21
Prediction of productivity indices using remotely sensed data Michael Watt, Jonathan Dash, Pete Watt, Santosh Bhandari

Prediction of productivity indices using remotely sensed data · 3/5/2015  · LiDAR derived SI Av. spr. air temp Band 5 ME-25 Red reflectance NIR refectance Age Blue reflectance

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Prediction of productivity indices using remotely sensed data · 3/5/2015  · LiDAR derived SI Av. spr. air temp Band 5 ME-25 Red reflectance NIR refectance Age Blue reflectance

Prediction of productivity indices using remotely sensed data

Michael Watt, Jonathan Dash, Pete Watt, Santosh Bhandari

Page 2: Prediction of productivity indices using remotely sensed data · 3/5/2015  · LiDAR derived SI Av. spr. air temp Band 5 ME-25 Red reflectance NIR refectance Age Blue reflectance

Introduction

• Site Index, 300 Index commonly used metrics to describe plantation productivity

• Typically estimates of these properties made at the stand level by foresters

• Estimates of these productivity surfaces have also been made using environmental variables

Page 3: Prediction of productivity indices using remotely sensed data · 3/5/2015  · LiDAR derived SI Av. spr. air temp Band 5 ME-25 Red reflectance NIR refectance Age Blue reflectance

Introduction• Little research has investigated the utility of

remotely sensed data sources for predicting productivity metrics

• Use of remotely sensed data could : improve prediction accuracy allow fine scale spatial prediction

• Combinations of the following three data sources could be useful : Environmental Surfaces Satellite Imagery LiDAR

Page 4: Prediction of productivity indices using remotely sensed data · 3/5/2015  · LiDAR derived SI Av. spr. air temp Band 5 ME-25 Red reflectance NIR refectance Age Blue reflectance

Data sources - Environmental surfaces

• Data mostly at 100 m2

resolution

• Air temperature• Solar radiation • Rainfall• Relative humidity• Slope• Soil fertility

MW2

Page 5: Prediction of productivity indices using remotely sensed data · 3/5/2015  · LiDAR derived SI Av. spr. air temp Band 5 ME-25 Red reflectance NIR refectance Age Blue reflectance

Slide 4

MW2 Pete, Santosh, if you have any additional information or pictures please add these. Michael Watt, 4/03/2015

Page 6: Prediction of productivity indices using remotely sensed data · 3/5/2015  · LiDAR derived SI Av. spr. air temp Band 5 ME-25 Red reflectance NIR refectance Age Blue reflectance

Data sources - satellite imagery

• RapidEye most useful satellite 5 m resolution, 0.01-0.02 $/ha

• 5 spectral bands• Vegetation ratios that describe

photosynthetic activity can be derived.

• Textural measures that describe vegetation surfaces can be derived.

• Easily incorporated into GIS

Page 7: Prediction of productivity indices using remotely sensed data · 3/5/2015  · LiDAR derived SI Av. spr. air temp Band 5 ME-25 Red reflectance NIR refectance Age Blue reflectance

Data sources - Light detection and ranging (LiDAR)Active remote sensing technology

LiDAR emits ~ 200,000 pulses per secondRecords up to 4 returns per pulseEach return is converted to 3D point

Page 8: Prediction of productivity indices using remotely sensed data · 3/5/2015  · LiDAR derived SI Av. spr. air temp Band 5 ME-25 Red reflectance NIR refectance Age Blue reflectance

Site Index from LiDAR

• LiDAR can be used to accurately predict height

• Using stand age and a age-height equation wecan estimate Site Index

• Site Index predicted from LiDAR was usedfor modelling

Page 9: Prediction of productivity indices using remotely sensed data · 3/5/2015  · LiDAR derived SI Av. spr. air temp Band 5 ME-25 Red reflectance NIR refectance Age Blue reflectance

Objective

• Develop models of 300 Index and Site Index using different combinations of LiDAR, satellite imagery and environmental surfaces

• Models developed with and without stand age using both non-parametric and parametric methods

Page 10: Prediction of productivity indices using remotely sensed data · 3/5/2015  · LiDAR derived SI Av. spr. air temp Band 5 ME-25 Red reflectance NIR refectance Age Blue reflectance

Methods

• LiDAR acquired early 2014 ~ 11 points m2

• RapidEye acquired January 2014

• Total of 493 plots installed early 2014

• 433 plots used for model fitting, 60 plots set aside for model validation

Page 11: Prediction of productivity indices using remotely sensed data · 3/5/2015  · LiDAR derived SI Av. spr. air temp Band 5 ME-25 Red reflectance NIR refectance Age Blue reflectance

Methods

• Total of 14 models developed using various combinations of the three datasets.

