9
Application Note ZEISS LSM 800 and LSM 880 with Airyscan Imaging Biological Samples – a Reference List

ZEISS LSM 800 and LSM 880 with Airyscan - Confocal-clubconfocal-club.ru/upload/article/EN_WP_LSM-8-family_reference_list... · 2 ZEISS LSM 800 and LSM 880 with Airyscan Imaging Biological

Embed Size (px)

Citation preview

Page 1: ZEISS LSM 800 and LSM 880 with Airyscan - Confocal-clubconfocal-club.ru/upload/article/EN_WP_LSM-8-family_reference_list... · 2 ZEISS LSM 800 and LSM 880 with Airyscan Imaging Biological

Application Note

ZEISS LSM 800 and LSM 880 with AiryscanImaging Biological Samples – a Reference List

Page 2: ZEISS LSM 800 and LSM 880 with Airyscan - Confocal-clubconfocal-club.ru/upload/article/EN_WP_LSM-8-family_reference_list... · 2 ZEISS LSM 800 and LSM 880 with Airyscan Imaging Biological

Application Note

2

ZEISS LSM 800 and LSM 880 with AiryscanImaging Biological Samples – a Reference List

Author: Dr. Annette Bergter Carl Zeiss Microscopy GmbH, Germany

Date: December 2016

Introduction

The Confocal Laser Scanning Microscope (LSM) has become

one of the most popular instruments for fluorescence imaging

in biomedical research, because it affords researchers images

with high contrast and a versatile optical sectioning capability

to investigate three dimensional biological structures [1].

The optical sectioning ability of an LSM is a product of

scanning a focused laser spot, across a sample to create an

image one point at a time. The generated fluorescence from

each point is collected by the imaging objective and results

from fluorophores in the sample that reside both in the

desired plane of focus and in out of focus planes. In order

to segregate the fluorescence emitted from the desired focal

plane, an aperture (pinhole) is positioned in the light path

to block all out of focus light from reaching the detector

(traditionally a PMT) [2].

The traditional principle of the LSM beampath forces the

user to compromise either on resolution or sensitivity.

Resolution is increased by closing the pinhole, at the same

time limiting the amount of light that is allowed to pass

through to the detector. The Airyscan detector of LSM 880

and LSM 800 overcomes this challenge. The detector

consists of 32 GaAsP PMT detector elements, which are

arranged in a hexagonal array (Figure 1), positioned at a

conjugated focal plane in the beam path the detector is

functioning as the traditional LSM pinhole. This design

makes it possible to collect more light (equivalent to a

pinhole opened to 1.25 AU), whilst at the same time

dramatically enhancing the resolution, with every detector

element acting as an efficient pinhole with a dia meter of

only 0.2 Airy Unit (AU). Instead of facing an either / or

decision, a simultaneous enhancement of resolution by the

factor of 1.7× and signal-to-noise by 4 – 8× was introduced

to LSM imaging. Detailed descriptions of the theory and

techno logy of Airyscanning can be found in separate tech-

nology notes [3, 4, 5].

As an area detector, Airyscan can capture spatial information

that is utilized to parallelize the scanning process, collecting

4 image lines simultaneously in the Fast mode (Figure 2).

This means enhancing acquisition speed by a factor of 4

while keeping high pixel dwell times to efficiently collect

emitted photons. In standard mode, the focused laser beam

is moved along the x-axis to acquire one image line, before

it is moved in the y-axis to acquire the consecutive image

line. In Fast mode imaging, four image lines are acquired at

the same time when moving the laser in the x-direction.

This publication list 1 assembles some of the scientific work

that has been done with LSM 880 and 800 systems. The great

variety of applications collectively profits from the light

efficient beam path of the LSM systems, and the unique

combination of superresolution, high sensitivity and high

speed imaging provided by Airyscan.

Learn more about LSM 800, click here

Learn more about LSM 880, click here

Further Reading:

[1] Conchello, J.-A. and Lichtman, J.W., Optical sectioning microscopy. Nature methods, 2005. 2(12): p. 920-931.

[2] Minsky, M., Memoir on inventing the confocal scanning microscope. Scanning, 1988. 10(4): p. 128-138.

[3] Huff, J., The Airyscan detector from ZEISS: confocal imaging with improved signal-to-noise ratio and super-resolution. Nature methods, 2015. 12.

