40
Zuprevo® – A new paradigm in the treatment and prevention of BRD 6 th European Congress of Bovine Health Management 7 – 9 September 2011 Liège, Belgium

Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

  • Upload
    hathuy

  • View
    222

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

Zuprevo® – A new paradigm in the treatment and prevention of BRD

6 th European Congress of

Bovine Health Management

7 – 9 September 2011

Liège, Belgium

Page 2: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

SummitAngers

Schwabenheim & Bayerseich

Pharmaceutical R & D at MSD Animal Health

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

2

Page 3: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

Contents1

2

3

4

Preface ���������������������������������������������������������������������������������������������������������������������������4

Curriculum�Vitae������������������������������������������������������������������������������������������������������������ �6

Tildipirosin�–��

Mode�of�Action�of�a�Novel�Macrolide� ����������������������������������������������������������������������������9

Zuprevo®:�

Key�features�of�a�unique�product� �������������������������������������������������������������������������������� �15

Preventive�efficacy�of�Zuprevo®�in�a�Mannheimia haemolytica�

challenge�study�of�bovine�respiratory�disease� �������������������������������������������������������������� �23

Zuprevo®:�Efficacy�in�the�treatment�of�BRD�in�calves�

in�comparison�to�Draxxin®� ������������������������������������������������������������������������������������������ �31

1

432

3

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

Page 4: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

The new MSD Animal Health is delighted to welcome you to our symposium at the

6th European Congress of Bovine Health Management in this beautiful setting along

the river Meuse in the heart of Liège. On this occasion, we are pleased to introduce a

new tool called “Zuprevo®” which will help veterinarians and cattle producers around

the world to be in control of bovine respiratory disease (BRD).

Scientists of MSD Animal Health (formerly Intervet / Schering-Plough Animal Health) in

cooperation with their partners in academia and contract research organizations have

played a crucial role in the discovery and development of this novel tool.

Although bovine veterinarians have many choices available for treatment and prevention,

BRD remains a very frequent and economically important disease in cattle. BRD is a

multi-factorial disease, and cattle are prone to rapidly develop severe lung pathology.

Factors triggering BRD outbreaks include the anatomical predisposition of the bovine

respiratory system, common stress inducing cattle management practices such as weaning,

commingling, and transportation, as well as suboptimal housing and climatic conditions.

Furthermore, the bacterial respiratory pathogens are ubiquitous and appear unlikely

to ever be eradicated.

Findings from advanced diagnostic procedures, specifically the monitoring of intra-ruminal

temperature, suggest that visual detection of BRD very often occurs when the disease

is already well advanced. The initiation of curative treatment is thus often late while

at the same time BRD pathogens may have been rapidly spreading amongst the

untreated animals in the herd. Therefore, for both treatment and prevention, it is

important for the antimicrobial to be present at the site of infection, i. e. lung tissue and

bronchial fluid, both rapidly and for an extended period of time.

Zuprevo® is a novel tri-basic 16-membered-ring macrolide with unique pharmacokinetic

and pharmacodynamic characteristics, available in a highly convenient cattle specific

formulation, addressing both the need for speed in the treatment and for duration in

the prevention of BRD.

Preface

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

4

Page 5: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

In collaboration with MSD Animal Health, Professor Stephen Douthwaite, a molecular

microbiologist from the University of Southern Denmark, Odense, intensively studied the

mode of action of the active ingredient of Zuprevo®, tildipirosin. In his presentation,

he will reveal well illustrated findings based on footprinting experiments and molecular

modeling as a basis of the improved antibacterial activity of tildipirosin and its unique

pharmacodynamic properties.

The key features of the Zuprevo® product profile will be presented by Dr. Rainer Röpke.

He managed the research and development activities for Zuprevo® as global project

manager at MSD Animal Health. Besides highlighting the benefits of a convenient

formulation, a high margin of safety and a comparatively short withdrawal period,

Dr. Röpke will discuss the unique pharmacokinetic profile of tildipirosin in lung tissue

and bronchial fluid, which contributes to the excellent clinical efficacy demonstrated

in field trials across the EU.