• Parametric method used was multiple regression

• Non-parametric method used was k-nearest neighbour• Random forest or k-MSN used to assign neighbours• Values of k were optimised to minimise model error

Page 12: Prediction of productivity indices using remotely sensed data · 3/5/2015  · LiDAR derived SI Av. spr. air temp Band 5 ME-25 Red reflectance NIR refectance Age Blue reflectance

Results - Site Index

Rap

idE

ye (R

E) s

pect

ral

RE

ratio

s

RE

text

ure

RE

spec

tal +

ratio

s +

text

ure

Envi

ronm

enta

l var

iabl

es

Env

ironm

enta

l var

iabl

es +

RE

LiD

AR

pre

dict

ed S

ite In

dex

(SI)

LiD

AR

Pre

d. S

I + E

nviro

n. +

RE

Roo

t mea

n sq

uare

err

or (m

)

1.0

1.5

2.0

2.5

3.0

ParametricNon-parametric k-NN

1.0

1.5

2.0

2.5

3.0

3.5

Models used to predict Site Index

Rap

idE

ye (R

E) s

pect

ral

RE

ratio

s

RE

text

ure

RE

spec

tal +

ratio

s +

text

ure

Envi

ronm

enta

l var

iabl

es

Env

ironm

enta

l var

iabl

es +

RE

LiD

AR

pre

dict

ed S

ite In

dex

(SI)

LiD

AR

Pre

d. S

I + E

nviro

n. +

RE

Coe

ffici

ent o

f det

erm

inat

ion

(R2 )

0.5

0.6

0.7

0.8

0.9

0.5

0.6

0.7

0.8

0.9

Without age

With age

Page 13: Prediction of productivity indices using remotely sensed data · 3/5/2015  · LiDAR derived SI Av. spr. air temp Band 5 ME-25 Red reflectance NIR refectance Age Blue reflectance

Results - 300 Index

Rap

idE

ye (R

E) s

pect

ral

RE

ratio

s

RE

text

ure

RE

spe

ctal

+ ra

tios

+ te

xtur

e

Env

ironm

enta

l var

iabl

es

Envi

ronm

enta

l var

iabl

es +

RE

LiD

AR

pre

dict

ed S

ite In

dex

(SI)

LiD

AR P

red.

SI +

Env

iron.

+ R

E

Roo

t mea

n sq

uare

err

or (m

3 ha-1

yr-1

)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Parametric Non-parametric k-NN

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Models used to predict 300 Index

Rap

idE

ye (R

E) s

pect

ral

RE

ratio

s

RE

text

ure

RE

spe

ctal

+ ra

tios

+ te

xtur

e

Env

ironm

enta

l var

iabl

es

Envi

ronm

enta

l var

iabl

es +

RE

LiD

AR

pre

dict

ed S

ite In

dex

(SI)

LiD

AR P

red.

SI +

Env

iron.

+ R

E

Coe

ffici

ent o

f det

erm

inat

ion

(R2 )

0.4

0.5

0.6

0.7

0.4

0.5

0.6

0.7

0.8

Without age

With age

Page 14: Prediction of productivity indices using remotely sensed data · 3/5/2015  · LiDAR derived SI Av. spr. air temp Band 5 ME-25 Red reflectance NIR refectance Age Blue reflectance

Results – Best Models

Metric Age? Type Variables R2 RMSESite Index Y NP LiDAR + Environ. + RapidEye 0.91 1.40 m

N P Environmental + RapidEye 0.79 2.46 m

300 Index Y P LiDAR 0.79 2.45 m3 ha-1 yr-1

N NP Environmental + RapidEye 0.65 3.21 m3 ha-1 yr-1

Page 15: Prediction of productivity indices using remotely sensed data · 3/5/2015  · LiDAR derived SI Av. spr. air temp Band 5 ME-25 Red reflectance NIR refectance Age Blue reflectance

Site Index 300 Index

Variable importance

LiD

AR

der

ived

SI

Av.

spr

ing

air t

emp.

Av.

spr

ing

sola

r rad

.E

VI

Band

5 M

E-2

5A

geN

IR re

fect

ance

Sim

ple

ratio

ND

VI

Ban

d 5

CO

R-1

5B

1 V

AR

-25

Band

4 M

E-2

5Bl

ue re

flect

ance

Red

refle

ctan

ceB

and

4 SD

-25

Gre

en re

flect

ance GR

Slo

pe

Mea

n Im

porta

nce

0

1

2

3

4

5

Variable included in the model

LiD

AR

der

ived

SI

Av.

spr

. air

tem

pBa

nd 5

ME

-25

Red

refle

ctan

ceN

IR re

fect

ance

Age

Blue

refle

ctan

ce EV

IBa

nd 5

EN

T-15

B

and

4 SD

-25

ND

VI

Sim

ple

ratio

Band

4 A

SM

-25

Band

5 C

OR

-15

Band

4 M

E-2

5A

v. s

pr. s

olar

rad

Ban

d 5

CO

N-1

5 A

v. s

olar

rad.

