51
Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

Embed Size (px)

Citation preview

Page 1: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

1

Prof. Ji Chen

Notes 18

Reflection and Transmission of Plane Waves

ECE 3317

Spring 2014

Page 2: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

2

General Plane Wave

Consider a plane wave propagating at an arbitrary direction in space.

jkze

sin cos sin sin cosz x y z

Denote

so

ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

z xx yy zz z

x z x y z y z z z

x r x y r y z r z

x

y

z

z

ˆ ˆ ˆ ˆsin cos sin sin cosr x y z

, ,x y z

Page 3: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

3

General Plane Wave (cont.)

Hence

x y zj k x k y k ze

sin cos

sin sin

cos

x

y

z

k k

k k

k k

x

y

z

z

Note: 2 2 2 2 2 2 2 2 2sin cos sin cosx y zk k k k k

2 2 2 2x y zk k k k (wavenumber equation)or

Page 4: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

4

General Plane Wave (cont.)

We define the wavevector:

sin cos

sin sin

cos

x

y

z

k k

k k

k k

ˆ ˆ ˆx y zk x k y k z k

2 2 2 2 2 2x y z x y zk k k k k k k k

The k vector tells us which direction the wave is traveling in.

(This assumes that the wavevector is real.)

x

y

z

z

Page 5: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

5

TM and TE Plane Waves

The electric and magnetic fields are both perpendicular to the direction of propagation.

There are two fundamental cases:

Transverse Magnetic (TMz ) Hz = 0 Transverse Electric (TEz) Ez = 0

x

TMz

y

z

E

H

S

x

TEz

y

z

EH

S

Note: The word “transverse” means “perpendicular to.”

ˆ ˆTM : E E H H

ˆ ˆTE : E E H H

z

z

Page 6: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

6

Reflection and Transmission

As we will show, each type of plane wave (TEz and TMz) reflects differently from a material.

#1

x

z

qi qr

qt

#2

Incident Reflected

Transmitted

Page 7: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

7

Boundary Conditions

Here we review the boundary conditions at an interface (from ECE 2317).

1 2

1 2

1 2

1 2

ˆ D D

ˆ E E 0

ˆ B B 0

ˆ H H J

s

s

n

n

n

n

n̂1 1,

2 2,

++++s Js

Note: The unit normal points towards region 1.

1 2

1 2

1 2

1 2

ˆ ˆD D

ˆ ˆE E

ˆ ˆB B

ˆ ˆH H

n n

n n

n n

n n

No sources on interface:

The tangential electric and magnetic fields are continuous. The normal components of the electric and magnetic flux densities are continuous.

Page 8: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

8

Reflection at Interface

First we consider the (x, z) variation of the fields. (We will worry about the polarization later.)

Assume that the Poynting vector of the incident plane wave lies in the xz plane ( = 0). This is called the plane of incidence.

0E E xi zii jk x jk zi e - -

0E E xr zrr jk x jk zr e -

0E E xt ztt jk x jk zt e -

#1

x

z

i r

t#2

Incident Reflected

Transmitted

Note: The sign for the exponent term in the reflected wave is chosen to match the direction of the reflected wave.

Page 9: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

9

Reflection at Interface (cont.)

Phase matching condition:

0E 0 E xii jk xix e -, 0E 0 E xrr jk x

rx e -, 0E 0 E xtt jk xtx e -,

xi xr xtk k k

This follows from the fact that the fields must match at the interface (z = 0).

#1

x

z

i r

t#2

Incident Reflected

Transmitted

x xrk k,

xtk

Page 10: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

10

Law of Reflection

xi xrk k

sin cos

sin sin

cos

x

y

z

k k

k k

k k

1

1

sin

0

cos

xi i

yi

zi i

k k

k

k k

0 1

1

sin

0

cos

xr r

yr

zr r

k k

k

k k

1 1sin sini rk k i r

Similarly,

Law of reflection

#1

x

z

i r

t#2

Incident Reflected

Transmitted

Page 11: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

11

Snell’s Law

xi xtk k

1

1

sin

0

cos

xi i

yi

zi i

k k

k

k k

2

2

sin

0

cos

xt t

yt

zt t

k k

k

k k

1 2sin sini tk k 1 2sin sini tn n

0 0 0/ /i i i i ri rin k k

We define the index of refraction:

Snell's law

Note: The wave is bent towards the normal when entering a more "dense" region.