Dr. Markus Rose, Senior Development Manager at MSD Animal Health, will describe

the findings from a Mannheimia�haemolytica challenge study demonstrating the

principle of Zuprevo®’s preventive efficacy in BRD, in comparison to Draxxin®. The

superior clinical and antibacterial efficacy of Zuprevo® observed in this study confirms

its outstanding pharmacodynamic and pharmacokinetic properties.

Professor Kerstin E. Müller from the Faculty of Veterinary Medicine at the Free University

of Berlin will present a field trial demonstrating the excellent therapeutic efficacy

of Zuprevo® against BRD in young calves, in comparison to Draxxin®. This study confirms

the fast onset of action and provides further compelling clinical evidence for the

excellent clinical efficacy of Zuprevo® in a real world setting.

MSD Animal Health is committed to be a leader in innovative research and to be a

partner to veterinary practitioners and livestock producers globally. We are therefore

very pleased to be your host at this symposium and to share with you this information

on Zuprevo®, a new standard in the treatment and prevention of BRD.

We wish you a very enjoyable evening.

Dr. Peter Schmid

Head of Drug Discovery

MSD Animal Health

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

5

Page 6: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

Prof. Stephen Douthwaite

Dr. Rainer Röpke

Professor�Stephen�Douthwaite�studied�biochemistry�and�microbiology�at�the�University�

of�Wales�in�Cardiff�(1976)��Soon�afterwards,�he�joined�the�Max�Planck�Institute�in�

West�Berlin�where�he�worked�on�ribosomal�protein�synthesis�and�his�research�interests�

developed�to�include�antibiotic�inhibitors�of�this�process��He�obtained�his�PhD�from�

Aarhus�University�in�Denmark�(1982),�and�spent�three�years�as�a�postdoc�at�the�University�

of�California�in�Santa�Cruz��He�is�presently�Professor�of�Molecular�Microbiology�at�the�

University�of�Southern�Denmark,�Odense,�where�he�has�been�employed�since�1987��

Dr��Rainer�Röpke�studied�Agriculture�at�the�Technical�University�of�Munich�and�the�

University�of�Göttingen,�Germany,�where�he�earned�his�diploma�in�1989��In�1992��

he�obtained�his�PhD�from�the�Institute�for�Animal�Physiology�and�Research�Centre�

for�Milk�and�Food�at�the�Technical�University�of�Munich��Starting�in�the�animal�

health�industry�in�1992�he�worked�as�Global�Regulatory�Affairs�Manager�responsible�

for�Feed�Additives�at�Hoechst�Roussel�Vet�in�Wiesbaden,�Germany,�before�relocating��

in�2000�to�join�their�US�organization�(then�Intervet�Inc�)�in�Delaware,�USA,�as�Director�

Pharmaceutical�Development��Since�2003�he�has�been�Global�Project�Manager�at�

Intervet�Innovation�GmbH�in�Schwabenheim,�Germany�(now�member�of�the�MSD�

Animal�Health�Group),�managing�all�activities�in�relation�to�the�global�development��

of�new�pharmaceutical�products�

6

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

Page 7: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

Dr. Markus Rose

Prof. Dr. Kerstin E. Müller

Dr��Markus�Rose�graduated�from�the�veterinary�faculty�of�the�Justus-Liebig-University�

(JLU),�Gießen,�Germany,�in�1987,�and�worked�in�private�veterinary�practice�till�1989��

Between�1990�and�1993�he�was�research�associate�at�the�Veterinary�Institute�of�the�

Karl-August-University,�Göttingen,�Germany,�specializing�in�microbiology��He�received��

his�doctorate�in�1991��During�his�employment�with�Hoechst�Roussel�Vet�GmbH,�Wiesbaden,�

Germany,�beginning�in�1994,�he�managed�clinical�study�programs,�and�relocated��

to�the�US�in�1998,�finally�serving�as�senior�project�leader��Back�in�Germany�in�2002,�

at�Intervet�Innovation�GmbH�(now�member�of�the�MSD�Animal�Health�Group),��

he�continued�with�project�development,�and�was�responsible�for�a�group�providing�

clinical�study�support��Since�2004�he�has�been�senior�development�manager�with�

focus�on�microbiological,�food�safety�and�clinical�aspects�of�global�pharma�projects�

Professor�Kerstin�E��Müller�earned�her�degree�from�the�Veterinary�University�Hannover�in�

1984��She�obtained�her�doctoral�degree�in�1986�and�was�recognized�as�German�cattle�

specialist�in�1989�when�she�was�member�of�the�Cattle�Clinic�in�Hannover��In�1995�she�

obtained�the�PhD�from�Utrecht�University,�NL,�where�she�was�Senior�Lecturer�for�

Internal�Medicine�of�Ruminants�and�Horses�from�1991�to�1998�and�subsequently�

member�of�the�Department�of�Farm�Animal�Health�with�certification�as�a�Dutch�Cattle�

Specialist��Since�2003�she�has�been�Professor�and�Managing�Director�at�the�Clinic�for�

Ruminants�and�Swine�at�the�Faculty�of�Veterinary�Medicine,�Freie�Universität�Berlin��

She�is�chair�of�the�Education�and�Residency�Committee�of�the�ECBHM�and�of�the�German�

Buiatrics�Association�and�board�member�of�the�WBA�

7

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

Page 8: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

1

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

8

Page 9: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

1.Tildipirosin – Mode of Action of a Novel Macrolide

Stephen Douthwaite, Jacob Poehlsgaard and Ralf Warrass

2

3

4

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

9

1

Page 10: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

Tildipirosin – Mode of Action of a Novel MacrolideStephen�Douthwaite1,�Jacob�Poehlsgaard1�and�Ralf�Warrass2

1 Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.

2 Drug Discovery, Intervet Innovation GmbH, a member of the MSD Animal Health Group, Zur Propstei, D-55270 Schwabenheim, Germany.

Abstract

MSD Animal Health has recently been granted market-

ing authorization in the European Union for Zuprevo®

in the treatment and prevention of respiratory disease

in cattle. The active ingredient tildipirosin is the first

tri-basic 16-membered-ring macrolide on the market.

The lipophilic – hydrophilic flexibility of the three basic

centres of til dipirosin are made responsible for its high

solubility, rapid tissue distribution, extensive accumu-

lation in lung tissue and excellent antibacterial activity

against bacteria associated with bovine respiratory

disease. Tildipirosin’s antimicrobial activity is achieved

by effective penetration of the bacterial cell wall

and binding to the molecular target, the bacterial

ribosome. Using chemical footprinting experiments

and molecular modelling we compared tildipirosin’s

ribosomal attachment to that of other macrolides

(tylosin, tilmicosin, tulathromycin) and found common

inter action sites but also clear differences and unique

binding modes. In an in vitro transcription / translation

assay, tildipirosin demonstrated highly efficient

inhibition of ribosomal peptide synthesis with an IC50

of 0.23 (± 0.01) µM reflecting the improved structural

fit of this molecule. This is significantly better than e. g.

tilmicosin with an IC50 of 0.36 (± 0.02) µM.