Mea

n F-

valu

e 0

300

600

900(a)

(b)

LiD

AR d

eriv

ed S

IAv

. spr

. air

tem

pAv

. sum

. VPD Age

Perc

. ret

. > m

ean

Can

opy

relie

f rat

ioN

DVI

NIR

refle

ctan

ce EVI

Brig

htne

ssB

and

5 M

E-2

5Le

ngth

and

slo

pe fa

ctor

Red

refle

ctan

ceG

reen

refle

ctan

ceIn

tLku

rtosi

sC

N ra

tioR

ed e

dge

ratio

Ban

d 5

EN

T-5

Mea

n Im

porta

nce

-1

0

1

2

3

4

Variable included in the model Li

DA

R d

eriv

ed S

IAv

. spr

. air

tem

pB

and

5 M

E-25

ND

VI

Can

opy

relie

f rat

ioE

VI

NIR

refe

ctan

ceAg

eP

erc.

ret.

> m

ean

Brig

htne

ssR

ed re

flect

ance

Band

4 E

NT-

25

Ban

d 2

VAR

- 25

Red

edg

e ra

tioG

reen

refle

ctan

ceA

v. s

olar

rad.

In

tLku

rtosi

sC

N ra

tio

Mea

n F-

valu

e

0

100

200

300

400(a)

(b)

Page 16: Prediction of productivity indices using remotely sensed data · 3/5/2015  · LiDAR derived SI Av. spr. air temp Band 5 ME-25 Red reflectance NIR refectance Age Blue reflectance

Results – Top three variables

Metric Type VariablesSite Index P LiDAR derived Site Index; Av. spring air temp; NIR mean texture

NP LiDAR derived Site Index; Av. spring air temp; Av. spring solar rad.

300 Index P LiDAR derived Site Index; Av. spring air temp; NIR mean textureNP LiDAR derived Site Index; Av. spring air temp; Av. summer VPD

Page 17: Prediction of productivity indices using remotely sensed data · 3/5/2015  · LiDAR derived SI Av. spr. air temp Band 5 ME-25 Red reflectance NIR refectance Age Blue reflectance

Research gains

Predicted Site Index (m)20 25 30 35 40

20

25

30

35

40

20

25

30

35

40

45

Predicted 300 Index (m3 ha-1 yr-1)10 15 20 25 30 35

10

15

20

25

30

35

Mea

sure

d Si

te In

dex

(m)

10

15

20

25

30

35

40

Mea

sure

d 30

0 In

dex

(m3 h

a-1 y

r-1)

Using Environmental Surfaces (previous method)

Using all variables, including LiDAR

Page 18: Prediction of productivity indices using remotely sensed data · 3/5/2015  · LiDAR derived SI Av. spr. air temp Band 5 ME-25 Red reflectance NIR refectance Age Blue reflectance

Research gains

Predicted Site Index (m)20 25 30 35 40

20

25

30

35

40

20

25

30

35

40

45

Predicted 300 Index (m3 ha-1 yr-1)10 15 20 25 30 35

10

15

20

25

30

35

Mea

sure

d Si

te In

dex

(m)

10

15

20

25

30

35

40

Mea

sure

d 30

0 In

dex

(m3 h

a-1 y

r-1)

Using Environmental Surfaces (previous method)

Using all variables, including LiDAR

R2 = 0.57RMSE = 3.55 m3 ha-1 yr-1

R2 = 0.79RMSE = 2.45 m3 ha-1 yr-1

R2 = 0.76RMSE = 2.30 m

R2 = 0.91RMSE = 1.40 m

Page 19: Prediction of productivity indices using remotely sensed data · 3/5/2015  · LiDAR derived SI Av. spr. air temp Band 5 ME-25 Red reflectance NIR refectance Age Blue reflectance

Summary

• Models of Site Index and 300 Index created

• Significant gains in precision possible using information from LiDAR and RapidEye

• For models without age, best data source were environmental surfaces + RapidEye

• For models with age, best data source was LiDAR

• RapidEye and environmental surfaces useful cost effective alternative to LiDAR

Page 20: Prediction of productivity indices using remotely sensed data · 3/5/2015  · LiDAR derived SI Av. spr. air temp Band 5 ME-25 Red reflectance NIR refectance Age Blue reflectance

Acknowledgements

• GCFF programme jointly funded by MBIE and NZ Forest Growers Levy Trust

• Timberlands

• Professional contribution of all field teams involved

Page 21: Prediction of productivity indices using remotely sensed data · 3/5/2015  · LiDAR derived SI Av. spr. air temp Band 5 ME-25 Red reflectance NIR refectance Age Blue reflectance

http://research.nzfoa.org.nz/www.scionresearch.com/gcff

Michael WattResearch Leader – Forest Operations and Monitoring

[email protected]

Date:24 March 2015