p()

    (iii) |Df(x)| M|| M, x Rn, 0 || m.Khi , theo cng thc Leibnitz

    Df(x)u(x)

    Du(x)Df(x) M

    |Du(x)|nn fu Wm,p(). t = {x : |x| > } c

    fu um,p, = fu um,p, um,p, + fum,p, Cum,p,

    m lim0+

    um,p, = 0, v u Wm,p(), nn

    lim0+ fu um,p, = 0,Kfu {|x| < /2} l tp b chn.

    By gi ta chng minh tp cc hn ch xung ca cc hm thuc C0 (Rn) tr mt

    trong tp cc hm u Wm,p() c Ku b chn. Ly u Wm,p() c Ku b chn. tF = K (xUx)c l tp compact trong , trong Ux l cc tp m c xc nht tnh cht segmentca . Khi , c mt tp m U0 m

    F U0 .

    C K l tp compact mK U0 (xUx)

    nn c hu hn cc im x1, . . . , xk sao cho

    K U0 (kj=1Uxj ).

    Ta chn U0 = U0 l tp m, compact tng i.Li c V1 = K

    U0 (kj=2Uxj)

    cl tp compact trong Ux1. Nn c mt tp m U1

    sao choV1

    U1 Ux1 .C th ta xy dng c mt h cc tp m {Uj}kj=0 sao choU0 = U0, Uj Uxj , 1 j k, K kj=0 Uj .Khi ta xy c mt h {j}kj=0 tho mn

    (i) j C0 (Rn), 0 j(x) 1, x Rn, j = 0, 1, . . . , k ,(ii) suppj Uj, j = 0, 1, . . . , k ,

    (iii) A ch c hu hn k sao cho j|A = 0,

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    47/144

    41 Bi3. Khng gian Sobolev Wm,p()

    (iv)kj=0 j(x) = 1, x K.

    t uj = ju, j = 0, 1, . . . , k . Ly > 0. Nu vi mi j, ta u chn c hm

    C0 (R

    n) sao cho

    uj jm,p, < /(k + 1)th hm =

    kj=0 j tho mn

    u m,p, =kj=0

    uj jm,p, .

    C suppu0 U0 nn, theo B 3.8 v 3.9, vi > 0 nh hm cn tm l0 = J u0 C0 (Rn). Ta cn phi tm hm j vi 1 j k. C uj Wm,p(Rn\j)vi j = Uj . Ly yj l vecto c xc nh t tnh cht segmenti vi imxj v ln cn Uxj . t tj = j tyj vi t c chn sao cho

    0 < t < min{1, d(Uj ,Rn\Uxj)/|yj |}.C tj Uxj v tj = (theo tnh cht segment). t utj(x) = uj(x + tyj). C

    utj Wm,p(Rn\tj), v Dutj Duj trong Lp() khi t 0+, 0 || m.

    Nn utj uj trong Wm,p() khi t 0+.Li c Uxj Rn\tj nn theo B 3.9 c

    J utj utj trong Wm,p( Uxj ) khi 0+.

    Do vi t > 0, > 0 nh th hm cn tm l j = J utj.T nh l trn, vi ch Rn tho mn tnh cht segment, ta c H qu sau.

    H qu 3.12. Wm,p0 (Rn) = Wm,p(Rn).

    3.3.3 Xp x bi cc hm C0

    ()

    Trong mc ny, ta lun gi s rng 1 < p < , p l s lin hp ca p. Mt tp ngF trong Rn c gi l cha gi ca mt hm suy rng T D(), k hiu suppT F,nu T() = 0 vi mi C0 (Rn), |F = 0. Ta ni tp ng F l (m, p)polar nuch c duy nht mt hm suy rng T Wm,p(Rn) c gi trong F l T = 0.Ch . Nu F c o dng th n khng th l (m, p)polar. Thc vy, nu F c o dng th n cha mt tp con compact K c o dng. Khi , hm c trng 1Kca tp K thuc Lp

    (Rn), v do thuc Wm,p

    (), c supp1K F nhng 1K = 0.Nu mp > n th ch c duy nht tp rng l (m, p)polar. Tht vy, nu mp > n ta

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    48/144

    42 Bi3. Khng gian Sobolev Wm,p()

    c php nhng lin tc Wm,p(Rn) C0 (Rn), theo ngha vi mi u Wm,p() c mtu0 C0 (Rn) m u(x) = u0(x)a.e, v

    u0(x)

    C

    u

    m,p,

    x

    Rn,

    trong , hng s C khng ph thuc vo x v u. Nh vy, vi mi x Rn hm Diracx() = (x) thuc vo (Wm,p(Rn)) = (W

    m,p0 (R

    n))=Wm,p(Rn), c suppx = {x}.C php nhng Wm+1,p(Rn) Wm,p(Rn) nn Wm,p(Rn) Wm1,p(Rn), do mttp l (m + 1, p)polar th n cng la (m, p)polar.

    Xt nh x thc trin u u c xc nh nh sau

    u(x) =

    u(x), nu x ,0, nu x

    c.

    B sau ch ra rng nh x thc trin ny l php nhng ng c t Wm,p0 () voWm,p(Rn).

    B 3.13. Cho u Wm,p0 (). Khi , vi 0 || m c Du = Du theo nghasuy rng trong Rn. Do , u Wm,p(Rn).

    Chng minh. T nh ngha, c mt dy {k}k=1 trong C0 () m k hi t n utrong Wm,p0 (), khi k

    . Vi 0

    |

    | m,

    C0 (R

    n) cRn

    u(x)D(x)dx =

    u(x)D(x)dx

    = limk

    k(x)D(x)dx

    = limk

    (1)||

    D(x)(x)dx

    = (1)||

    Du(x)(x)dx

    = (1)|| Rn Du(x)(x)dx

    nn, Du = Du theo ngha suy rng trong Rn. Do , um,p,Rn = um,p,.nh l sau cho thy khi no th nh x thc trin ny l ng c ln.

    nh l 3.14. C0 () tr mt trong Wm,p(Rn) khi v ch khi c l (m, p)polar.

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    49/144

    43 Bi3. Khng gian Sobolev Wm,p()

    Chng minh. Trc ht ta chng minh iu kin cn, ngha l gi s C0 () tr mttrong Wm,p(Rn), T Wm,p(Rn), suppT c, ta phi chng minh T = 0. Tht vy, lyu Wm,p(). T gi thit, tn ti mt dy {k}k=1 trong C0 () m k

    m,p u, k .

    Khi , do suppT c

    nn

    T(u) = limk

    T(k) = 0

    hay T = 0.

    By gi ta i chng minh iu kin . T h qu ca nh l Hahn-Banach, chng minh C0 () tr mt trong W

    m,p() ta ch cn chng minh nu T Wm,p

    (), T|C0 () = 0 th T = 0. y chnh l nh ngha ca c l (m, p)polar chng minh nh l chnh ca mc ny ta cn mt s b sau.