Macrolides�comprise�a�large�family�of�naturally-occurring�

compounds�that�exhibit�a�range�of�therapeutic�properties,�

the�best-characterized�and�presently�most�important�of�

which�is�their�antimicrobial�activity��From�a�chemical�stand-

point,�macrolides�are�made�up�of�a�macrolactone�ring,�

consisting�of�12�to�16�atoms,�which�is�substituted�with�up�

to�three�sugar�moieties��The�most�successful�macrolides�

in�hospitals�and�in�the�field�are�chemical�derivatives�of�their�

natural�progenitors�with�improved�stability,�efficacy,�safety�

and�convenience��The�latest�of�these�is�tildipirosin,�a�new�

chemical�entity�(NCE)�for�the�management�of�bovine��

and�swine�respiratory�diseases��Tildipirosin�has�been�shown�

to�be�particularly�efficacious�against�respiratory�tract�

infections�caused�by�the�Gram-negative�bacterial�pathogens�

Mannheimia haemolytica,�Pasteurella multocida,�Histophi-

lus somni,�Bordetella bronchiseptica,�Actinobacillus pleuro-

pneumoniae and�Haemophilus parasuis��

Tildipirosin�is�presently�the�only�tri-basic�16-membered-

ring�macrolide�on�the�market��The�chemical�structure�of�

tildipirosin�has�retained�the�tylonolide�macrolactone�core�

from�the�natural�product�tylosin,�but�differs�in�several�other�

aspects,�the�most�obvious�of�which�are�two�piperidine�

substituents�(Fig��1)��One�piperidine�has�been�added�to�

the�20-position�of�the�tylonolide�ring,�while�the�other�

replaces�the�23-mycinose�sugar��In�addition,�the�mycami-

nose-mycarose�disaccharide�at�the�C5-atom�has�been�

shortened�to�remove�the�mycarose�sugar��The�resultant�

structure�contains�three�basic�centres,�with�pKa�values�of�

9�8,�8�8�and�8�1��The�structure�of�tildipirosin�exhibits�both�

lipophilic�and�hydrophilic�characteristics,�which�vary�

depending�on�the�pH�of�the�environment�and�interaction�

with�membranes�and�proteins��This�imparts�several��

beneficial�properties�including�higher�solubility,�improved�

penetration�into�tissues�and�accumulation�at�the�site�of�

infection�(lung�tissue)��In�addition,�the�effective�penetration�

of�tildipirosin�through�the�outer-membrane�of�Gram-�

negative�bacteria�is�one�of�the�properties�that�make�the�

drug�particularly�effective�against�pathogens�such�as��

M. haemolytica�and�P. multocida�

Figure 1.�Chemical�structure�of�the�tri-basic�16-membered-ring�macrolide�

tildipirosin�

10

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

1

Page 11: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

While�improved�cell�penetration�is�an�important�character-

istic,�a�successful�antimicrobial�compound�also�needs�to��

be�an�effective�inhibitor�of�bacterial�metabolism��Similar�

to�other�macrolides,�tildipirosin�inhibits�the�process�of�

translation�–�the�synthesis�of�new�peptides�and�proteins�

by�the�bacterial�ribosome�(see�Fig��2)��

Figure 2.�Structure�of�the�bacterial�ribosome��P�indicates�the�peptidyl�trans�-

fer�centre�within�the�50S�unit�of�the�ribosome�where�single�amino�acids�are�

transferred�from�the�tRNA�to�the�growing�peptide�chain��The�red�arrow�

indicates�the�tunnel�used�by�the�nascent�peptide�chain�to�exit�the�ribosome���

The�yellow�circle�highlights�the�binding�site�of�tildipirosin��Adapted�from�

Poehlsgaard,�J��&�Douthwaite,�S��(2005)��Antibiotic�targets�on�the�bacterial�

ribosome��Nature Reviews Microbiology��3:�870�–�881�

Using�an�in vitro�translation�system�with�ribosomes�from�

the�Gram-negative�bacterium�Escherichia coli,�we�showed�

that�50�%�of�protein�synthesis�was�inhibited�by�tildipirosin�

at�0�23�µM�(IC50�=�0�23�±�0�01�µM)�compared�to�another�

16-membered-ring�macrolide�tilmicosin,�which�was�shown�

to�have�an�IC50�value�of�0�36�±�0�02�µM�(see�Table�1)��

16-membered macrolides

IC50* (mean ± standard deviation)