[4] Weisshart, K., The basic principle of Airyscanning. 2014. ZEISS Technology Note

[5] Huff, J.; Bathe, W.; Netz, R.; Anhut, T.; Weisshart, K., The Airyscan detector from ZEISS. Confocal imaging with improved signal-to-noise

ratio and superresolution. 2015. ZEISS Technology Note

Page 3: ZEISS LSM 800 and LSM 880 with Airyscan - Confocal-clubconfocal-club.ru/upload/article/EN_WP_LSM-8-family_reference_list... · 2 ZEISS LSM 800 and LSM 880 with Airyscan Imaging Biological

Application Note

3

4. Airy disk 5. Airyscan detector

1. Mirror2. Emission filters3. Zoom optics

1

2

3

4 5

4

4. Airy disk 5. Airyscan detector

1. Mirror2. Emission filters3. Zoom optics

1

2

3

4 5

4

Figure 1 Beampath Airyscan Figure 2 Airyscan Fast mode

Cell culture / In vitro / Fixed cells

Publication Journal Sample Application System

2016. C.A. Casey et al. Study of Ethanol-Induced Golgi Disorganization Reveals the Potential Mechanism of Alcohol-Impaired N-Glycosylation. doi:10.1111/acer.13247

AlcoholismClinical and Experimental Research

HepG2 cells transfected with mouse ADH1 (VA-13 cells)Rat hepatocytesRat liver tissue sections

Fluorescent Immuno-histochemical staining

LSM 800Airyscan

2016. S.G.B. Furness et al. A novel ligand of calcitonin receptor reveals a potential new sensor that modulates programmed cell death. doi:10.1038/cddiscovery.2016.62

Nature - Cell Death Discovery

MG 63 (Human osteosarcoma cell line)A172 (Human glioblastoma cell line) GBM-L2 ( high-grade glioma cell line)

Fluorescent Immuno-histochemical staining

LSM 800Airyscan

2016. P. Robinson et al. Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes. doi:10.1126/science.aaf0659

Science Cardiomyocyte cells Live cell imaging LSM 880Airyscan

2016. A. M. Ward et al. The Golgi associated ERI3 is a Flavivirus host factor. doi:10.1038/srep34379

NatureScientific Reports

HuH-7 cells Fluorescent Immuno-histochemical staining

LSM 880Airyscan

2016. M.J. Patton et al. Chlamydial Protease-Like Activity Factor and Type III Secreted Effectors Cooperate in Inhibition of p65 Nuclear Translocation. doi:10.1128/mBio.01427-16

mBio HeLa cells Fluorescent Immuno-histochemical staining

LSM 880Airyscan

2016. L. Ma et al. Exploring functional roles of TRPV1 intracellular domains with unstructured peptide-insertion screening. doi:10.1038/srep33827

NatureScientific Reports

Mouse TRPV1 cell line Fluorescent Immuno-histochemical staining

LSM 880Airyscan

2016. E. Sosa et al. An integration-free, virus-free rhesus macaque induced pluripotent stem cell line (riPSC89) from embryonic fibroblasts. doi:10.1016/j.scr.2016.09.015

Stem Cell Research riPSC89 cells Fluorescent Immuno-histochemical staining

LSM 880

2016. O. Pylypenko et al. Coordinated recruitment of Spir actin nucleators and myosin V motors to Rab11 vesicle membranes. doi:10.7554/eLife.17523

eLIFE HEK293 cellsWild-type C57BL/6

FLIM LSM 880PicoQuant

2016. K. Rao et al. Spastin, atlastin and ER relocalization are involved in axon, but not dendrite, regeneration. doi:10.1091/mbc.E16-05-0287

MBoC Molecular biology of the Cell

Drosophila LSM 880Airyscan

Page 4: ZEISS LSM 800 and LSM 880 with Airyscan - Confocal-clubconfocal-club.ru/upload/article/EN_WP_LSM-8-family_reference_list... · 2 ZEISS LSM 800 and LSM 880 with Airyscan Imaging Biological

Application Note

4

Publication Journal Sample Application System

2016. F. Li et al. Reciprocal regulation of actin cytoskele-ton remodeling and cell migration by calcium and zinc: role of TRPM2 channels. doi:10.1242/jcs.179796

Journal of Cell Science HeLa cells PC-3 cells

Fluorescent Immuno-histochemical staining

LSM 880Airyscan

2016. A. Petrosyan et al. The role of Rab6a and phosphorylation of non-muscle myosin IIA tailpiece in alcohol-induced Golgi disorganization. doi:10.1038/srep31962