    B 3.15. Cho B = (a1, b1) (a2, b2) (an, bn) l mt hp ch nht m trongRn, v C0 (B). Nu

    B

    (x)dx = 0 th ta c phn tch (x) =nj=1 j(x) vi

    j(x) C0 (B) sao cho bjaj

    j(x)dxj = 0 (3.14)

    vi mi xi R, i = j, i = 1, 2, . . . , n c nh.

    Chng minh. Vi mi 1 j m chn uj C0 (aj, bj) sao cho bjaj uj(t)dt = 1.t

    Bj = (aj, bj) (aj+1, bj+1) (an, bn),

    j(xj, . . . , xn) =

    b1a1

    dt1

    b2a2

    dt2 bj1aj1

    (t1, . . . , tj1, xj, . . . , xn)dtj1,

    j(x) = u1(x1) . . . uj1(xj1)j(xj, . . . , xn).

    C j C0 (B) v Bj

    j(xj, . . . , xn)dxj . . . d xn =B

    (x)dx = 0.

    t 1 = 2, j = j j+1(2 j n 1), n = n. C j C0 (B), 1 j nv =

    nj=1 j.

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    50/144

    44 Bi3. Khng gian Sobolev Wm,p()

    Li c

    b1

    a1

    1(x)dx1 =

    =b1a1

    (x)dx1 2(x2, . . . , xn)b1a1

    u1(x1)dx1 = 0bjaj

    j(x)dxj =

    = u1(x1) . . . uj1(xj1)

    bj

    aj

    j(xj, . . . , xn)dxj j+1(xj+1, . . . , xn)bjaj

    uj(xj)dxj

    = 0

    bn

    an

    n(x)dxn = u1(x1) . . . un1(xn1)bn

    an

    (xn)dxn = 0

    B 3.16. Nu T D(B), DjT = 0 j = 1, . . . , n , th tn ti hng s k sao cho

    T() = k

    B

    (x)dx, C0 (B).

    Chng minh. Trc ht ch rng, nu B (x)dx = 0 th theo b 3.15 trc ta cphn tch = nj=1 j vi j C0 (B), tho mn (3.14) v j = Djj vi j C0 (B)c xc nh bi

    j(x) =

    xjaj

    j(x1, . . . , tj, . . . , xn)dtj.

    Khi , T() =nj=1 T(j) =

    nj=1 T(Djj) =

    nj=1 DjT(j) = 0.

    Nu T = 0 hin nhin ta c iu phi chng minh.Nu T = 0 th c 0 C0 (B) sao cho T(0) = k1 = 0. T ch trn, c

    B

    0(x)dx =

    k2 = 0 v T(0) = kB

    0(x)dx vi k = k1/k2. Vi mi C0 (B) t K() =

    B(x)dx. C

    B(x) K

    k20(x)dx = 0.

    T ch , c

    T() =K

    k2T(0) = k

    B

    (x)dx.

    B 3.17. Nu u L1loc(),

    u(x)(x)dx = 0, C0 () th u = 0a.e trong .

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    51/144

    45 Bi3. Khng gian Sobolev Wm,p()

    Chng minh. Nu C0(), th vi > 0 nh c J thuc C0 () v J hit u n trong khi 0+. Do , t gi thit c

    u(x)(x)dx = 0 vi mi

    C0().Ly K

    v > 0. T gi thit c

    k=0

    K{k|u(x)| 0 sao cho vi bt k tp con Aca K c (A) < th

    A

    |u(x)|dx < /2.Ta p dng nh l Lusin cho hm o c 1Ksignu trong tp K c o (K) < ,c C0() vi supp K v |(x)| 1, x K sao cho

    {

    x

    : (x)= 1K(x)signu(x)

    }=

    {x

    K : (x)

    = 1K(x)signu(x)

    }< .

    Khi K

    |u(x)|dx =

    u(x)1K(x)signu(x)dx

    =

    u()(x)dx +

    u(x)(1K(x)signu(x) )dx

    2{x:(x)=1K(x)signu(x)}

    |u(x)|dx .

    Nh

    vy u(x) = 0a.e trn K, v do trn .T hai B 3.16 v 3.17 trn ta d c

    H qu 3.18. Nu u L1loc(B), Dju = 0, j = 1, . . . , n , th tn ti mt hng s k saocho u(x) = k a.e trong B.

    nh l 3.19. (1) Nu Wm,p() = Wm,p0 () th c l (m, p)polar.

    (2) Nu c l (1, p)polar v (m, p)polar th Wm,p() = Wm,p0 ().

    Chng minh. (1) Gi s c Wm,p() = Wm,p0 (). Trc ht, ta chng minh (c) = 0.V nu khng ta lun chn c mt hp ch nht mB Rn sao cho (B ) > 0 v(B c) > 0. Ly u l hn ch xung ca mt hm v C0 (Rn) m v(x) = 1, x B . C u Wm,p() = Wm,p0 (). Theo B 3.13, c u Wm,p() v Dj u = Djutheo ngha suy rng trong Rn, vi 1 j m. M Dju|B = 0 nn Dj u|B = 0. Do ,theo H qu trn, u l hng hu khp trn B. iu ny tri vi gi thit u|B = 1, vu|Bc = 0. Nh vy c c o 0.Ly v Wm,p(Rn) v u = v| c u Wm,p() = Wm,p0 (). T B 3.13 cu Wm,p(Rn) c th xp x bng cc hm thuc C0 (). C Dv = Du trong , vimi 0 || m, v do D

    v = D

    u hu khp trong Rn

    (v c

    c o 0), vi mi

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    52/144

    46 Bi3. Khng gian Sobolev Wm,p()

    0 || m. Nh vy, v c th xp x bi cc hm thuc C0 (), nn theo nh l3.14 c c l (m, p)polar.(2)Gi s c l (1, p)polar v (m, p)polar. Ly u Wm,p(), ta phi chng minhu

    Wm,p

    0(). V u

    Lp() nn D

    ju

    W1,p(Rn) theo ngha

    Dj u, v = limk

    Dj u, k = limk

    u, Djk

    vi k C0 (Rn), k v trong W1,p(Rn) khi k . Li c Dju Lp(Rn) H1,p(Rn) nn Dj u Dju W1,p(Rn). M (Dj u Dju)| = 0 v c l (1, p)polarnn Dj u = Dju theo ngha suy rng trong Rn. Bng phng php quy np, ta cDu = Du theo ngha suy rng trong Rn, vi 0 || m. Do , u Wm,p(Rn).Theo nh l 3.14, do c l (m, p)polar, hn chu ca u xung thuc Wm,p0 ().Nu (m, p)polar suy ra (1, p)polar, th t nh l trn, (m, p)polar l iu kincn v W

    m,p0 () = Wm,p(). Ta s i tm xem khi no iu xy ra. Trc

    ht ta cn mt s B sau.

    B 3.20. F Rn l (m, p)polar khi v ch khi F K l (m, p)polar vi mitp compact K Rn.

