27
CE380P. 4 BOUNDARY ELEMENT METHODS Review of Mechanics of Solids © S.A. Kinnas 2014 1 Updated: 9/2/2014 MECHANICS OF SOLIDS: DISPLACEMENTS STRAINS 2-D u: displacement along x; u(x,y) v: displacement along y; v(x,y) H Tensor of strains: yy yx xy xx ' ' ' 2 1 2 1 2 1 ' ' ' ' ' ' B A D DAB x v y u AD AD D A y v AD AD D A AB AB B A x u AB AB B A yx xy yy xx Distortion of ABCD yx xy B A D DAB 2 2 dx x u dy y u u dy y u u dy y v v dy y v dx x v v dy y v dy D D C C dy A B dx x v v v A u x y dx x u dx dx x u u dx y u dy y v dy dy y u D A D D x v dx x u dx dx x v B A B B ' ' ' ' ' ' tan ' ' ' ' ' ' tan B ' ' B ' ' D

w u w u dy dx dy wy · 2014. 9. 2. · x y n,n Components of unit normal vector, n &, to body boundary. Also: --cos sin y x n n Q: What about the body forces on the triangle? y dy

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    1 Updated: 9/2/2014

    MECHANICS OF SOLIDS:

    DISPLACEMENTS – STRAINS

    2-D

    u: displacement along x; u(x,y)

    v: displacement along y; v(x,y)

    HTensor of strains:

    yyyx

    xyxx

    '''2

    1

    2

    1

    2

    1

    '''

    '''

    BADDABx

    v

    y

    u

    AD

    ADDA

    y

    v

    AD

    ADDA

    AB

    ABBA

    x

    u

    AB

    ABBA

    yxxy

    yy

    xx

    Distortion of ABCD yxxyBADDAB 22

    dxx

    udy

    y

    uu

    dyy

    uu

    dyy

    vv

    dyy

    vdx

    x

    vv

    dyy

    vdy

    D

    D

    C

    C

    dy

    A

    B

    dxx

    vv

    v

    Au

    x

    y

    dxx

    udx

    dxx

    uu

    dx

    y

    u

    dyy

    vdy

    dyy

    u

    DA

    DD

    x

    v

    dxx

    udx

    dxx

    v

    BA

    BB

    '''

    '''tan

    '''

    '''tan

    B

    ''B

    ''D

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    2 Updated: 9/2/2014

    WHY IS “H” A TENSOR?

    Define:

    Tensor of changes of displacements:

    y

    v

    y

    u

    x

    v

    x

    u

    is a tensor because: (due to definition of tensor)

    T

    v

    u

    y

    xvu

    y

    x

    T: symbol for transpose of a vector, matrix

    So it can be easily shown that

    )1(2

    T

    H

    Thus H, being the sum of two tensors, is also a tensor.

    By using (1) it can be easily shown that THH or that:

    H: symmetric tensor

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    3 Updated: 9/2/2014

    Change in “volume” (area) of ABCD:

    )(

    )(111

    ))(()1)()(1)((

    ))(())((

    ))((

    ))((

    2

    yyxx

    yyxxyyxx

    yyxx

    V

    OVV

    ADABADAB

    ADABDABAVVV

    DABAV

    ADABV

    So: )(HtrV

    Vyyxx

    tr: trace of tensor

    volumetric strain: )(HtrV

    Vyyxx

    Note: trace of tensor does not change with coordinate transformation. What is the physical

    meaning of this for tr(H)?

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    4 Updated: 9/2/2014

    CHANGE OF COORDINATES SYSTEM:

    According to tensor analysis:

    )2(TRTRT

    where R is the matrix of direction cosines ,...)('xx

    cossin

    sincos

    yyxy

    yxxxR

    For example axisxwithaxisyofanglexy

    cos

    For vectors:

    v

    uR

    v

    u

    Prime ( ′ ) corresponds to the rotated system:

    vuv

    vuu

    cossin

    sincos

    y

    ox

    y

    x

    x

    o

    y

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    5 Updated: 9/2/2014

    (2) may also be written (for H):

    cossin

    sincos

    cossin

    sincos

    yyyx

    xyxx

    yyxy

    yxxx

    Principal coordinates system is defined as the one at which

    0 xyyx (3)

    It can be shown that P

    (=angle by which the original system has to rotate, positive in the

    counter-clockwise direction, so that it becomes a principal coordinates system) is given as:

    yyxx

    xy

    P

    22tan (4)