NatureScientific Reports

HepG2 cells mouse ADH1 (VA-13 cells)

Fluorescent Immuno-histochemical staining

LMS 800 Airyscan

2016. P. Sheehan et al. Activity-Dependent Degradation of Synaptic Vesicle Proteins Requires Rab35 and the ESCRT Pathway. doi:10.1523/JNEUROSCI.0725-16.2016

The Journal of Neuroscience

LSM 800Airyscan

2016. R. L. Weaver et al. BubR1 alterations that reinforce mitotic surveillance act against aneuploidy and cancer. doi:10.7554/eLife.16620

eLIFE Mouse embryonic fibroblasts (MEF)

Fluorescent Immuno-histochemical staining

LSM 880

2016. B. Yao et al. Reciprocal regulation between O-GlcNAcylation and tribbles pseudokinase 2 (TRIB2) maintains transformative phenotypes in liver cancer cells. doi:10.1016/j.cellsig.2016.08.003

Cellular Signalling Liver cancer cells LSM 800

2016. M. Zhou et al. VPS35 binds farnesylated N-Ras in the cytosol to regulate N-Ras trafficking. doi:10.1083/jcb.201604061

JBCThe Journal of Cell Biology

U2OS cells Live cell imaging LSM 800Airyscan

2016. E. Adu-Gyamfi et al. Flexibility of the head-stalk linker domain of paramyxovirus HN glycoprotein is essen-tial for triggering virus fusion. doi:10.1128/JVI.01187-16

Journal of Virology Paramyxoviridae LMS 800Airyscan

2016. L.Li et al. Real-time imaging of Huntingtin aggre-gates diverting target search and gene transcription.doi:10.7554/eLife.17056

eLIFE Mouse D3 (ATCC, Manassas, VA) ES cells

Fluorescent proteinsAiryscanSIMSingle molecule localizationFRAP

LSM 880Airyscan

2016. J. Bruno et al. SEC16A is a RAB10 effector required for insulin-stimulated GLUT4 trafficking in adipocytes. doi:10.1083/jcb.201509052

JBCThe Journal of Cell Biology

Adipocytes Fluorescent Immuno-histochemical staining

LSM 880Airyscan

2016. X. Xie et al. Rational Design of an α-Ketoamide-Based Near-Infrared Fluorescent Probe Specific for Hydrogen Peroxide in Living Systems. doi:10.1021/acs.analchem.6b01256

Analytical Chemistry Cell culture LSM 880

2016. D.C. Gershlick et al. TSSC1 is Novel Component of the Endosomal Retrieval Machinery. doi:10.1091/mbc.E16-04-0209

MBoCMolecular Biology of the Cell

Mouse tissue extractsWT, TSSC1-KO and VPS54-KO HAP1 cell lines

Fluorescent Immuno-histochemical staining

LSM 880Airyscan

2016, T. Yang et al. A Rapid and Convenient Method for in Vivo Fluorescent Imaging of Protoscolices of Echino-coccus multilocularis. doi:10.3347/kjp.2016.54.2.225

The Korean Journal of Parasitology

Echinococcus multilocularis Live cell imaging LSM 800

2016, J. J. Kelly et al. Specific functional pathologies of Cx43 mutations associated with oculodentodigital dysplasia. doi:10.1091/mbc.E16-01-0062

MBoCMolecular Biology of the Cell

Primary human fibroblasts culturesHuman ODDD patient skin biopsies

Fluorescent Immuno-histochemical staining

LSM 800 Airyscan

2016, B. M. Laitman et al. The transcriptional activator Krüppel-like factor -6 is required for CNS myelination. doi:10.1371/journal.pbio.1002567

PLOS, Biology MouseOligodendrocyte progenitors cell culture

Fluorescent Immuno-histochemical staining

LSM 880

2016, F. M. Kuhlmann et al. Blood Group O–Dependent Cellular Responses to Cholera Toxin: Parallel Clinical and Epidemiological Links to Severe Cholera. doi:10.4269/ajtmh.16-0161

ASTHM, The American Journal of Tropical Medicine and Hygiene

Human enteroid cultureCholera toxin

Live cell imagingCRISPR

LSM 880

2016, M. Kargar et al. Colloidal Crystals Delay Formation of Early Stage Bacterial Biofilms. doi:10.1021/acsbiomaterials.6b00163

