37
Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology, Oshawa, ON, Canada Liuchen Chang University of New Brunswick, Fredericton, NB, Canada EPEC 2011

Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada

Walid G. Morsi University of Ontario Institute of Technology, Oshawa, ON, Canada

Liuchen Chang University of New Brunswick, Fredericton, NB, Canada

EPEC 2011

Page 2: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

 Worldwide average energy consumption: steadily increasing over past few decades

Fig. 1: World marketed energy consumption 2007-2035 (quadrillion Btu) [1]

Fig. 2: World marketed energy use by fuel type 1990-2035 (quadrillion Btu) [1]

2 [1] Energy Information Administration, "International Energy Outlook 2010," U.S. Department of Energy, Jul. 2010.

Page 3: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

Additional system

resources required

High cost of providing Ancillary

Services (AS)

Rising fuel prices

Scarcity of resources

Rising greenhouse gas

emissions

Fig. 3: Challenges associated with increased power demand and generation

3

Page 4: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

 Proposed solution: A DSM program that employs DLC to provide some Synchronous Reserve (SR) capacity from users’ loads

DSM Programs

Direct Load Control (DLC)

Utility intervenes with consent of customers

Indirect Load Management (ILM)

Customers alter their usage patterns

Fig. 4: Types of DSM programs

4

Page 5: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

  In many North American states/provinces, DWHs: ◦  Are mainly electric

◦  Contribute to about 30% of average household energy consumption [2]

  Useful properties of DWHs: •  Thermostatically Controlled

Loads (TCLs) [3] •  Energy storage capability •  Similar usage profile as total

household   Using aggregated DWHs for load

control: •  Reduce total household load

demand [4] •  Provide AS, like SR [5]

Fig. 5: Relationship between total power demand and DWH demand [4]

5

[2] M. H. Nehrir, B. J. LaMeres and V. Gerez, "A customer-interactive electric water heater demand-side management strategy using fuzzy logic," IEEE Power Engineering Society 1999 Winter Meeting, vol. 1, pp. 433-436, Jan.31 - Feb.4 1999. [3] D. S. Callaway, "Tapping the energy storage potential in electric loads to deliver load following and regulation, with application to wind energy," Energy Conversion and Management, vol. 50, no. 5, pp. 1389-1400, May 2009. [4] M. H. Nehrir, R. Jia, D. A. Pierre and D. J. Hammerstrom, "Power management of aggregate electric water heater loads by voltage control," in Proc. of IEEE Power Eng. Soc. 2007 General Meeting, Tampa, Florida, Jun. 2007, pp. 1-6.[ [5] K. Huang and Y. Huang, "Integrating direct load control with interruptible load management to provide instantaneous reserves for ancillary services," IEEE Transactions on Power Systems, vol. 19, no. 3, pp. 1626-1634, Aug. 2004.

Page 6: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

  Power rating of DWHs ◦  Small-scale with respect to power capacity values in the power system

  Necessary to control DWHs on an aggregate scale, to provide AS on a large-scale ◦  Intermediate system called an aggregator will ensure this is done

Fig. 6: Power system structure with the aggregator [6]

  Aggregator will turn on/off several DWHs to maximize reserve coming from demand side, ensuring: ◦  Customer usage is not

affected ◦  Customer comfort is not

compromised

6 [6] L. Chang, “Aggregated Load Control Using Electric Domestic Water Heaters and Smart Meters”, Project Proposal, Sept. 2007

Page 7: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

Development + Testing of

DSM Program

Maximize SR from aggregate DWHs, without affecting user

comfort

Compute benefits of

providing AS from demand-

side

Reduced reserve

requirements from

generators

Less overall peak power demand

Monetary savings for

ISO

Less power generation required at peak times

Reduced rate of CO2

emissions

Fig. 7: Flowchart demonstrating the significance of the proposed work

7

Page 8: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

Need to quantify benefits of thesis objectives

Compute operational savings: integrate DLC with UC and ED

Translates into constrained optimization problem

Maximize SR from DWHs

Consumer comfort not aversely affected Less SR is required from generators

SR requirement from ISO

Day-ahead or Hour-ahead % of largest possible contingency % of peak demand every hour

8 Fig. 8: Flowchart illustrating the importance of UC and ED in the DSM program

Page 9: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

  Main objective function:

  Constraint:

  Necessary condition:   To provide SR, DWH must be ‘off ’

  Final objective function:

   

9

Diff. between reserve requested by ISO and provided by DWHs

Temp. in DWHs must remain at comfortable levels

Binary state variable xd indicates operating state of DWHs

Substituting eq. (3) into eq. (1)

Page 10: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

  Main objective function [7]:

  Constraints: 1.  Power balance constraints 2.  Spinning reserve constraints 3.  Generator output constraints 4.  Minimum up/down time constrain

Fuel-cost function

Start-up cost

10

[7] T. O. Ting, M. V. C. Rao and C. K. Loo, "A novel approach for unit commitment problem via an effective hybrid particle swarm optimization," IEEE Transactions on Power Systems, vol. 21, no. 1, pp. 411-418, Feb. 2006.