Tildipirosin 0�23�±�0�01�µM

Tilmicosin 0�36�±�0�02�µM

*��Concentration�at�which�50�%�of�protein�synthesis�is�inhibited

Table 1.�Inhibition�of�ribosomal�peptide�synthesis�as�determined�in�

a�coupled�transcription/translation�system�with�ribosome�from�E. coli�

Establishing�that�tildipirosin�was�an�effective�inhibitor�of�

protein�synthesis�led�to�the�questions�of�what�molecular�

interactions�of�tildipirosin�occur�at�its�site�of�inhibition�on�

the�ribosome,�and�whether�these�interactions�differ�from�

those�of�the�other�macrolides��We�addressed�these�issues��

in�two�steps:�First,�the�sites�of�macrolide�drug�contact�were�

mapped�within�the�ribosome�structure�using�chemical�

footprinting,�and�these�data�were�then�used�computa-

tionally�in�molecular�dynamic�simulations�to�visualize�how�

the�drugs�occupy�and�are�oriented�within�their�binding�

site�on�the�ribosome��In�the�case�of�tylosin,�a�high�resolu-

tion�crystal�structure�of�the�drug�bound�to�its�ribosomal�

site�is�available�(PDB:�1K9M)��We�used�this�information�to�

verify�and�to�validate�our�method�of�molecular�dynamic�

simulation��Our�independently�derived�simulation�for�tylosin�

binding�to�the�ribosome�is�compared�with�that�of�the�

crystal�structure�in�Fig��3,�showing�remarkably�consistent�

data�sets��

Figure 3.�The�macrolide�binding�site�in�the�ribosomal�tunnel��Proof�of�prin-

ciple�of�the�experimental�approach��The�crystal�structure�of�tylosin�(salmon,�

PDB:�1K9M)�is�shown�with�the�computationally�minimized�tylosin�binding�

site�superimposed�(red)��Important�nucleotides�from�footprinting�and�the�

crystal�studies�are�numbered�and�shown�in�light�grey;�ribosomal�proteins�

(r-proteins)�that�are�close�to�the�macrolide�site�are�indicated��The�upper�arrow�

points�towards�the�start�of�the�tunnel�at�the�peptidyl�transferase�centre�

(PTC)�and�the�lower�arrow�shows�the�path�taken�by�the�newly�synthesized�

peptide�chain�towards�the�tunnel�exit��The�scale�is�indicated�by�the�

10�ångstrom�bar�

The�footprinting�data�showed�that�the�macrolide�drugs�

tildipirosin,�tilmicosin�and�tylosin�bind�in�the�same�region�

of�Pasteurella�and�E. coli�ribosomes,�the�latter�being�

the�standard�model�for�this�type�of�study��All�macrolides�

interact�with�the�ribosomal�RNA�and�at�nucleotides�

A2058�and�A2059�that�are�located�within�the�tunnel�of�

the�large�ribosomal�subunit��This�observation�was�

expected�from�previous�studies�on�the�mode-of-action�

of�other�macrolide�compounds�(e��g��Poulsen,�et al. 2000��

J Mol Biol,�304:�471�–�481);�however,�at�neighbouring�

nucleotides�there�were�distinguishing�differences�between�

the�contacts�made�by�tildipirosin,�compared�to�the�other�

macrolides�studied�

11

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

1

Page 12: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

Figure 4.�View�from�another�angle�of�the�computationally�calculated�tylosin�

(red)�and�tildipirosin�binding�(yellow)��The�important�and�distinguishing�con-

stituents�of�the�two�macrolides�are�indicated�

The�two�piperidine�rings�in�tildipirosin�provide�the�potential�

for�unique�interactions�(Fig��4)��Importantly,�the�20-piperi-

dine�is�oriented�into�the�lumen�of�the�ribosome�tunnel�at�a�

location�that�is�not�occupied�by�a�substituent�found�in�any�

other�macrolide��From�this�position,�the�20-piperidine�could�

potentially�block�the�growth�of�the�newly�synthesized�

peptide�chain�as�it�passes�down�the�tunnel��This�model�

is�consistent�with�the�IC50�data,�which�show�a�higher�

potency�of�tildipirosin�(compared�to�tilmicosin)�to�inhibit�

protein�synthesis�on�the�bacterial�ribosome�reflecting�the�

improved�structural�fit�of�this�new�tri-basic�16-membered-

ring�macrolide�to�its�molecular�target�

Notes

12

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

1

Page 13: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

1

Notes

13

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

Page 14: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

2

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

14

Page 15: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

2.Zuprevo®: Key features of a unique product

Rainer Röpke, Monika Menge, Markus Rose, Andreas Ehinger, Cornelia Bohland, Cornelia Wilhelm, Eva Zschiesche, Susanne Kilp, Wibke Metz and Mark Allan