    Chng minh. R rng l nu F l (m, p)polar th F K l (m, p)polar vi mitp compact K Rn. Do ta ch cn phi chng minh iu kin . Gi sT Wm,p(Rn) c suppT F. Theo nh l 3.5 tn ti v LpN(Rn) sao cho

    T(u) = 0||m

    Du, v, u Wm,p(Rn).

    Ly c nh mt hm f C0 (Rn) tho mn(i) f(x) = 1, |x| 1,(ii) f(x) = 0, |x| 2,(iii) f(x) 0, 1 < |x| < 2.

    Vi mi > 0 t f(x) = f(x). C Df(x) = ||Df(x) hi t u theo x

    Rn

    n 0 khi 0+, 1 || m. Do fT Wm,p

    (Rn) v vi mi C0 (Rn) c|T() fT()| = |T() T(f)|

    = 0||m

    |Rn

    vD

    (x)(1 f(x))

    dx

    = 0||m

    Rn

    v(x)D(x)D(1 f(x))dx

    0||m Rn|w(x)D(x)|dx m,pw; LpN

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    53/144

    47 Bi3. Khng gian Sobolev Wm,p()

    trong

    w(x) =

    ||m

    vD

    (1 f(x))

    = v(x)(1 f(x)) ||m,=

    vD

    f(x),

    m supp(1f) {|x| 1/} v Df(x) hi t u theo x Rn n 0 khi 0+, 1 || m nn lim

    0+wp = 0. Do fT T trong Wm,p(Rn) khi 0+. Li c

    supp(fT) {|x| 2/} l tp compact nn, theo gi thit (fT)F{|x|2/}

    = 0, vF{|x| 2/} l (m, p)polar, c fT = 0 v do T = 0 hay F l (m, p)polar.

    B 3.21. Nu p q v F Rn l (m, p)polar th F cng l (m, q)polar.

    Chng minh. Ly K Rn l tp compact. Theo B 3.20 ta ch cn chng minhKF l (m, q)polar. Ly G Rn l tp m, b chn cha K. D c php nhng lintc Wm,p0 (G) Wm,q0 (G) nn Wm,q(G) Wm,p(G). Vi bt k T Wm,q(Rn)c suppT K G th T Wm,q(G) v do T Wm,p(G). M K F l(m, p)polar nn T = 0 hay K F l (m, q)polar.nh l 3.22. Vi

    p 2th

    W

    m,p

    0 () = W

    m,p

    ()khi v ch khi

    c l(m, p

    )polar.

    Chng minh. Do p 2 nn p p. Theo b 3.21, nu c l (m, p)polar th c l(m, p)polar v do cng l (1, p)polar. Nh vy theo nh l 3.19 ta c iu phichng minh.

    Ch . T nh l nhng Sobolev, vi (m 1)p < n c php nhng lin tc

    Wm,p(Rn) W1,q(Rn), q = npn

    (m

    1)p

    nn W1,q

    (Rn) Wm,p(Rn). Nu p 2n/(n + m 1) th q p, nn theo b 3.21,nu c l (m, p)polar th cng l (1, p)polar.Nu (m 1)p n th ch khi = Rn th c mi l (m, p)polar v do hin nhin l(1, p)polar.Nh vy nu p min{n/(m 1), 2n/(n + m 1)} th c l (1, p)polar khi c l(m, p)polar.

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    54/144

    48 Phng trnh o hm ring

    Bi 4Bt ng thc Garding v bi ton Dirichlet i

    vi phng trnh elliptic cp cao

    4.1 Mt s k hiu v kt qu cn thit

    Gi s l tp m, b chn trong Rn vi bin trn. Trong , cho ton t viphn cp r:

    A(x, D) =||r

    a(x)D,

    trong a(x) C(), = (1, 2, . . . , n) l a ch s. Vi cc k hiu quenthuc:

    || = 1 + 2 + + n, Dj = i xj

    , D = D1 . . . Dn ,

    ta nh ngha ton tA0(x, D) =

    ||=r

    a(x)D,

    l phn chnh ca ton t vi phn A(x, D).

    nh ngha 4.1. Ton t vi phn A(x, D) c gi l elliptic u trong nu tn tihng s dng 0 > 0 sao cho

    Re(A0(x, )) = Re||=r

    a(x) 0||r, x , Cn. (4.1)

    Nu n > 2 th ton t elliptic A(x, D) c cp chn r = 2m. Vi n 2, iu nykhng ng, chng hn c ton t elliptic vi a thc c trng 1 + i2 nhng cpkhng chn. T by gi tr i, ta ch xt ton t elliptic c cp r = 2m:

    A(x, D) =

    ||2m

    a(x)D, a(x) C(). (4.2)

    Ton t vi phn A(x, D) trong c gi l lin hp hnh thc ca ton t vi phnA(x, D) nu

    (A(x, D)u, v) = (u, A(x, D)v)

    u, v

    C

    0

    (), (4.3)

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    55/144

    49 Bi4. Bt ng thc Garding v bi ton Dirichlet...

    trong (, ) k hiu tch v hng trong L2().Nu A(x, D) l ton t elliptic u trong th A(x, D) cng l ton t elliptic u

    trong .

    K hiu H0

    () = L2

    () l khng gian cc hm o

    c, bnh ph

    ng kh tchtrong , tc l vi u L2() th

    uL2() =

    |u(x)|2dx1/2

    < +.

    Khi ta c: H0() l khng gian Hilbert vi tch v hng

    (u, v)0 =

    u(x)v(x)dx, u(x), v(x) H0().

    Vi m nguyn dng, m

    1, ta k hiu Hm() l khng gian cc hm u(x)

    L2(),

    c o hm suy rng n cp m thuc L2(), tc l

    Hm() = {u : Du L2(), : || m}.Hm() l khng gian Hilbert vi tch v hng

    (u, v)m =||m

    (Du, Dv)L2(), u(x), v(x) Hm()

    v chun:

    um = ||m

    |D|2dx1/2

    , (u Hm()). (4.4)

    Ta c: Hm1 Hm() L2() = H0() nu m1 > m v php nhng l tr mt vcompact.

    Hm0 () l b sung ca C0 () theo chun (4.4):

    um =||m

    |D|2dx1/2 , u C0 ().

    Khi Hm0 () l khng gian con ng trong Hm(), c tnh cht:

    (i) Hm0 () =

    u : u Hm(),

    ju

    j= 0, 0 j m 1

    .

    (ii) Hm0 () l khng gian cc hm u m c th thc trin khng ra ngoi thnhmt hm Hm(Rn), tc l nu u Hm0 (),

    u =

    u(x), x ,0, x / .

    th u Hm

    (Rn

    ).

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    56/144

    50 Bi4. Bt ng thc Garding v bi ton Dirichlet...

    (iii) nh l v vt: Gi s l min m b chn trong Rn c bin trn. Khi, nh x

    u

    ju

    j, j = 0, 1, . . . , m 1

    (trong u

    l o hm theo php tuyn trong ca bin) tC() vo C()

    c m rng thnh ton t tuyn tnh lin tc t Hm() vom1j=0

    Hmj+1/2().