Page 11: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

1.  Power balance constraints

2.  Spinning reserve constraints

11

Total power generation must equal total power demand

Uih : binary variable status of generator Pih : continuous variable power output of generator

At least a certain amount of reserve must come from generating units

This amount is set to a % of the hourly demand

Page 12: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

3.  Generator output constraints

4.  Minimum up-time constraint

5.  Minimum down-time constraint

12

Power output levels of units must be within practical operating limits

Unit must stay on for a certain period after being turned on

Unit must stay off for a certain period after being turned off

Page 13: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

• Discrete binary variable xd • Linear Aggregator

• Discrete binary variable Uih

• Continuous variable Pih

• MINLP

UC + ED

Fig. 9: Factors influencing choice of optimization technique

13

Page 14: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

Population based

method

Global optimization

technique

Discrete & continuous variables

Applicable to power system optimization

Easy to implement

High quality solutions

Robust control

parameters

Stable convergence characteristic

Fig. 10: Characteristics of PSO

14

Page 15: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

2 0

11 5

35

49 43

98

130

175

105

0

20

40

60

80

100

120

140

160

180

200

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

No.

of P

SO p

ublic

atio

ns o

n IE

EE T

rans

acti

ons

Year

Fig. 11: Number of PSO publications on IEEE Transactions over the years

15

Page 16: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

 Flight of particle i governed by: ◦ Velocity:

◦ Position:

◦ Inertia weight factor:

16

Pbest personal best experience Gbest global best experience

Position update rule vector addition

ω dictates balance between local and global discoveries

Page 17: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

Fig. 12: Flowchart demonstrating basic PSO algorithm [8]

Fig. 13: Modification of current searching point for PSO [8]

17 [8] K. Y. Lee and M. A. El-Sharkawi, Modern Heuristic Optimization Techniques: Theory and Applications to Power Systems. New Jersey, United States of America: John Wiley & Sons, Inc., 2008.

Page 18: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

 Xi, Pbesti and Gbest 0 or 1

 Velocity still computed using eq. (13) ◦ Applied to sigmoid function:

 Position discretized using: If rand() < s(Vi) Then Xi = 1; Else

Xi = 0; 18

Squashes the input, making it applicable for use as a probability threshold

rand() is a random number generated between 0 and 1

Page 19: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

 Basic binary PSO algorithm used for aggregator

 Inequality constraint is enforced at each iteration ◦ If Temperature violation occurs  Switch state of DWH  Proceed with algorithm

19

Page 20: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

 Penalty function approach to handle constraints ◦ Penalty factor ‘s’ added to objective function

  where

Power output levels

Min. up-time constraint

Min. down-time constraint

Checked at each iteration for violations

20

C1 = 1 if power balance constraint is violated, and C1 = 0 otherwise.

Similarly, C2 = 1 if spinning reserve constraint is violated, and C2 = 0 otherwise.

Page 21: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

 Thermal model of DWH [9]

21

τ Initial time (hours) T Current time (hours) TH(t) Water temp. in DWH at time t (°F) TH(τ) Water temp. in DWH at time τ (°F) Tin Incoming water temp. (°F) Tout Ambient air temp. outside DWH (°F) Q Energy input rate as a function of t (W) R DWH thermal resistance (m2. °F/W)

SA Surface area of DWH (m2) G SA/R (W/°F) WD Water demand (L/hr) Cp Specific heat of water (W/(°F.kg)) D Density of water = 1kg/L B D* WD * Cp (W/°F) C Vol. of tank*D*Cp (W/°F) R’ /(B + G) (W/°F)

[9] L. Paull, D. MacKay, H. Li and L. Chang, "A water heater model for increased power system efficiency," in Proc. of Canadian Conf. on Elec. and Comp. Engineering 2009, St. Johns, NL, 2009, pp. 731-734.

Page 22: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

Fig. 14: Proposed method to supply reserve from DWHs and evaluate benefits

22

Difference between operating costs before and after load control quantify benefits to ISO

Aggregator will turn off/on DWHs to obtain max. SR without impacting users

Page 23: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

Pmax  (MW)  

Pmin  (MW)  

α  ($/h)  

β  ($/MWh)  

γ  ($/MWh2)  

Min  Up-­‐Time  (h)  

Min  Down-­‐Time  (h)  

Hot  start  cost  ($)  

Cold  start  cost  ($)  

Cold  start  hours  (h)  

IniEal  status  (h)  

Table 1: System Operator Data Parameters

23

Table 1 operating parameters of the ten generating units the proposed algorithm is applied to