ACSBiomaterialsScience and Engineering

Pseudomonas aeruginosaBiofilm

LSM 880

Cell culture / In vitro / Fixed cells

Page 5: ZEISS LSM 800 and LSM 880 with Airyscan - Confocal-clubconfocal-club.ru/upload/article/EN_WP_LSM-8-family_reference_list... · 2 ZEISS LSM 800 and LSM 880 with Airyscan Imaging Biological

Application Note

5

Publication Journal Sample Application System

2016, W. Quing Liu et al. A potential peptide vector that allows targeted deliveryof a desired fusion protein into the human breast cancer cell line MDA-MB-231. doi:10.3892/ol.2016.4538

Oncology LettersSpandidos Publications

MDA-MB-231 cells Live cell imagingTime series

LSM 800

2016, Y. Xing-Mei et al. Astragaloside IV prevents high glucose-induced podocyte apoptosis via downregulation of TRPC6. doi:10.3892/mmr.2016.5167

Molecular Medicine ReportsSpandidos Publications

Cultured podocytes Ca-Imaging (Fluo-3) Live cell imagingTime series

LSM 880

2016, D. Kalafatovic et al. MMP-9 triggered self-assem-bly of doxorubicin nanofiber depots halts tumor growth. doi:10.1016/j.biomaterials.2016.04.039

Biomaterials MDA-MB-231-luc-D3H2LN cell culture

CRISPRFluorescent Immuno-histochemical staining

LSM 880 Airyscan

2016, H. Zuh et al. Parkinson’s disease-like forelimb akinesia induced by BmK I, a sodium channel modulator. doi:10.1016/j.bbr.2016.04.036

Behavioural Brain Research

Human neuroblastoma SHSY5Y Fluorescent Immuno-histochemical staining

LSM 880

2016, M. O’Brien et al. CD4 Receptor is a key determinant of divergent HIV-1 sensing by plasmacytoid dendritic cells. doi:10.1371/journal.ppat.1005553

PLOS, Pathogenes HEK cellsPurified human pDC Incubated with GFP PR8 influenza 10 HAU, GFP Ha-HIV or GFP JRFL

Fluorescent Immuno-histochemical staining

LSM 880

2016, Y. Qiao et al. Melanoma cell adhesion molecule stimulates yes-associated protein transcription by enhancing CREB activity via c-Jun/c-Fos in hepatocellular carcinoma cells. doi:10.3892/ol.2016.4442

Oncology LettersSpandidos Publications

Human HCC Bel-7402, SMMC-7721 and Huh7 cells lines

Fluorescent Immuno-histochemical staining

LSM 800

2016, M. A. Rider et al. ExtraPEG: A Polyethylene Glycol-Based Method for Enrichment of Extracellular Vesicles. doi:10.1038/srep23978

NatureScientifc Reports

HEK293 cells Fluorescent Immuno-histochemical staining

LSM 880

2016, K. Jin et al. Multiphoton luminescent graphene quantum dots for in vivo tracking of human adipose-derived stem cells. doi:10.1039/C6NR02143C

Nanoscale MouseHuman stem cells

Fluorescent Immuno-histochemical staining

LSM 880

2016, L. Xiaojin et al. Long-term performance and microbial community characterization of an osmotic anammox system for removing reverse-fluxed ammoni-um. doi:10.1016/j.biortech.2016.03.137

Bioresource Technology Biofilm FISH LSM 880

2016, J. HoJun et al. Nanostructured surface of electro-spun PCL/dECM fibres treated with oxygen plasma for tissue engineering. doi:10.1039/C6RA03840A

RSC Advances Cell culture in PCL/d-ECM scaffold

Fluorescent Immuno-histochemical stainingTissue formation and regeneration

LSM 800

2016, L. Hyeongjin. A scaffold with a bio-mimetically de-signed micro/nano-fibrous structure using decellularized extracellular matrix. doi:10.1039/C5RA27845G

RSC Advances Cell culture in PCL/d-ECM scaffold

Fluorescent Immuno-histochemical stainingTissue formation and regeneration

LSM 800

2016, R. Guo et al. Porcine reproductive and respiratory syndrome virus utilizes nanotubes for intercellular spread. doi:10.1128/JVI.00036-16

Journal of Virology porcine reproductive and respi-ratory syndrome virus (PRRSV) in HEK-293T cells

Live cell imaging LSM 880

2016, T. Bacon et al. Histone deacetylase 3 indirectly modulates tubulin acetylation. doi:10.1042/BJ20150660

Biochemical Journal Immortalized human prostate cancer cells (PC3)Human HDAC3 clones