    Hn na, l nh x ln, ng thi tn ti nh x tuyn tnh lin tc

    g = {gj}m1j=1 Rg = um1j=0

    Hmj+1/2() Hm()

    sao cho j

    jRg =

    ju

    j= gj , 0 j m 1.

    K hiu Hm() l i ngu ca Hm0 (): Hm() = (Hm0 ())

    .

    V C0 () tr mt trong Hm0 () nn H

    m() l khng gian cc hm suy rngtrong sao cho |(u, )| cm, C0 ().Ch rng nu u L2(), u xc nh mt phim hm tuyn tnh lin tc trnC0 (), do u Hm(). Bng cch ng nht L2() vi mt khng gian conca Hm(), ta c:

    Hm0 () L2() Hm() (4.5)

    trong php nhng Hm() L2() l lin tc v tr mt.

    4.2 Bt ng thc Garding

    Cho ton t elliptic n cp 2m trong

    A(x, D)u = ||2ma(x)Du,trong a(x) C(). Khi , A(x, D)u c th vit di dng

    A(x, D)u =

    ||m,||m

    D(aDu), a C() (4.6)

    Ta xc nh a(u, v) l dng song tuyn tnh

    a(u, v) =

    ||m,||maD

    u(x)Dv(x)dx (4.7)

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    57/144

    51 Bi4. Bt ng thc Garding v bi ton Dirichlet...

    vi mi u(x), v(x) C0 ().Khi , a(u, v) c th m rng thnh dng song tuyn tnh lin tc trn Hm0 ().

    Tht vy, ta c: vi mi u(x), v(x) C0 () th

    |a(u, v)| ||m,||m

    |Du(x)Dv(x)|dx

    c ||m,|

    |Du(x)|2dx1/2

    ||m,|

    |Du(x)|2dx1/2

    cuHm0 ()vHm0 ().

    T suy ra a(u, v) c th m rng thnh dng song tuyn tnh lin tc trn Hm0 ().

    Hn na, vi mi u, v

    C0 (), p dng cng thc Green, ta c

    a(u, v) = (A(x, D), v),

    theo nh l Lax-Milgram, tn ti duy nht ton t lin kt ca dng song tuyn tnha(u, v):

    A : Hm0 () Hm()sao cho:

    a(u, v) = (Au,v) u, v Hm0 ().

    iu ny c ngha l ton t vi phn

    A(x, D) : C0 () C0 ()

    c th m rng thnh ton t tuyn tnh lin tc A : Hm0 () Hm() xc nh bicng thc (4.10).

    nh l 4.1 (Bt ng thc Garding). Gi s

    A(x, D)u =

    ||m,||mD(aD

    u)

    l ton t elliptic u trong . Khi , tn ti cc hng sc1 > 0, c2 > 0 sao cho:

    Re a(u, u) c1u2Hm0 () c2u2L2() u Hm0 (). (4.8)

    Chng minh. Bt ng thc Garding i vi ton t ellitic cp hai c chng minhtrc y. Ta ch cn chng minh (4.8) vi u C0 ().

    chng minh bt ng thc Garding (4.8), ta phi tin hnh theo tng bc sau

    y:

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    58/144

    52 Bi4. Bt ng thc Garding v bi ton Dirichlet...

    Bc 1: Gi s A(x, D) l ton t elliptic thun nht cp 2m vi h s hng s:

    A(x, D) = A(D) =

    ||=m,||=maD

    +,

    trong a l hng s.

    Khi , ta c

    a(u, u) =

    ||=m,||=m

    aDuDudx, u, v C0 ().

    Thc trin u(x) bng 0 bn ngoi , ta c th xem u C0 (). Khi ,

    a(u, u) = ||=m,||=mRn aDuDudx

    =

    ||=m,||=m

    (2)nRn

    a+|u()|2d.

    V A(D) l ton t elliptic u, nn ta c:

    Re

    ||=m,||=m

    a++ 0||2m.

    Do :

    Re a(u, u) 0(2)n

    Rn ||2m

    |u()|2

    d.

    Ta bin i

    ||2m|u()|2 = (1 + ||2m)|u()|2 |u()|2

    1 + ||2m

    (1 + ||2)m (1 + ||2)m|u()|2 |u()|2

    T , ta nhn cRe a(u, u) cu2m cu2Hm1.

    Bc 2: Gi s u C0 (), supp u B(x0, ) l hnh cu tm x0, bn knh .Theo gi thit, a(x) C0 () nn a(x) lin tc u trong . Do , tn ti hmkhng ph thuc x0 v dn v 0 khi 0 sao cho vi mi ,

    |a(x) a(x0)| () x B(x0, ).

    K hiu a0(u, v) l dng song tuyn tnh nhn c bng cch thay cc hm a(x) bia(x0). Gi sA(x, D) l ton t elliptic thun nht cp 2m:

    A(x, D) = ||m,||ma(x)D+u.

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    59/144

    53 Bi4. Bt ng thc Garding v bi ton Dirichlet...

    Khi ,

    a(u, u) = a0(u, u) +

    ||m,||m

    (a(x) a(x0))DuDudx.

    Theo chng minh Bc 1, ta nhn c:

    Re a(u, u) cu2Hm cu2Hm1 ()u2Hm.Chn b sao cho () < c

    2. Khi , vi n C0 (), supp u B(x0, ), ta c

    Re a(u, u) c2u2Hm cu2Hm1.

    Bc 3: Gi s{Bj}j l ph hu hn ca gm cc hnh cu Bj bn knh v {j}l phn hoch n v ng vi ph {Bj} sao choj

    2j(x) = 1, x , supp j Bj.Ta c

    a(u, u) =j

    ||=m, ||=m

    a(x)(jDu) (jDu)dx + a1(u, u).

    Trong a1(u, u) gm nhng s hng ng vi , m t nht | hoc || m 1.Khi

    |a1(u, u)| cuHm1 uHm.Khai trin D(ju) v D(ju) theo cng thc Leibniz, sau vit a(u, u) di dng

    a(u, u) = j

    ||=m, ||=m

    a(x)(jDu) (jDu)dx + a2(u, u),

    vi a2(u, u) gm cc s hng cha Du v Du m | hoc || m 1. Khi |a2(u, u)| cuHm1 uHm.

    p dng chng minh bc 2 ta c

    Rea(u, u) c2

    j

    ju2Hm cuHm1uHm.

    Ch rng j

    ju2Hm =j

    ||=m

    |D(ju)|2dx + a3(u)

    =j

    ||=m

    j|D(u)|2dx + a4(u)

    =j

    ||=m

    |D(u)|2dx + a4(u)

    =

    u2

    Hm + a4(u).