#1

x

z

i r

t#2

Incident Reflected

Transmitted

1,2i

Page 12: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

12

Snell’s Law (cont.)

The bending of light (or EM waves in general) is called refraction.

Incident Transmitted

Reflected

http://en.wikipedia.org/wiki/Refraction

Acrylic block

Normal

Page 13: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

13

1 2sin sini tn n

1sin 1.7689 sini t

o45i Given:

Note that in going from a less dense to a more dense medium, the wavevector is bent towards the normal.

Note: If the wave is incident from the water region at an incident angle of 32.1o, the wave will exit into the air region at an angle of 45o.

Example

o32.1t

Note: At microwave frequencies and below, the relative permittivity of pure water is about 81. At optical frequencies it is about 1.7689.

Air

1.7689r

#1

x

z

i r

t#2

Incident Reflected

Transmitted

Water

2 1.7689r

Find the transmitted angle.

Page 14: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

14

Critical Angle

The wave is incident from a more dense region onto a less dense region.

1 2sin sini tn n

1 2n n

1

2

sin sint i

n

n

o 1

2

sin 90 sin c

n

n

At the critical angle:

1 2

1

sinc

n

n

2 2sinxi xr xt tk k k k k

#1x

z

qi qr

qt #2

Incident Reflected

Transmitted

qi < c

#1x

z

qi = c

qr

qt #2

IncidentReflected

Transmitted

qi

qt = 90o

qt = 90o

Page 15: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

15

Example

1 2

1

1

sin

1sin

1.7689

c

n

n

o48.75c

#1x

z

Water

qr

#2

IncidentReflected

Transmitted

qc

1 1.7689r

Air

Find the critical angle.

Page 16: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

16

Critical Angle (cont.)

At the critical angle:

2xi xr xtk k k k

2 22

2 22 2

0

zt xtk k k

k k

There is no vertical variation of the field in the less-dense (transmitted) region.

#1x

z

qi = c

qr

qt #2

IncidentReflected

Transmitted

qi

qt = 90o

Page 17: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

17

Critical Angle (cont.)

Beyond the critical angle:

2xik k

2 22

2 22

2 22

2 2 21 2

2 2 20 1 2

sin

sin

zt xt

xi

xi

i

i

zt

k k k

k k

j k k

j k k

jk n n

j

There is an exponential decay of the field in the vertical direction in the less-dense region.

2 2 21 0 1 2ˆ ˆˆ ˆsin sint xt zt ik x k z k x k z jk n n

, xt zt xt ztj k x k z j k x zt x z e e e 2 2 2

0 1 2sinzt ik n n

(complex)

#1x

z

qi > c

qr

#2

Incident Reflectedqi

Page 18: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

18

Critical Angle (cont.)

Beyond the critical angle:

The power flows completely horizontally. (No power crosses the boundary and enters into the less dense region.)

#1x

z

qi > c

qr

#2

Incident Reflectedqi

Re S

This must be true from conservation of energy, since the field decays exponentially in the lossless region 2.

Page 19: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

19

Critical Angle (cont.)

Example: "fish-eye" effect

Water

Air

c

o48.75c

The critical angle explains the “fish eye” effect that you can observe in a swimming pool.

1.7689r

A fish can see everything above the water by only looking no further than 49o from the vertical.

Page 20: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

Artificial “metamaterials” that have been designed that have exotic permittivity and/or permeability performance.

20

Negative index metamaterial array configuration, which was constructed of copper split-ring resonators and wires mounted on interlocking sheets of fiberglass circuit board. The total array consists of 3 by 20×20 unit cells with overall dimensions of 10×100×100 mm.

http://en.wikipedia.org/wiki/Mhttp://en.wikipedia.org/wiki/Metamaterialetamaterial

0

0r

r

(over a certain bandwidth of operation)

Exotic Materials

Page 22: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

22

TEz Reflection

Note that the electric field vector is in the y direction.

(The wave is polarized perpendicular to the plane of incidence.)

#1

x

z

qi qr

qt

#2

TE

TET

Ei

Hi

Page 23: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

23

TEz Reflection (cont.)