    The corresponding strains are called the principal strains

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    6 Updated: 9/2/2014

    EXAMPLE: PURE SHEAR

    0,

    xy

    yyxxyx

    xyyx

    yyxxyx 0

    45

    ,

    Distortion of 1111

    DCBA = 2

    yy

    x

    x

    D

    D

    1D

    1D

    A

    A 1A

    1A

    B

    B

    1B

    1B

    C

    C

    1C1

    C

    45

    45

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    7 Updated: 9/2/2014

    MOHR’S CIRCLE FOR STRAINS:

    PPyx , principal axes

    P

    yy

    P

    xx , principal strains

    y

    Py

    x

    Px

    P

    yy

    P

    xx

    xy

    xx

    P

    yy

    P

    xx

    yy

    2

    xy yyxx ,

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    8 Updated: 9/2/2014

    STRAINS IN 3-D

    333231

    232221

    131211

    H

    yxDin 2,12

    i

    j

    j

    i

    ijx

    u

    x

    u

    2

    1

    yxxxvuuuDin 2121

    ,,,2

    iiHtr

    332211)(

    (according to Einstein’s notation)

    3

    3

    33

    2

    2

    22

    1

    1

    11,,

    x

    u

    x

    u

    x

    u

    jiforjiij

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    9 Updated: 9/2/2014

    ELEMENTARY FORCES – STRESSES – 2D

    ij = stress applying on plane normal to axis i, with direction parallel to axis j

    yyxx , normal stresses

    yxxy , shear stresses

    y

    x

    dy

    dx

    dy

    dFxx

    xx

    yy

    yx

    xy

    xx

    dx

    dFyyyy

    dy

    dFxy

    xy

    dx

    dFyx

    yx

    y

    x

    dy

    dx

    yydF

    yFd

    yxdF

    xFd

    xxdF

    xydF

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    10 Updated: 9/2/2014

    TENSOR OF STRESSES (2-D)

    2221

    1211

    yyyx

    xyxx

    ij

    Laws of tensors hold!

    EQUILIBRIUM OF STRESSES

    (5)

    (6a)

    (6b)

    y

    dyxx

    xy

    yx yy

    dx

    x

    dxx

    xy

    xy

    dxx

    xx

    xx

    dyy

    yy

    yy

    dyy

    yx

    yx

    Body force vector per

    unit “volume”

    B

    B

    Y

    GX

    Moments about 0G xyyxxy

    0x

    F 0

    X

    yx

    yxxx

    0yF 0

    Y

    yx

    yyxy

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    11 Updated: 9/2/2014

    TENSOR OF STRESSES (3-D):

    333231

    232221

    131211

    ij

    jijiij

    ; (Due to equilibrium of moments)

    ;33

    332211 iip

    hydrostatic tension (7)

    EQUILIBRIUM OF STRESSES (3-D):

    0

    i

    j

    jiB

    x

    (8)

    Also written as: 0, ijji B

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    12 Updated: 9/2/2014

    BOUNDARY TRACTIONS (2-D)

    Boundary tractions are defined as:

    ds

    dFp x

    x (x force per unit “area” {arc length in 2-D})

    ds

    dFp

    y

    y (y force per unit “area”)

    Balance of forces on triangle ABC:

    Along x:

    (9a)

    Along y:

    (9b)

    yxnn , Components of unit normal vector, n

    , to body boundary.

    Also:

    cos

    sin

    y

    x

    n

    n

    Q: What about the body forces on the triangle?

    y

    dy

    xdx

    ydF Fd

    n

    xdF

    yx yy

    A C

    B

    ds

    n

    1 nds

    dxn

    y

    ds

    dyn

    x

    ),(yx

    dFdFFd

    is force acting on the boundary of the body

    (over BC)

    xy

    xx

    xyxxxdFdxdy

    yxyyydFdydx

    yyxxxxxnnp

    yyyxxyynnp

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    13 Updated: 9/2/2014

    BOUNDARY TRACTIONS (3-D):

    Boundary tractions are defined as:

    dS

    dFp

    dS

    dFp

    dS

    dFp 3

    3

    2

    2

    1

    1,,

    Balance of forces on pyramid ABCD:

    3332321313

    3232221212

    3132121111

    nnnp

    nnnp

    nnnp

    or:

    3

    2

    1

    333231

    232221

    131211

    3

    2

    1

    n

    n

    n

    p

    p

    p

    (10)