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    60/144

    54 Bi4. Bt ng thc Garding v bi ton Dirichlet...

    Tnh ton tng t nh trn ta c

    Rea(u, u) c2u2Hm cuHm1u2Hm, u C0 (). (4.9)

    B 4.2 (Tnh li logarithm ca chun Sobolev). Vi s1 s s2, gi s [0, 1]sao cho s = s1 + (1 )s2. Vi mi u Hs2(Rn) ta cuHs uHs1 u1Hs2 . (4.10)

    Hn na nu s1 < s2, vi mi > 0 tn ti C > 0 sao cho

    uHs uHs2 + CuHs1 . (4.11)

    Chng minh. Tht vy, ta c

    uHs = (1 + ||2)s1|u()|2(1 + ||2)(1)s2|u()|2(1) d. (4.12)p dng bt ng thc Holder:

    fg1

    f

    g

    1, f, g 0, (4.13)

    ta c

    u2Hs u2Hs1u1Hs2 . (4.14) ta c bt ng thc cn chng minh.

    chng minh phn hai ca b , ta ch rng

    ab1 = (a)

    /(1)b1 maxa,/(1)b

    a + /(1)b.T ta suy ra

    uHs uHs1 + /(1)uHs2 = uHs1 + CuHs2 . (4.15)

    p dng b vi s1 = 0, s2 = m, s = m

    1, = /4c ta nhn c

    cuHm1uHm c4u2Hm + C1uHmuL2. (4.16)

    Cui cng p dng bt ng thc Cauchy vi = c/8c1, a = uHm, b = uL2 ta cVy ta nhn c bt ng thc Garding vi c1 = c/8:

    Rea(u, u) u2Hm 3c

    8u2Hm c2u2L2

    c8u2Hm c2u2L2 = c1u2Hm c2u2L2.

    Ta c iu phi chng minh.

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    61/144

    55 Bi4. Bt ng thc Garding v bi ton Dirichlet...

    4.2.1 Bi ton Dir ichlet

    Gi s A(x, D) l ton t elliptic cp 2m

    A(x, D) = ||m,||m

    D

    (aD

    u)

    trong min b chn Rn vi bin trn, a C(). Khi , ta c bt ngthc Garding:

    Re a(u, u) + c2u2L2() c1u2Hm0 (), u Hm0 ().

    p dng h qu ca nh l Lax-Milgram, ta c nh l sau y:

    nh l 4.3. Gi s > c2. Khi , vi mi f(x)

    L2(), tn ti duy nht nghim

    ca bi ton

    (A + )u = f

    u Hm0 ()

    trong nghim u Hm0 () ca bi ton c hiu theo ngha suy rng:

    (u, Av + v) = (f, v), v C0 ().

    vi A l ton t vi phn lin hp hnh thc ca A.

    Chng minh. K hiua1(u, v) = a(u, v) + (u, v)

    trong a(u, v) l dng song tuyn tnh trong Hm0 () xc nh bi (4.7). Theo btng thc Garding, ta c:

    Re a1(u, u) = Re a(u, u) + u2 c1u2Hm0 (), u Hm0 ().

    Mt khc, ta li c:

    |a1(u, v)| cuHm0 ()vHm0 (), u Hm0 ().

    Gi sf(x) L2(). Khi , vi mi v Hm0 (), ta c

    |(f, v)| f0v0 cvHm0 ().

    iu c ngha (f, v) l phim hm tuyn tnh b chn trong Hm0 (). Theo nh lLax-Milgram, tn ti phn t u0 Hm0 () sao cho

    a1(u0, v) = (f, v), v Hm

    0 ().

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    62/144

    56 Bi4. Bt ng thc Garding v bi ton Dirichlet...

    Ch rng vi mi v C0 () tha1(u0, v) = a(u0, v) + (u0, v) = (Au0, v) + (u0, v)

    = (u0, Av + v).

    Do , ta c(u0, A

    v + v) = (f, v), v C0 ().Gi s nu u0 l mt nghim khc ca bi ton

    (u0, Av + v) = (f, v), v C0 ().

    t = u0 u0. Khi , a1(, ) = 0 v Hm0 (). T , a1(, ) = 0 nn = 0.Vy nghim u0 ca bi ton Dirichlet

    (A + )u0 = f, u0 Hm0 ()l duy nht.

    By gi, gi thit f L2(), hj Hmj1/2(), (j = 1, 2, . . . , m 1). Khi ,tn ti duy nht h Hm() sao cho:

    jh

    j= jh = hj, (j = 1, 2, . . . , m 1).

    t f = f (A + )h Hm(), > c2. Theo h qu ca nh l Lax-Milgram,

    tn ti duy nht nghim v ca bi ton:(A + )v = f

    v Hm0 ().Khi , u = v + h l nghim duy nht ca bi ton:

    (A + )u = f

    u Hm()ju

    j

    = ju = jv + jh = hj, (j = 1, 2, . . . , m

    1).

    Vy ta c nh l:

    nh l 4.4. Gi s > c2. Khi , vi mi f L2(), hj Hmj1/2(), (j =1, 2, . . . , m 1), tn ti duy nht nghim suy rng ca bi ton:

    (A + )u = f trong

    u Hm()ju

    j= hj trn , (j = 1, 2, . . . , m 1).

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    63/144

    57 Phng trnh o hm ring

    Bi 5L thuyt Fredholm-Riesz-Schauder v bi ton

    Dirichlet thun nht vi phng trnh elliptic

    cp cao

    5.1 L thuyt Fr edholm-Riesz-Schauder

    Gi s H l mt khng gian Hilbert thc. Theo truyn thng, ta k hiu (, ) v l tch v hng v chun trong khng gian H. Trong phn sau y ta s s dnghai kt qu quan trng c chng minh trong cc gio trnh gii tch hm

    Mnh 5.1. Mi khng gian con hu hn chiu ca khng gian Hilbert H u ng.

    Chng minh. Gi s H1 l khng gian con hu hn chiu ca H, x1, x2, . . . , xn l cs trc chun trong H1. Khi , mi u H1 u c biu din

    u = 1x1 + 2x2 + + nxn,

    trong j = (u, xj), j = 1, 2, . . . , n. Nu uk = k1x1 + k2x2 + + knxn l dy hi

    t trong H1 n u, th tc lng

    |kj lj| = |(uk ul, xj)| uk ulxj k,l+

    0

    ta suy ra dy {kj }+k=1, (j = 1, 2, . . . , n) hi t trong R, tc l

    limk+

    kj = 0j , j = 1, 2, . . . , n.

    t u0 = 01x1 + 02x2 + + 0nxn H1. Khi uk u0 trong H. T tnh duy nht

    ca gii hn ta suy ra u = u0 H. Vy mi dy {uk} H1 hi t n u th u H1.Do H1 l khng gian con ng ca H.

    Mnh 5.2. Khng gian con H1 trong H hu hn chiu khi v ch khi mi dy b

    chn trong H1 u cha mt dy con hi t.

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    64/144

    58 Bi 5. L thuyt Fredholm-Riesz-Schauder v bi ton Dirichlet...

    Chng minh. Mnh 5.2 c suy t nh l: Khng gian compact a phng thhu hn chiu trong l thuyt gii tch hm.

    Gi s T l ton t tuyn tnh hon ton lin tc trong H, c ngha l nu {uk} ldy b chn trong H th dy {T uk} cha dy con hi t. K hiu L = I T, trong I l ton t n v trong H, v N = ker L = {u H : Lu = 0}.Mnh 5.3. Khng gian con N ca khng gian H l hu hn chiu.