Fluorescent Immuno-histochemical staining

LSM 880 Airyscan

2016, S. Skariah et al. The FIKK kinase of Toxoplasma gondii is not essential for the parasite’s lytic cycle. doi:10.1016/j.ijpara.2016.01.001

International Journal for Parasitology

Toxoplasma gondii in HFF cells LSM 880 or 800Airyscan

2016, X. Li et al. Nitrogen removal by granular nitritation-anammox in an upflow membrane-aerated biofilm reactor. doi:10.1016/j.watres.2016.02.031

Water Research microorganisms (e.g. AOB, NOB and anammox bacteria) in the granule and biofilm

Microbial community analysis

LSM 880

2016, G.W. Dougherty et al. DNAH11 Localization in the Proximal Region of Respiratory Cilia Defines Distinct Outer Dynein Arm Complexes. doi:10.1165/rcmb.2015-0353OC

American Journal of Respiratory Cell and Molecular Biology

Trachearespiratory epithelium

LSM 880Apotome

Cell culture / In vitro / Fixed cells

Page 6: ZEISS LSM 800 and LSM 880 with Airyscan - Confocal-clubconfocal-club.ru/upload/article/EN_WP_LSM-8-family_reference_list... · 2 ZEISS LSM 800 and LSM 880 with Airyscan Imaging Biological

Application Note

6

Publication Journal Sample Application System

2015, Kitamura et al. Interaction of RNA with a C-terminal fragment of the amyotrophic lateral sclerosis-associated TDP43 reduces cytotoxicity. doi:10.1038/srep19230

NatureScientific Report

Mouse neuroblastoma Neuro2A cells transiently expressing GFP, TDP43-GFP, GFP-TDP35, GFP-TDP25, or GFP-NLS-TDP25

Fluorescent Immuno-histochemical staining

LSM 800Airyscan

2016, A. Jassim et al. Engineered Cx40 variants increased docking and function of heterotypic Cx40/Cx43 gap junction channels.doi:10.1016/j.yjmcc.2015.11.026

Journal of Molecular and Cellular Cardiology

Mouse neuroblastoma (N2A)human cervical carcinoma (HeLa) cells

Localizations of Cx40-YFP, mutant-YFP, Cx40-RFP and Cx43-RFP were studied by expressing these con-structs individually in gap junction deficient HeLa and N2A cells.

LSM 800Airyscan

2015, Y. Suzuki-Karasaki et al. Distinct effects of TRAIL on the mitochondrial network in human cancer cells and normal cells: role of plasma membrane depolarization. doi:10.18632/oncotarget.4268

Oncotarget A549 cells (human lung ade-nocarcinoma epithelial cell line)Osteosarcoma cell linesHuman dermal fibroblasts from facial dermis

Mitochondrial network imaging and length mea-surements

LSM 880

2015, W. Ji et al. Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites. doi:10.7554/eLife.11553

eLIFE Human osteosarcoma U2OS Live cell imagingDrp 1 maturation

LSM 880Airyscan

2015, K. A. Makowska et al. Specific Myosins Control Actin Organization, Cell Morphology, and Migration in Prostate Cancer Cells. doi:10.1016/j.celrep.2015.11.012

Cell Reports LNCaP, DU145, and PC-3 cells1535NP and CT cells

Fluorescent Immuno-histochemical staining

LSM 880Airyscan

2016, S. Kang et al. Development of anti-biofouling in-terface on hydroxyapatite surface by coating zwitterionic MPC polymer containing calcium-binding moieties to prevent oral bacterial adhesion. doi:10.1016/j.actbio.2016.03.006

Acta Biomaterialia Bacterial suspension Streptococcus mutans

Fluorescent Immuno-histochemical stainingAnalysis of anti-biofouling surfaces

LSM 880

Publication Journal Sample Application System

2016. A. Koch et al. An RNAi-Based Control of Fusariumgraminearum Infections Through Spraying ofLong dsRNAs Involves a Plant Passage and isControlled by the Fungal Silencing Machinery. doi:10.1371/journal.ppat.1005901

PLOS, Pathogens Hordeum vulgare (Barley)Fusarium graminearum strain Fg-IFA65

In vivo imagingSpectral / Lambda imaging (Linear unmixing, Online fingerprinting)

LSM 880

2016. E. Breeze et al. A C-terminal amphipathic helix is necessary for the in vivo tubule-shaping function of a plant reticulon. doi:10.1073/pnas.1605434113