    3x

    1x

    B

    A

    D

    C

    21

    22

    23

    ),,(321

    dFdFdFFd

    2x

    (Force acting on the

    boundary of the body,

    over BCD)

    1dxAC

    3dxAB

    2dxAD

    dSBCD

    dxdxABD

    BCD

    ABDn

    BCD

    ABDn

    BCD

    ABDn

    n

    )(

    2

    1)(

    )(

    )(

    )(

    )(

    )(

    )(

    1

    23

    3

    2

    1

    ),,( 321 nnnn

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    14 Updated: 9/2/2014

    CONSTITUTIVE RELATIONS:

    ijijij 2 (11)

    332211

    ii

    :, Lamé’s constants

    ij

    Kronecker delta ( 1,;0 ijij

    ji for ji )

    211

    ,)1(2

    EE

    G

    G = Shear Modulus

    E = Modulus of Elasticity (Young’s Modulus)

    = Poisson’s ratio

    (11) can also be written as:

    ijijij

    E

    211 (12)

    Inverting (12) we get:

    ijijijE

    pE

    13

    (13)

    3/3/332211

    ii

    p

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    15 Updated: 9/2/2014

    DEVIATORIC STRESSES AND STRAINS:

    They are defined as:

    03

    iiijijij

    ee

    0iiijijij

    sps

    Then (11) becomes:

    Kp

    Gesijij

    2 (14)

    K= Bulk Modulus

    )21(33

    2

    EK

    ALTERNATIVE EXPRESSIONS FOR EQUATION (13):

    33221111

    1

    E

    33112222

    1

    E (15)

    22113333

    1

    E

    1313131313

    2323232323

    1212121212

    /2

    /2

    /2

    G

    G

    G

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    16 Updated: 9/2/2014

    SPECIAL CASES:

    PURE SHEAR:

    Then from (15) we have:

    G

    121323332211,0,0

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    17 Updated: 9/2/2014

    PURE (AXIAL) TENSION

    0

    0

    132312

    3322

    From (15) we have:

    11

    11

    33

    11

    11

    22

    132312

    11

    110,

    E

    E

    E

    Definition of Poisson’s ratio:

    11

    33

    11

    22

    Change in sectional area: E

    11

    3322

    2

    Change in volume of specimen: 1133221121

    Eii

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    18 Updated: 9/2/2014

    PLATE STRETCHING (2-D):

    0,0231333

    122211,, functions of

    21, xx

    Then from (15) we get:

    G

    E

    E

    2

    1

    1

    1212

    112222

    221111

    (16)

    0221133

    E

    01323

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    19 Updated: 9/2/2014

    PLANE STRAIN (2-D):

    0,0231333

    122211, functions of

    21, xx

    From (15) we get:

    1212

    2313

    1122

    2

    22

    2211

    2

    11

    2

    01

    1

    1

    1

    G

    E

    E

    (17)

    Note: Equation (17) can be brought to the form of equation (16) by putting:

    1

    1 2E

    E

    22113333

    10

    E

    0221133

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    20 Updated: 9/2/2014

    INVERSION OF (16) & (17)

    (a) Plate Stretching: 033

    1212

    2211222

    2211211

    21

    1

    G

    E

    E

    (16a)

    (b) Plane Strain: 033

    1212

    221122

    221111

    2

    1211

    1211

    G

    E

    E

    (17a)

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    21 Updated: 9/2/2014

    COMPATIBILITY OF STRAINS (2-D):

    yxxy

    xyyyxx

    2

    2

    2

    2

    2

    2 (18)

    (18) valid

    COMPATIBILITY OF STRESSES (2-D)

    PLATE STRETCHING 033

    From (16)

    12;/2

    EGGxyxy

    So (18) yxxy

    xy

    xxyyyyxx

    2

    2

    2

    2

    2

    12 (19)

    From equations (6a) and (6b)

    062

    2

    2

    x

    X

    yxxa

    x

    yxxx

    062

    22

    y

    Y

    yyxb

    y

    yyxy

    2

    3

    2

    2

    yx

    u

    yx

    u xxxx

    2

    3

    2

    2

    xy

    v

    xy

    v yyyy

    yx

    v

    xy

    u

    yxx

    v

    y

    u xyxy

    2

    3

    2

    32

    22

    1

    xxyyyy

    yyxxxx

    E

    E

    1

    1

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    22 Updated: 9/2/2014

    So (19) becomes:

    y

    Y

    x

    X

    yxxy

    yyxx

    xxyyyyxx 2

    2

    2

    2

    2

    2

    2

    2

    1

    (20)