    Chng minh. R rng N l khng gian con ca H. Gi s{uk} l dy b chn trongN, ta c Luk = 0, k = 1, 2, . . . . Khi T uk = uk. V T l ton t hon ton lin tc

    nn trch c mt dy con hi t {T ukl}+l=1 . V T ukl = ukl nn {ukl} l dy con hi

    t ca dy b chn {uk} trong N. T mnh 5.2 ta suy ra N hu hn chiu.K hiu M = {u H : (u, N) = 0}. R rng M l khng gian con ng trong H.

    Mnh 5.4. Tn ti hng s c0 > 0 sao cho

    T u c0u, u H.

    Chng minh. Gi s ngc li khng tn ti hng s c0

    nh vy. Khi trong H tnti dy {uk} sao cho uk = 1, T uk +. Nhng iu khng th v T l tont hon ton lin tc.

    Mnh 5.5. Tn ti hng s c1 > 0 sao cho

    c11 u Lu c1u, u M.

    Chng minh. Bt ng thc bn phi c suy trc tip t mnh 5.4. Gi s bt

    ng thc bn tri khng tho mn. Khi tn ti dy {uk} M sao cho uk = 1v Luk 0 khi k +. V T l ton t hon ton lin tc v {uk} l dy b chnnn {T uk} cha mt dy con hi t {T ukl}.

    Mt khc ta c ukl T ukl = Lukl , hay ukl = T ukl + Lukl . V dy {Lukl} hi t v0 v dy {T ukl} hi t, nn dy {ukl} hi t. Gi s

    limk+

    ukl = u trong H.

    Theo mnh 5.4,

    T(ukl

    u)

    c0

    ukl

    u

    .

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    65/144

    59 Bi 5. L thuyt Fredholm-Riesz-Schauder v bi ton Dirichlet...

    Cho l +, ta c T ukl T u trong H. Vy t ng thc ukl = T ukl + Lukl , chol + ta s c u = T u, hay Lu = 0. iu ny c ngha l u N. V N v Mtrc giao nn

    (u, v) = 0

    v

    M.

    Mt khc M l khng gian con ng v {ukl} l dy con hi t nn liml+

    ukl = u M.T suy ra u = 0. iu ny l v l v ukl = 1 v lim

    l+ukl = u = 0. Mnh

    c chng minh xong.

    Vi mi v c nh, t mnh 5.4 ta c

    |(v , T u)| vT u cu u H.V vy (v , T u) l phim hm tuyn tnh b chn trong H. Theo nh l Frchet-Riesz,

    tn ti phn t g H sao cho(v , T u) = (g, u), u H.

    t g = Tv, trong T : v Tv = g H, l ton t tuyn tnh trong H, tho mniu kin

    (v , T u) = (Tv, u), u, v H.T c gi l ton t lin hp ca T. Hn na, T = T.

    Mnh 5.6. Ton t T l ton t hon ton lin tc.

    Chng minh. Gi s{uk} l mt dy b chn trong H, tc l uk C, k = 1, 2, . . . .Khi

    Tuk2 = (Tuk, Tuk) = (uk, T Tuk) ukT Tuk c0cTuk

    T ta c Tuk c0c, tc l dy {Tuk} l dy b chn. V T l ton t hon tonlin tc nn tn ti dy con hi t {T Tukl}. Do

    T(ukl ukr )2 = (T(ukl ukr ), T(ukl ukr))= (ukl ukr , T T(ukl ukr)) 2cT T(ukl ukr) 0 khi l, r +.

    Vy {Tukl} l dy hi t. T suy ra T l ton t hon ton lin tc.nh l 5.7. Phng trnh

    v Tv = f (5.1)

    c nghim khi v ch khi f M.

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    66/144

    60 Bi 5. L thuyt Fredholm-Riesz-Schauder v bi ton Dirichlet...

    Chng minh. Nu phng trnh (5.1) c nghim th vi mi w N,

    (f, w) = (v T

    v, w) = (v, w) (T

    v, w)= (v, w T w) = (v,Lw) = 0,

    t suy ra f M. Ngc li gi thit f M. Theo mnh 5.5, Lu v u lcc chun tng ng trong M. Do , vi u M, ta c

    (u, f)| uf cu,

    c ngha l (u, f) l phim hm tuyn tnh b chn trong M. V M l khng giancon ng trong H nn M l khng gian Hilbert. V vy theo nh l Frchet - Riesz,

    tn ti phn t w M sao cho (u, f) = (Lu, Lw), u M. Ta s chng minh rng(u, f) = (Lu, Lw) trong H. Tht vy, trc ht ch rng khng gian con N = ker Lhu hn chiu nn N l ng trong H. V vy vi mi u H, ta c u = u + u, trong u M, u N. T , ch rng Lu = 0 v (u, f) = 0 ta s c

    ((Lu, Lw) = (Lu, Lw) = (u, f) = (u, f) + (u, f) = (u, f).

    Vy,(u, f) = (Lu, Lw), u H.

    Gi sv = Lw. Khi (Lu,v) = (u, f),

    u

    H. T (u, v

    Tv) = (u, f),

    u

    H.

    V vyv Tv = f.

    K hiu L = I T, N, M l cc khng gian i ngu ca N v M. Khi tanhn c

    H qu 5.8. Phng trnh Lu = f c nghim khi v ch khi f M.

    Chng minh. Ta ch rng T l ton t hon ton lin tc v T = T, do h quc suy trc tip t nh l 5.7

    Ta nh ngha ton t Ln(n = 1, 2, . . . ) bng quy nap nh sau;

    L1 = L, Ln+1 = L Ln,Nn = ker L

    n = {u H : Lnu = 0}.

    Mnh 5.9. Ton tLn c th biu din di dng Ln = I Tn, trong Tn l tont hon ton lin tc.

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    67/144

    61 Bi 5. L thuyt Fredholm-Riesz-Schauder v bi ton Dirichlet...

    Chng minh. Tht vy, ta c

    Ln = (I T)n =n=0

    Cn(1)T

    = I (nT C2nT2 + + Tn) = I Tn,trong Tn = nT C2nT2 + + (1)nTn l ton t hon ton lin tc.H qu 5.10. Mi khng gian con Nn trong H u l hu hn chiu.

    Chng minh. Suy trc tip t mnh 5.3, 5.9

    Mnh 5.11. Nn Nn+1.

    Chng minh. T nh ngha ca khng gian Nn ta suy ngay ra iu phi chng minh.

    Mnh 5.12. Tn ti s nguyn dng k sao cho Nn = Nn+1 vi n < k v Nn = Nkvi n > k.