- -0ˆE E xi zijk x jk zi ey

Incident Wave

-0E ˆ E xr zr

TEjk x jk zr e y

Reflected Wave

- -0

ˆE E xt ztjk x jk ztTET ey

Transmitted Wave

T

T

E

ET

where

Reflection Coefficient

Transmission Coefficient

ˆ ˆ

ˆ

ˆ ˆ

ˆi x

t xt

r xr zr

z

z

i i

t

k x k

k x k z k

z

k x k z k

k

Incident Wave Vector

Reflected Wave Vector

Transmitted Wave V

ector

Note: kzr is positive since we have already explicitly accounted for the sign in the reflected wave.

1 coszr rk k

#1

x

z

i r

t#2

TE

TET

Ei

Hi

Page 24: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

24

0 00 ˆ Eˆ =ˆ E E rx rz ti tzx xizjk x jk jk x jk zTE

jk x zT

z jkE Te ee y yy

Boundary condition at z = 0:

Recall that the tangential component of the electric field must be continuous at an interface.

00 0= ˆˆ EEˆ E rx ti xx jk xTE

jkT

jk x xEe T ee yyy

0 0 =ˆ E ˆ ˆETE TET yy y

1 =TE TET

TEz Reflection (cont.)

E E Ei r ty y y

#1

x

z

i r

t#2

TE

TET

Ei

Hi

Page 25: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

25

We now look at the magnetic fields.

( )0

( )0

1

ˆE E

Eˆ ˆH ( )

xi zi

xi zi

j k x k zi

j k x k zizi xi

y e

x k z k e

E Hj

1H E

j

( )0

( )0

1

ˆE E

Eˆ ˆH ( )

xr zr

xr zr

j k x k zrTE

j k x k zr TEzr xr

y e

x k z k e

( )0

( )0

2

ˆE E

Eˆ ˆH ( )

xt zt

xt zt

j k x k ztTE

j k x k zt TEzt xt

y T e

Tx k z k e

TEz Reflection (cont.)

#1

x

z

i r

t#2

TE

TET

Ei

Hi

Page 26: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

26

1tan 2 tanH H H H Hi r tx x x

Recall that the tangential component of the magnetic field must be continuous at an interface (no surface currents).

1 1 2

zt TE Ei zrz Tk k Tk

Hence we have:

TEz Reflection (cont.)

#1

x

z

i r

t#2

TE

TET

Ei

Hi

Page 27: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

27

Enforcing both boundary conditions, we have:

211

zr zt Tzi ETE k Tk k

1 =TE TETThe solution is:

2 1

2 2

1

zt ziTE

zt zi

TE TE

k k

k k

T

TEz Reflection (cont.)

#1

x

z

i r

t#2

TE

TET

Ei

Hi

Page 28: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

28

Transmission Line Analogy

2 1

2 1

1

TE TE

TE TE TE

TE TE

Z Z

Z Z

T

2

2 TE

ztZ

k

11 TE

zi

Zk

1 TEZ

2 TEZ

TE

TET

Incident

TEz Reflection (cont.)

E V

-H I

y

x

#1

x

z

i r

t#2

TE

TET

Ei

Hi

Page 29: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

29

TMz Reflection

Note that the electric field vector is in the xz plane.

(The wave is polarized parallel to the plane of incidence.)

#1

x

z

qi qr

qt

#2

TM

TMT

Ei

Hi

Word of caution: The notation used for the reflection coefficient in the TMz case is different from what is in the Shen & Kong book. (We use reflection coefficient to represent the reflection of the electric field, not the magnetic field.)

Page 30: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

30

TMz Reflection (cont.)

- -10ˆH H xi zijk x jk zi

zi

ek

y

Incident Wave

1 -0H ˆ H xr zr

TMzr

jk x jk zr

ke

y

Reflected Wave

- -0

1ˆH H xt ztjk x jk ztTM

zt

T ek

y

Transmitted Wave

T

T

M

MT

where

Reflection Coefficient

Transmission Coefficient

ˆ ˆ

ˆ

ˆ ˆ

ˆi x

t xt

r xr zr

z

z

i i

t

k x k

k x k z k

z

k x k z k

k

Incident Wave Vector

Reflected Wave Vector

Transmitted Wave V

ector

#1

x

z

i r

t#2

TM

TMT

Ei

Hi

Page 31: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

31

TMz Reflection (cont.)

We now look at the electric fields.