PNAS Arabidopsis thaliana In vivo: ER network analysisFRAP

LSM 880Airyscan

2016. O. Sztatelman et al. Fine tuning chloroplast movements through physical interactions between phototropins. doi:10.1093/jxb/erw265

Journal of Experimental Botany

Arabidopsis thaliana Live imagingChloroplast movement

LSM 880

2016. M. R. Greaney et al. Extraocular motoneuron pools develop along a dorsoventral axis in zebrafish, Danio rerio. doi:10.1002/cne.24042

Journal of Comparative Neurology

Zebrafish Live cell imagingIn vivo imaging, mCherry

LSM 800

2016, H. L. Johnsen and H. R. Horvitz. Both the apop-totic suicide pathway and phagocytosis are required for a programmed cell death in Caenorhabditis elegans. doi:10.1186/s12915-016-0262-5

BMC Biology Caenorhabditis elegans Live cell imaging LSM 800

2016, J. Firmino et al. Cell Division Drives Epithelial Cell Rearrangements during Gastrulation in Chick. doi:10.1016/j.devcel.2016.01.007

Developmental Cell Chicken embryo Live imaging of gastrulation

LSM 700, 880LSM 7 MP

Cell culture / In vitro / Fixed cells

Whole organisms / In vivo imaging

Page 7: ZEISS LSM 800 and LSM 880 with Airyscan - Confocal-clubconfocal-club.ru/upload/article/EN_WP_LSM-8-family_reference_list... · 2 ZEISS LSM 800 and LSM 880 with Airyscan Imaging Biological

Application Note

7

Publication Journal Sample Application System

2016. Y. Yoshimura et al. Roles of 5-HT1A receptor in the expression of AMPA receptor and BDNF in developing mouse cortical neurons. doi:10.1016/j.neures.2016.09.008

Neuroscience Research Mouse Fluorescent Immuno-histochemical staining

LSM 800Airyscan

2016. F. Mora-Bermúdez et al. Differences and similari-ties between human and chimpanzee neural progenitors during cerebral cortex development. doi:10.7554/eLife.18683

eLIFE Cerebral organoids Fluorescent Immuno-histochemical staining

LSM 880 Airyscan

2016. Y. Shinohara et al. Viral Vector-Based Dissection of Marmoset GFAP Promoter in Mouse and Marmoset Brains. doi:10.1371/journal.pone.0162023

PLOS, ONE MiceMarmosetBrain tissue sections

Fluorescent Immuno-histochemical staining

LSM 880

2016. T.-M. Fu et al. Stable long-term chronic brain map-ping at the single-neuron level. doi:10.1038/nmeth.3969

Nature methods Mouse Fluorescent Immuno-histochemical staining

LSM 880

2016. M. J. Costello et al. Identification and Ultrastruc-tural Characterization of a Novel Nuclear Degradation Complex in Differentiating Lens Fiber Cells. doi:10.1371/journal.pone.0160785

PLOS, ONE Chicken embryosEye lenses

Fluorescent Immuno-histochemical staining

LSM 880Airyscan

2016. S.J. Miller and J.D. Rothstein. Astroglia in thick tissue with super resolution and cellular reconstruction. doi:10.1371/journal.pone.0160391

PLOS, ONE Mouse, BAC-GLT1-eGFP and 8.3kb-tdTomato

Clearing, passive ClarityFluorescent Immuno-histochemical staining

LSM 800 Airyscan

2016. T.G. Mc Williams et al. mito-QC illuminates mito-phagy and mitochondrial architecture in vivo. doi:10.1083/jcb.201603039

JBCThe Journal of Cell Biology

Mouse (Brain, Kidney)mito-QC MEFsTissue sections

Fluorescent Immuno-histochemical stainingFluorescent proteinsLive cell imaging

LSM 880Airyscan

2016. C. Dhang et al. Bio-Inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering. doi:10.1016/j.biomaterials.2016.07.007

Biomaterials Collagen scaffold for bone tissue

LSM 800Airyscan

2016. H. Ren et al. SPIKE1 activates ROP GTPase to modulate petal anisotropic growth in Arabidopsis. doi:10. 1104/ pp. 16. 00788

Plant Physiology Arabidopsis thaliana LSM 880

2016, N. Lehotai et al. Nitric oxide–cytokinin interplay influences selenite sensitivity in Arabidopsis. doi:10.1007/s00299-016-2028-5