    Chng minh. Trc ht ta chng minh rng: Nu Nn = Nn+1 th Nn+2 = Nn. Gi su Nn+2. Khi Ln+1Lu = Ln+2u = 0. V vy Lu Nn+1 = Nn. Nhng iu c ngha l LnLu = 0, tc l u Nn+1 = Nn. Vy Nn+2 Nn+1 = Nn. Mtkhc theo mnh 5.11, Nn = Nn+1 = Nn+2. Vy Nn+2 = Nn. Ta gi thit ngcli rng mnh 5.12 khng ng, tc l Nn = Nn+1 vi mi n. Theo nh l vphp chiu trong H, tn ti dy {un} Nn, un = 1 sao cho (un, Nn) = 0. Ta cT(un um) = un (Lun + T um). Nu n > m th

    Ln(Lun + T um) = Ln+1un + T L

    num = 0.

    T suy ra Lun + T um Nn vT(un um)2 = un2 + Lun + T um2 1.

    V vy dy {T un} khng cha dy con hi t, iu ny mu thun v T l ton t honton lin tc v {un} l dy b chn. Mnh c chng minh.K hiu T l min gi tr ca ton t L, cn R l min gi tr ca L, tc l

    R = {v H : u H,Lu = v},R =

    {v

    H :

    u

    H, Lu = v

    }.

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    68/144

    62 Bi 5. L thuyt Fredholm-Riesz-Schauder v bi ton Dirichlet...

    Mnh 5.13. Nu R = H th N = {0}.

    Chng minh. Gi thit R = H v tn ti u0 = 0 sao cho Lu0 = 0. V R = H, ta gi su1, u2, . . . , un ln lt l nghim ca phng trnh

    Lu1 = u0, Lu2 = u1, . . . , Lun = un1

    nhng khi Lnun = u0 = 0 v Ln+1un = Lu0 = 0. Nh vy un / Nn v un Nn+1.iu ny c ngha l Nn+1 = Nn vi mi n. iu ny mu thun vi mnh 5.12.nh l 5.14. R = H khi v ch khi N = {0}.

    Chng minh. Theo mnh 5.13, nu R = H th N = {0}. Ta ch cn chng minhrng nu N = {0} th R = H. Tht vy, nu N = {0} th M = H v R = H v theonh l 5.7, vi mi f H , tn ti nghim v ca phng trnh Lv = (I T)v = f.

    Mt khc, theo mnh 5.6, T l ton t hon ton lin tc, min gi tr caL = I T trng vi H nn N = {0}. iu c ngha l M = H. Theo hqu ca nh l 5.7 th vi mi f H, tn ti u H sao cho Lu = f, chng t rngR = H. iu ny kt thc chng minh.

    nh l 5.15. Cc khng gian con ker L = N v ker L = N c s chiu hu hn v

    bng nhau, tc ldim N = dim N < +.

    Chng minh. Theo mnh 5.3 v 5.6 ta suy ra N v N l hu hn chiu. Gi sdim N = n, dim N = m. Gi thit m > n. Ta s chng minh rng iu ny l khngth xy ra.

    K hiu u1, u2, . . . , un l c s trc chun trong N, v1, v2, . . . , vm l c s trcchun trong N, ta c

    (uj, ui) = ij, (vj, vi) = ij.t

    Su = T u ni=1

    (ui, u)vi, S : H H,

    W u = u Su = u T u ni=1

    (ui, u)vi.

    Khi S l ton t hon ton lin tc. Tht vy, ta c ton t S T nh x mi dy bchn trong H thnh dy b chn trong khng gian con N

    hu hn chiu. Theo mnh

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    69/144

    63 Bi 5. L thuyt Fredholm-Riesz-Schauder v bi ton Dirichlet...

    5.2 th dy b chn trong N cha dy con hi t. T suy ra: nu {uk}k=1 l dyb chn trong H th dy {Suk}k=1 = {T uk

    ni=1

    (ui, uk)vi}k=1 cha dy con hi t.Nu W u = 0 th

    0 = (vj, W u) = (vj, Lu) +ni=1

    (ui, u)(vi, vj)

    = (Lvj, u) + (uj, u) = (uj, u),

    (j = 1, 2, . . . , n).

    V vy ta c

    0 = W u = Lu +ni=1

    (ui, u)vi = Lu.

    iu ny c ngha l ker W ker L. Nh vy nu u ker W th (u, uj) = 0, (i =1, 2, . . . , n, tc l uN = ker L, nhng u ker L nn ta suy ra u = 0, v phng trnhW u = 0 c nghim duy nht u = 0. Theo nh l 5.14, phng trnh W u0 = un+1 cnghim u0, nhng

    (vn+1, W u0) = (vn+1, Lu0) +ni=1

    (ui, u0)(vn+1, vi) = 0,

    hay l (vn+1, vn+1) = 0. iu ny l v l v vn+1 = 1. Trng hp m < n ta kho

    st t

    ng t bng cch xt ton t S

    v = T

    v +

    mj=1(vj, v)uj. Vy m = n.nh l 5.16. Phng trnh u T u = 0 c nghim khng tm thng ch i vi mttp hp m c s thc khng c im gii hn hu hn.

    Chng minh. Ta s chng minh rng khng th tn ti mt dy b chn {n}nN vin = m, n = m, n, n = 1, 2, . . . , sao cho phng trnh

    u

    nT u = 0

    c nghim u = 0. Ta s chng minh bng phn chng. Gi s un = 0 l nghimphng trnh

    un nT un = 0, (n = 1, 2, . . . ).Khi vi mi n, cc phn t u1, u2, . . . , un l c lp tuyn tnh. Tht vy, ta schng minh iu ny bng quy np. Gi s u1, u2, . . . , uk1 l c lp tuyn tnh, v

    c1u1 + c2u2 + + ck1uk1 + ckuk =k

    j=1cjuj. (5.2)

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    70/144

    64 Bi 5. L thuyt Fredholm-Riesz-Schauder v bi ton Dirichlet...

    Ta c

    0 = k

    k

    j=1cjT uj =

    k

    j=1kcj

    juj. (5.3)

    Tr hai v ca hai ng thc trn ta c

    k1j=1

    1 k

    j

    cjuj = 0. (5.4)

    V {uk} c lp tuyn tnh, nn t ta suy ra cj = 0 vi j = k. Do t (5.2) ta cckuk = 0. V uk = 0 nn ck = 0, v do u1, u2, . . . , un c lp tuyn tnh.

    K hiu En l khng gian sinh bi h vect c lp tuyn tnh u1, u2, . . . , uk. Theonh l v php chiu: Tn ti cc phn t vn En sao cho vn = 1 v (vn, En1) = 0.Ngoi ra nu

    En th

    nT

    En1. Tht vy, vi

    En th

    =nj=1

    juj,

    v

    nT =nj=1

    juj nnj=1

    jujj

    =

    n1j=1

    1 n

    j

    juj.

    Do ta c nT En1.Nu {n} l dy b chn th {nvn} l dy b chn trong H, do dy {T(nvn}

    cha mt dy con hi t. Tuy nhin vi n > m,T(nvn mvm) = vn (vn nT vn + mT vm),

    vi ch rng vn nT vn v T vm = vmm thuc En1 ta cvn nT vn + mT vm En1,

    t suy ra(vn, vn nT vn + mT vm) = 0.