H Ej

1E H

j

- -10

( )0

ˆH H

ˆ ˆE ( / )H

xi zi

xi zi

jk x jk zi

zi

j k x k zixi zi

ek

x z k k e

-

y 1

( )0

-0

ˆ ˆE ( / ) H

H ˆ H

xr zr

xr zr

j k x k zrxr zr TM

TMzr

jk x jk zr

x z k k e

ky e

- -20

( )0

ˆH H

ˆ ˆE ( / ) H

xt zt

xt zt

jk x jk ztTM

zt

j k x k ztxt zt TM

y T ek

x z k k T e

-

Note that TM is the reflection coefficient for the tangential electric field.

#1

x

z

i r

t#2

TM

TMT

Ei

Hi

Page 32: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

32

TMz Reflection (cont.)

Enforcing both boundary conditions, we have

1 21TTM

zrM

ztzi

Tkkk

1 =TM TMT

The solution is:

2 1

2 1

1

zt zi

TMzt zi

TM TM

k k

k k

T

H H Hi r ty y y

E E Ei r tx x x

Boundary conditions:

#1

x

z

i r

t#2

TM

TMT

Ei

Hi

Page 33: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

33

Transmission Line Analogy

2 1

2 1

1

TM TM

TM TM TM

TM TM

Z Z

Z Z

T

2

2

TM ztkZ

11

TM zikZ

TMz Reflection (cont.)

E V

H Ix

y

#1

x

z

i r

t#2

TM

TMT

Ei

Hi

1 TMZ

2 TMZ

TM

TMT

Incident

Page 34: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

34

Summary of Transmission Line Modeling Equations

TE ii

zi

Zk

TMz Reflection (cont.)

TM zii

i

kZ

22 2 21 1 1 1 1sin cosz zi x i ik k k k k k k

1, 2i

2 22 2 2 22 2 2 1 2 2 2sin sin cosz zt x i t tk k k k k k k k k

1 Z

2 Z

T

Incident

#1

x

z

i r

t#2

Incident Reflected

Transmitted

Page 35: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

35

Power Reflection

2

2

100

100 1

%

%

power reflected

power transmitted100

ReS%

ReS zr

zi

power reflected

TM TE or

#1

x

z

i r

t#2

TM

TMT

Ei

Hi

#1

x

z

i r

t#2

TE

TET

Ei

Hi

Page 36: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

36

Power Reflection Beyond Critical Angle

2100% power reflected

#1x

z

qi > c

qr

#2

Incident Reflectedqi

2 1

2 1

Z Z

Z Z

22

=TM ztkZ

22 =TE

zt

Zk

zt ztk j2 =Z imaginary

1

TM TE or

All of the incident power is reflected.

Page 37: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

37

Find:

% power reflected and transmitted for a TEz wave

% power reflected and transmitted for a TMz wave

30i

Example

#1x

z

qi qr

qt #2

T

1

1

1

1r

r

2

2

2

1r

r

Given:

20.70t 1 2sin sini tn n Snell’s law:

o1sin 30 2 sin t

Page 38: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

38

2 1

2 1

TM TM

TM TM TM

Z Z

Z Z

2 222

2 2 2

2 0

2 2

o

]

coscos

cos cos

377.7303cos 20.70

2249.8 [

TM tzt t

t t

r

k kZ

First look at the TMz case:

1 0

]

cos

327.1 [

TMiZ

0.1339TM

2 1

2 1

1

TM TM

TM TM TM

TM TM

Z Z

Z Z

T

0.8661TMT % 1.79

% 98.21

power reflected

power transmitted

Example (cont.)

Page 39: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

39

2 1

2 1

TE TE

TE TE TE

Z Z

Z Z

2 22

2 2

2 0

2 2

cos

1sec

cos

285.5 [ ]

TE

zt t

tt r

Zk

1 0 sec

436.2 [ ]

TEiZ

0.2088

Next, look at the TEz part:

2 1

2 1

1

TE TE

TE TE TE

TE TE

Z Z

Z Z

T

Example (cont.)

0.7912TET % 4.36

% 95.64

power reflected

power transmitted

Page 40: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

40

Find:

% power reflected and transmitted for a TEz wave

% power reflected and transmitted for a TMz wave

30i

Example

Given:

#1x

z

qi qr

qt #2

T

1

1

1

1r

r

Sea water2

2

2

81

1

4 [S/m]

r

r

1 GHzf

Page 41: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

41

30i

Example (cont.)