Plant Cell Reports Arabidopsis thaliana LSM 880

2016, A. Sherlekar and R. Rikhy. Syndapin promotes pseudocleavage furrow formation by actin organization in the syncytial Drosophila embryo. doi:10.1091/mbc.E15-09-0656

MBoCMolecular Biology of the Cell

Drosophila melanogster Fluorescent Immuno-histochemical staining

LSM 800 Airyscan

2016, K. N. Richter et al. Secretory cells in honeybee hypopharyngeal gland: polarized organization and age-dependent dynamics of plasma membrane. doi:10.1007/s00441-016-2423-9

Cell and tissue Research Apis mellifera (honeybee)Hypopharyngeal gland

Fluorescent Immuno-histochemical staining

LSM 880 Airyscan

2016, S. J. Terrill et al. Role of Lateral Septum Glucagon-Like Peptide 1 Receptors in Food Intake. doi:10.1152/ajpregu.00460.2015

American Physiological Society

LSM 880 NLO

2016, S.-N. Wang et al. Cloning and expression profile of ionotropic receptors in the parasitoid wasp Microplitis mediator (Hymenoptera: Braconidae). doi:10.1016/j.jinsphys.2016.05.002

Journal of Insect Physiology

Microplitis mediator (Hymenoptera, Braconidae)Antennae

Fluorescent Immuno-histochemical staining

LSM 880

2016, H. Li et al. ROCK inhibitor abolishes the antibody response in experimental autoimmune myasthenia gravis. doi:10.1016/j.mcn.2016.05.001

Molecular and Cellular Neuroscience

RatGastrocnemius muscle tissue

Fluorescent Immuno-histochemical staining

LSM 800

2016, P. Sandeep et al. Ihha induces hybrid cartilage-bone cells during zebrafish jawbone regeneration. doi:10.1242/dev.131292

Development Zebrafish Fluorescent Immuno-histo-chemical stainingFluorescent in situ Hybridisation

LSM 800

2016, S. Lei et al. Increased and prolonged human noro-virus infection in RAG2/IL2RG deficient gnotobiotic pigs with severe combined immunodeficiency. doi:10.1038/srep25222

NatureScientific Reports

Intestinal tissue sections from RAG2/IL2RG deficient pigs (CRISPR/Cas9)

Fluorescent Immuno-histochemical staining

LSM 880

Organ, tissue, whole organisms

Page 8: ZEISS LSM 800 and LSM 880 with Airyscan - Confocal-clubconfocal-club.ru/upload/article/EN_WP_LSM-8-family_reference_list... · 2 ZEISS LSM 800 and LSM 880 with Airyscan Imaging Biological

Application Note

8

Publication Journal Sample Application System

2016, K. Kolahi et al. Real-time tracking of Bodipy-C12 long-chain fatty acid in human term placenta reveals unique lipid dynamics in cytotrophoblast cells. doi:10.1371/journal.pone.0153522

PLOS, ONE Human placenta explants Fluorescent Immuno-histochemical staining

LSM 880Airyscan

2016, S. Lei et al. Enterobacter cloacae inhibits human norovirus infectivity in gnotobiotic pigs. doi:10.1038/srep25017

Nature Scientific Reports

Pig, small intestinal tissue Fluorescent Immuno-histochemical staining

LSM 880

2016, Y. Leonhardt et al. Functional characterization of the Woronin body protein WscA of the pathogenic mold Aspergillus fumigatus. doi:10.1016/j.ijmm.2016.03.008

Internal Journal of Medical microbiology

Aspergillus fumigatus Fluorescent Immuno-histochemical staining

LSM 880 Airyscan

2016, K. A. Halberg et al. The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules. doi:10.1038/ncomms11266

Nature Communications

Drosophila melanogaster Fluorescent Immuno-histochemical staining

LSM 880 Airyscan

K. Meng-Tsen et al. Super-Resolution Mapping of Neu-ronal Circuitry With an Index-Optimized Clearing Agent. doi:10.1016/j.celrep.2016.02.057

Cell Reports Mouse (brain, oocyte)Drosophila melanogasterHEK293T cells

Water based clearing, SeeDBFluorescent proteinsFluorescent Immuno-histo-chemical staining

LSM 880 Airyscan

2016, I. M. Berke et al. Seeing through Musculoskeletal Tissues: Improving In Situ Imaging of Bone and the Lacunar Canalicular System through Optical Clearing. doi:10.1371/journal.pone.0150268