Practical output bounds

Fuel cost coefficients

Switching constraints

Start-up parameters

Initial state (on/off)

Page 24: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

Parameter Value # particles 20

itermax 1000

Vmax 4

ω 1.0

c1, c2 2.0

s0 100

Table 2: PSO Parameters

Parameter Value Unit

G 7 Btu/(hour°F)

D 8.25 lb/gallon

Cp 1.0 Btu/(lb°F)

C 500 Btu/°F

WD 0 gallon/hour

B 0 Btu/(hour°F)

Tout 70 °F

Tin 50 °F

Q

0, if xd = 0 10235, if xd = 1 Btu/hour

θmin 131 °F

θmax 144 °F

Table 3: DWH Parameters

24

Page 25: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

Total Operating Cost, TOCH ($)

Best Case Average Case Worst Case Standard Deviation

Before Load Control $574,603.45 $575,597.05 $577,545.25 $918.97

After Load Control $571,013.58 $572,384.62 $573,487.25 $946.73

Cost Savings $3,589.87 $3,212.43 $4,058.00

Table 4: Comparison of Total Operating Costs for Case I over 24 hours

25

Results are indicative of:  10 runs of the proposed algorithm   A group of 100 DWHs from 10 different user classification profiles  10 generator system

Page 26: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

Hour

Total Demand

before Load Control (MW)

Total Demand

after Load Control (MW)

1 700 695.8

2 750 747.6

3 850 837.1

4 950 940.1

5 1000 989.5

6 1100 1094

7 1150 1150.3

8 1200 1197.6

9 1300 1294.9

10 1400 1397.9

11 1450 1448.8

12 1500 1496.7

1 700 695.8

Hour

Total Demand

before Load Control (MW)

Total Demand

after Load Control (MW)

13 1400 1397.3

14 1300 1296.1

15 1200 1200.6

16 1050 1046.1

17 1000 1000.6

18 1100 1104.5

19 1200 1192.5

20 1400 1397.6

21 1300 1301.5

22 1100 1093.4

23 900 893.1

24 800 792.8

13 1400 1397.3

Table 5: Change in Hourly Demand Due to Load Control for Case I

26

~ 95 MW Reduction

Page 27: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

Fig. 15: Synchronous reserve available from DWHs for Case 1

27

 Best case scenario: 28MW of SR available from DWHs   Worst case scenario: 12.6MW of SR available from DWHs

Page 28: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

Fig. 16: Synchronous reserve required from generating units for Case 1

28

Page 29: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

Total Operating Cost, TOCH ($)

Best Case Average Case Worst Case Standard

Deviation

Before Load Control $ 574,603.45 $575,597.05 $577,545.25 $918.97

After Load Control $556,412.71 $557,564.48 $558,985.24 $720.38

Cost Savings $18,190.74 $18,032.57 $18,560.01

Table 6: Comparison of Total Operating Costs for Case 2 over 24 hours

29

Page 30: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

Fig. 17: Hourly demand in system both before and after load control for Case 2

30

Page 31: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

Fig. 18: Synchronous reserve available from DWHs for Case 2

31

 Best case scenario: 185MW of SR available from DWHs   Worst case scenario: 84MW of SR available from DWHs

Page 32: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

Fig. 19: Synchronous reserve required from generating units for Case 2

32

Page 33: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

33

◦ 100 DWHs  Each one randomly assigned to one of 10 user

classification groups

◦ After the DSM program is applied:  DWH temperatures are still within the acceptable

bounds for consumer comfort

Page 34: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

 DSM program developed: ◦ Allows consumers to become system providers ◦ Allows controllable loads to provide AS like SR ◦ Demonstrates significant savings in terms of

operating costs  TOC on average reduces by $3,212.43 for Case 1 and

by $18,032.57 for Case 2  Algorithm is more valuable when applied to a larger

scale

◦ Consumer comfort is not altered significantly

34

Page 35: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

 Include loss coefficients with respect to power system

 Design a specialized controller to work in tandem with aggregator ◦ Send out control signals ◦ Feedback info  Actual DWH temperature, power and water

consumption

35

Page 36: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,

Praveen A. Rosario M.ASc. Student in Electrical and Computer Engineering

University of New Brunswick, Fredericton, NB, Canada E3B 5A3 [email protected], [email protected]

Walid G. Morsi Assistant Professor in Electrical Computer and Software Engineering

University of Ontario Institute of Technology (UOIT), Oshawa, ON, Canada L1H7K4

[email protected]

Liuchen Chang Professor in Electrical and Computer Engineering

University of New Brunswick, Fredericton, NB Canada E3B 5A3

[email protected]

Page 37: Praveen A. Rosario - IEEE Canada · 2014-10-28 · Praveen A. Rosario University of New Brunswick, Fredericton, NB, Canada Walid G. Morsi University of Ontario Institute of Technology,