Given:#1

x

z

qi qr

qt #2

T

1

1

1

1r

r

Sea water2

2

2

81

1

4 [S/m]

r

r

22 2c j

1 GHzf

We avoid using Snell's law since it will give us a complex angle in region 2!

2 2 0 0 2 0 2/ /c rcn k k k

1 11 2

2

sin sin sin sini t t i

nn n

n

22 2

0rc r j

2 81 71.902rc j

Page 42: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

42

30i

Example (cont.)

Given:

#1x

z

qi qr

qt #2

T

1

1

1

1r

r

Sea water2

2

2

81

1

4 [S/m]

r

r

2 2 2 2 2 2 22 2 2 2 1 sinzt z xt xi ik k k k k k k k

1 GHzf

Recommendation: Work with the wavenumber equation directly.

complex

Page 43: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

43

2 1

2 1

TM TM

TM TM TM

Z Z

Z Z

2 2 22 1

22 2

2 2 22 2 1 1

2

20 2 0 1

2

22 1

02

22

02

sin

sin

sin

sin

sin

iTM zt

c c

c i

c

c i

c

rc r i

rc

rc i

rc

k kkZ

First look at the TMz case:

1 0

]

cos

326.3 [

TMiZ

0.8099 0.0644TM j

2 1

2 1

1

TM TM

TM TM TM

TM TM

Z Z

Z Z

T

% 66.0

% 34.0

power reflected

power transmitted

Example (cont.)

2 33.82 12.82 [ ]TMZ j

Page 44: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

44

2 1

2 1

TE TE

TE TE TE

Z Z

Z Z

2 22 2 2 2

2 1

2

2 2 22 2 1 1

0

20 2 0 1

0 22 1

0 22

sin

sin

sin

1

sin

1

sin

TE

zt i

c i

c i

rc r i

rc i

Zk k k

1 0 sec

435.0 [ ]

TEiZ

0.8542 0.0510j

Next, look at the TEz part:

2 1

2 1

1

TE TE

TE TE TE

TE TE

Z Z

Z Z

T

Example (cont.)

% 73.2

% 26.8

power reflected

power transmitted

2 33.86 12.89TEZ j

Page 45: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

45

Consider TMz polarization

Brewster Angle

2 1

2 1

TM TM

TM TM TM

Z Z

Z Z

Set 0TM 2 1 TM TMZ Z

Assume lossless regions

#1

x

z

i r

t#2

TM

TMT

Ei

Hi

Page 46: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

46

Brewster Angle (cont.)

2 1 TM TMZ Z 22

2 2 TM z ztk kZ

11

1 1 TM z zik kZ

Hence we have

1 2

zi ztk k

2 2 22 11

1 2

sincos iik kk

2 2 2 2 21 2 1

2 21 2

(1 sin ) sini ik k k

Page 47: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

47

Brewster Angle (cont.)

2 2 2 2 21 2 1

2 21 2

(1 sin ) sini ik k k

2 22 1

21 2

1 sin sini i

Assume m1 = m2:

2 2 2 2 22 2 1 2 1sin sini i

2

2 2 2 1 2 2 1 2 2 1 22 2 2 22 1 2 1 2 1 2 1 1 2

( ) ( )sin i

2 21 2 1

2 21 2

1 sin sini i

Page 48: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

48

Brewster Angle (cont.)

Hence

2

1 2

sin i

q i

1 2

1

2

1 2

1

tani

Geometrical angle picture:

Page 49: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

49

Brewster Angle (cont.)

1 2

1

tani b

For non-magnetic media, only the TMz polarization has a Brewster angle.

A Brewster angle exists for any material contrast ratio (it doesn’t matter which side is denser).

This special angle is called the Brewster angle b.

Page 50: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

50

#1

x

z

i r

t#2

TM

TMT

Ei

Hi

Brewster Angle (cont.)

Example

1 1 12 2

1 1

tan tan tan 1.7689ri b

r

o53.06b

Air

Water

1.7689r

Page 51: Prof. Ji Chen Notes 18 Reflection and Transmission of Plane Waves Reflection and Transmission of Plane Waves ECE 3317 1 Spring 2014

51

Brewster Angle (cont.)

Polaroid Sunglasses

The reflections from the puddle of water (the “glare”) are reduced.

TMz+TEz

Sunlight

Puddle of water

TEz

Polarizing filter (blocks TEz)

Eye