    Do , T(nvn mvm)2 = vn2 + vn nT vn+ mT vm2 1. T ta c khngnh rng dy

    {T(nvn)

    }khng th cha mt dy con hi t.

    Vy khng th tn ti dy cc gi tr phn bit {n}n=1, n = m, n, m.

    5.2 p dng l thuyt Fr edholm - Schauder vo bi ton Dir ichlet thun

    nht i vi phng trnh elliptic cp cao

    Gi s l tp m, b chn trong Rn vi bin trn .

    A(x, D) = ||2ma(x)D

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    71/144

    65 Bi 5. L thuyt Fredholm-Riesz-Schauder v bi ton Dirichlet...

    l ton t elliptic cp 2m, a(x) C().Bi ton Dirichlet. Cho f(x) L2(). Tm nghim ca bi ton

    A(x, D)u = f(x) trong ,juj

    = 0 trong (j = 0, 1, . . . , m 1). (D)

    trong

    l o hm theo php tuyn trong ca .

    Theo nh l 5.7, vi 0 ln, f(x) L2(), tn ti duy nht nghim u0 Hm0 ()ca bi ton:

    (A + 0)u = f(x) trong ,

    u u0 Hm0 ()

    sao cho a1(u0, v) = (u0, Av + 0v) = (f, v), v C0 ().T c lng

    |a1(u0, u0)| Re a1(u0, u0) + Re a(u0, u0) + 0u02 c1u02Hm0 (),

    ta cc1u02Hm0 () |a1(u0, u0)| = |(f, u0)| f0u00.

    Do ,

    u0

    2

    Hm

    0 () c

    f0

    .

    t u0 = (A + 0)1f, ta c

    (A + 0)1f2Hm0 () cf0.

    Nh vy, (A + 0)1 : L2() Hm0 () l nh x lin tc. V Hm0 () L2() lnh x nhng compact. Do c th coi (A + 0)1 l ton t hon ton lin tctrong L2(). iu ny cho php ta p dng l thuyt Fredholm - Schauder cho bi tonDirichlet i vi cc phng trnh

    Au = f, (5.5)Av = f, (5.6)

    Au = 0, (5.7)

    Av = 0. (5.8)

    K hiuT = (A + 0)

    1 : L2() L2()l ton t hon ton lin tc. Tng t,

    T

    = (A

    + 0)1

    : L2

    () L2

    ()

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    72/144

    66 Bi 5. L thuyt Fredholm-Riesz-Schauder v bi ton Dirichlet...

    cng l ton t hon ton lin tc.

    Hn na, ta ch rng

    Au = 0

    0u = (A + 0)u

    0(A + 0)

    1u = u.

    Nh vy, phng trnh Au = 0 c vit di dng tng ng

    u 0T u = 0. (5.7 )

    Tng t, phng trnh Av = 0 c vit di dng tng ng

    v 0Tv = 0. (5.8 )

    Cc phng trnh (5.5) v (5.6) c vit di dng tng ng

    u 0T u = T f, (5.5 )v 0Tv = Tf, (5.6 )

    trong T v T l cc ton t hon ton lin tc trong L2(). Ngoi ra, ta ch Tv T l cc ton t lin hp trong L2(). Tht vy, ta c (5.7 )

    (Au,v) = (u, Av) u, v C0 ().

    Do , vi u, v C0 () th

    (T u , v) = (T u, (A + 0)Tv)

    = (Tu , ATv + 0Tv) = (Tu , ATv) + (Tu , 0T

    v)

    = (AT u + 0T u , T v) = (u, Tv).

    iu chng t T l ton t lin hp ca T. p dng l thuyt Fredholm - Schauder,ta c nh l sau y

    nh l 5.17. Cc phng trnh thun nht

    Au = 0 v A

    v = 0

    c cng mt s hu hn nghim c lp tuyn tnh.

    Chng minh. Tht vy, cc phng trnh (5.7) v (5.8) tng ng vi cc phngtrnh (5.7 ) v (5.8 ), trong T l ton t compact trong L2() v T l ton t linhp ca n. Theo l thuyt Fredholm-Schauder, cc phng trnh (5.7 ) v (5.8 ) ccng mt s hu hn nghim c lp tuyn tnh. T , ta suy ra kt qu cn chngminh.

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    73/144

    67 Bi 5. L thuyt Fredholm-Riesz-Schauder v bi ton Dirichlet...

    nh l 5.18. Phng trnh Au + u = 0 c nghim khng tm thng ch i vi mttp m c cc gi tr khng c im gii hn hu hn.

    Chng minh. Tht vy, ta c

    Au + u = 0 (A + 0)u + ( 0)u = 0 u + ( 0)T u = 0

    Phng trnh Au + u = 0 tng ng vi phng trnh

    u + T u = 0, = 0trong T l ton t hon ton lin tc trong L2().

    Theo nh l Fredholm, phng trnh u + T u = 0 c nghim khng tm thngi vi mt tp hp m c cc gi tr , khng c im gii hn hu hn. T ,ta suy ra kt qu cn chng minh.

    nh l 5.19. Phng trnh Au = f gii c khi v ch khi (f, v) = 0 vi mi nghimv ca phng trnh Av = 0.

    Chng minh. Vi f L2(), phng trnh Au = f c vit di dng tng ng lphng trnh (5.5 ), trong T = (A + 0)1 l ton t hon ton lin tc trong L2().

    Theo nh l Fredholm, phng trnh (5.7 ) gii c khi v ch khi (T f , v) = 0 vimi nghim v ca phng trnh v 0Tv = 0. Do :

    (f, v) = 0(f, Tv) = 0(T f , v) = 0.

    T , ta suy ra: phng trnh (5.5 ) gii c khi v ch khi (f, v) = 0 vi mi nghimv ca phng trnh (5.8 ).

    V Av = 0 khi v ch khiv

    0T

    v = 0.

    Do , phng trnh (1) khi v ch khi (f, v) = 0 vi mi nghim v ca phng trnhAv = 0.

    H qu 5.20. Phng trnh Au = f gii c vi mi f L2() khi v chi khi phngtrnh Av = 0 chi c nghim tm thng.

  • 7/31/2019 Phuong Trinh Vi Phan_Dao Ham Rieng

    74/144

    68 Phng trnh o hm ring

    Bi 6Ph ca ton t Elliptic

    6.1 Bi ton Dir ichlet i vi phng trnh Laplace

    6.1.1 Gii thiuGi s l tp m b chn vi bin trong Rn, C0 () l khng gian cc hm

    kh vi v hn vi gi compact trong .

    Trong C0 () ta ch mt bt ng thc quan trng l bt ng thc Poincar:

    u2L2() ku2L2(), k > 0, u C0 ()

    Trong u l vect gradient: u :=ux1

    , ux2

    , . . . , uxn

    . Nh c bt ng thc

    Poincar, trong C0 () ta c th xc nh hai chun tng ng:

    u =

    |u|2dx1/2 , u C0 ()v

    u =

    |u|2 + |u|2dx1/2

    , u C0 ().