    For 0YX (negligible body forces):

    02

    2

    2

    2

    yyxx

    yx or 02 p (21)

    and the equilibrium equations become:

    0

    yx

    xyxx

    (21a); 0

    yx

    yyxy

    (21b)

    Defining: (22)

    (21a), (21b) are satisfied automatically

    y

    Y

    yyx

    x

    X

    xyx

    yyxy

    xxxy

    2

    22

    2

    22

    012

    2

    2

    2

    y

    Y

    x

    X

    yxyyxx

    yx

    F

    x

    F

    y

    Fxyyyxx

    2

    2

    2

    2

    2

    ,,

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    23 Updated: 9/2/2014

    In order for (21) to be also satisfied we must have:

    02

    2

    2

    2

    2

    2

    2

    2

    y

    F

    x

    F

    yx

    or 04 F or 024

    4

    22

    4

    4

    4

    y

    F

    yx

    F

    x

    F (23)

    F = stress function of Airy

    F = biharmonic function (satisfies 23)

    vu

    yxFbaequationscb

    xyyyxxxyyyxx ,,,,,

    ),()9&9.(.23

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    24 Updated: 9/2/2014

    EQUILIBRIUM EQUATIONS IN TERMS OF DISPLACEMENTS:

    (2-D, PLATE STRETCHING)

    0

    X

    yx

    xyxx

    (6a)

    0

    Y

    yx

    yyyx

    (6b)

    Equ. (16a):

    yx

    v

    y

    uE

    y

    x

    v

    yx

    uE

    x

    x

    v

    y

    uE

    x

    v

    y

    uG

    y

    v

    yx

    uE

    yy

    v

    x

    uE

    yx

    v

    x

    uE

    xy

    v

    x

    uE

    x

    v

    y

    u

    y

    v

    x

    u

    E

    GE

    xy

    xy

    xy

    yy

    yy

    xx

    xx

    xyyyxx

    yyxxyy

    xyxyyyxxxx

    2

    2

    2

    2

    22

    2

    22

    22

    2

    2

    2

    22

    2

    2

    12

    12

    12

    11

    11

    2

    1,,

    1

    21

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    25 Updated: 9/2/2014

    0

    12

    1

    12 2

    2

    22

    2

    2

    2

    EX

    yx

    v

    y

    u

    yx

    v

    x

    u

    01

    22

    22

    2

    2

    2

    22

    2

    2

    G

    X

    x

    u

    yx

    v

    x

    u

    y

    u

    yx

    v

    x

    u

    01

    1 2

    2

    2

    2

    G

    X

    yx

    v

    x

    uu

    Thus (6a) becomes:

    0

    121

    2

    2

    22

    2

    2

    2

    X

    yx

    v

    y

    uE

    yx

    v

    x

    uE

    (24a)

    Similarly (6b) becomes:

    01

    1 2

    2

    2

    2

    G

    Y

    yx

    u

    y

    vv

    (24b)

    Equations (24a) and (24b) are the equilibrium equations for u, v in the case of plate stretching.

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    26 Updated: 9/2/2014

    GOING FROM PLATE-STRETCHING TO PLANE-STRAIN AND VICE-VERSA

    EQUILIBRIUM EQUATIONS IN TERMS OF DISPLACEMENTS:

    (2-D, PLANE STRAIN)

    Put 1/ in (24a) & (24b) to get:

    021

    1 2

    2

    2

    2

    G

    X

    yx

    v

    x

    uu

    (25a)

    021

    1 2

    2

    2

    2

    G

    Y

    yx

    u

    y

    vv

    (25b)

    Equations (25a) and (25b) are the equilibrium equations for u, v in the case of plane strain

  • CE380P. 4 – BOUNDARY ELEMENT METHODS – Review of Mechanics of Solids © S.A. Kinnas 2014

    27 Updated: 9/2/2014

    BOUNDARY CONDITIONS (B.C.s)

    According to (9a), (9b)

    yyxxxxxnnp

    (9a)

    yyyxxyynnp

    (9b)

    Natural b.c.s involve yx

    , of u, v

    Essential b.c.s involve u, v

    y

    A

    B

    n yn

    xn

    px, py known

    (natural b.c.s)

    u, v known

    (essential b.c.s)

    x