PLOS, ONE Mouse Skeletal muscle tissue

Clearing (water-based) Comparison of clearing methods Fluorescent Immuno-histochemical staining

LSM 880LSM 780 NLO

2015, P.P. de Abreu Manso et al. Yellow Fever 17DD Vaccine Virus Infection Causes Detectable Changes in Chicken Embryos. doi:10.1371/journal.pntd.0004064

PLOS, Neglected Tropical Diseases

Immunology Chicken embryos

Histological sections Fluorescent Immuno- histochemical staining Assay

LSM 710LSM 880AiryscanELYRA SR-SIM

Publication Journal Sample Application System

2016. J. Kang et al. A solvent depend on ratiometric flu-orescent probe for hypochlorous acid and its application in living cells. doi:10.1016/j.dyepig.2016.09.048

Dyes and Pigments A549 cell culture Fluorescent sensor Live cell imaging

LSM 880 Airyscan

2016. J. Miao et al. A new class of fast-response and high-ly selective fluorescent probes for visualizing peroxynitrite in live cells, subcellular organelles, and kidney tissue of diabetic rats. doi:10.1016/j.biomaterials.2016.08.032

Biomaterials Rat Live cells Tissue

LSM 880 Airyscan

2016. G. Follain et al. Seeing is believing: multi-scale spatio-temporal imaging towards in vivo cell biology. doi:10.1242/jcs.189001

Journal of Cell Science C. elegans Zebrafish Mouse

Comparisons of systems for in vivo imaging

Airyscan

2016. M. Sivaguru et al. Comparative performance of airyscan and structured illumination superresolution microscopy in the study of the surface texture and 3D shape of pollen. doi:10.1002/jemt.22732

Microscopy Research and Technique

Pollen Unlabeled and labelled pollen Comparison of Confocal, Airyscan, and SR-SIM

LSM 880 Airyscan

2016, Y. Zhao et al. A new far-red naphthorhodamine dye: Synthesis, fluorescent probe and bioimaging appli-cations. doi:10.1016/j.dyepig.2016.05.012

Dyes and Pigments HeLa cell culture Far-red naphthorhodamine dye Labelling mitochondriaLive cell imaging

LSM 880

2016, M. A. Urban eta al. Cuticle and subsurface orna-mentation of intact plant leaf epidermis under confocal and superresolution microscopy. doi:10.1002/jemt.22667

Microscopy Research and Technique

Ginko biloba, intact plant leafs Clearing, embedding media analyzed for con-focal and superresolution microscopy

LSM 880 Airyscan

2016, J. Chao et al. A single fluorescent probe for multiple analyte sensing: efficient and selective detection of CN−, HSO3− and extremely alkaline pH. doi:10.1039/C6TB00119J

Materials for biology and medicine

E. coli cells IECBT Detection of analytes including CN-, HSO3-, alkaline pH

LSM 880

Organ, tissue, whole organisms

Imaging Methods

Page 9: ZEISS LSM 800 and LSM 880 with Airyscan - Confocal-clubconfocal-club.ru/upload/article/EN_WP_LSM-8-family_reference_list... · 2 ZEISS LSM 800 and LSM 880 with Airyscan Imaging Biological

Carl Zeiss Microscopy GmbH 07745 Jena, Germany [email protected] www.zeiss.com/microscopy

EN_4

1_01

3_13

3 | C

Z 12

-201

6 | D

esig

n, s

cope

of

deliv

ery

and

tech

nica

l pro

gres

s su

bjec

t to

cha

nge

with

out

notic

e. |

© C

arl Z

eiss

Mic

rosc

opy

Gm

bH

Not

for

the

rape

utic

, tre

atm

ent

or m

edic

al d

iagn

ostic

evi

denc

e. N

ot a

ll pr

oduc

ts a

re a

vaila

ble

in e

very

cou

ntry

. Con

tact

you

r lo

cal Z

EISS

rep

rese

ntat

ive

for

mor

e in

form

atio

n.

Copyright Notice (Cover image):

upper left: Sample courtesy of Michael W. Davidson, The Florida State University

upper right: Sample: courtesy of T. Pasternak, Institute of Biology, Albert Ludwigs University Freiburg, Germany

bottom left: Dr. Jan Michels, GEOMAR Helmholtz Centre for Ocean Research Kiel and Zoological Institute, Kiel University

bottom right: Courtesy of Dr. Julia Sellin, AG Hoch, LIMES Institut, Bonn