1

3

4

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

15

2

Page 16: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

Zuprevo®: Key features of a unique productRainer�Röpke,�Monika�Menge,�Markus�Rose,�Andreas�Ehinger,�Cornelia�Bohland,�Cornelia�Wilhelm,�Eva�Zschiesche,�Susanne�Kilp,�

Wibke�Metz�and�Mark�Allan�

Intervet Innovation GmbH, a member of the MSD Animal Health Group

Abstract

MSD Animal Health has recently been granted

marketing authorization in the European Union

(EU) for Zuprevo® for the treatment and preven-

tion of respiratory disease in cattle. Its active

ingredient, tildipirosin, is the first tri-basic 16-

membered-ring macrolide. The cattle-specific for-

mulation is a ready-to-use, sterile aqueous solution

containing 180 mg of tildipirosin / mL for use as

a single subcutaneous injection (4 mg/kg BW) not

to exceed 10 mL per injection site, equivalent

to 450 kg BW. The unique pharmacokinetics of

Zuprevo® are characterized by rapid absorption

from the injection site and long-lasting high con-

centrations in the lung and bronchial fluid. Mean

maximum plasma concentrations (Cmax) are reached

as early as 23 min (Tmax) post injection and its ter-

minal plasma elimination half life (T1 / 2) is about

9 days. With about 50 L/kg, the volume of distribu-

tion after IV administration is exceptionally large

in comparison to other long-acting macrolides,

while its clearance of 144 mL × h/kg is comparatively

low. The MIC90s of tildipirosin are 1 µg/mL for

M. haemolytica and P. multocida and 4 µg/mL for

H. somni. Tildipirosin concentrations in lung tissue

exceed the H. somni MIC90 for about 16 days and

the MIC90s for M. haemolytica and P. multocida for

at least 28 days. Zuprevo®’s high margin of safety

has been demonstrated in studies exceeding the

label dose of 4 mg tildipirosin / kg BW up to 10 fold.

Furthermore, safety for the consumer is demon-

strated by the high acceptable daily intake of til-

dipirosin (6000 µg / person / day) resulting in a with-

drawal period of 47 days. In conclusion, Zuprevo® is a

novel macrolide with unique pharmacokinetics,

a high margin of safety, and a comparatively short

withdrawal period, offered in a convenient

formulation.

Tildipirosin,�the�active�ingredient�of�Zuprevo®,�is�the�first�

tri-basic�variety�of�16-membered-ring�macrolides�authorized�

and�has�been�developed�exclusively�for�veterinary�use��

The�key�lead�over�previously�developed�compounds�

results�from�the�improved�pharmacokinetics�of�tildipiro-

sin��MSD�Animal�Health�has�recently�been�granted��

marketing�authorization�for�use�of�Zuprevo®�in�bovine�

and�swine�respiratory�disease��The�Zuprevo®�data�pre-

sented�in�this�article�have�been�published�in�the�CVMP�

Assessment�Report�(EMA,�2011)��

Tildipirosin�is�formulated�as�a�ready-to-use,�single-dose�

sterile�aqueous�solution�for�parenteral�injection�as�a�single�

dose�to�combat�respiratory�disease�in�cattle�and�swine���

The�cattle-specific�formulation�containing�180�mg�of�tildip-

irosin�/�mL�guarantees�convenient�dosing�volumes�for�

young�calves�as�well�as�adult�cattle��It�allows�dosing�of�

cattle�up�to�450�kg�BW�with�a�single�injection��The�label�

dose�of�4�mg�tildipirosin�/�kg�BW�is�administered�subcutane-

ously�(SC)�at�2�2�mL�/�100�kg�(1�mL�/�45�kg)�body�weight�(BW)�

for�the�treatment�and�prevention�of�bovine�respiratory��

disease�(BRD)�associated�with�M. haemolytica,�P. multocida�

and�H. somni��Excellent�syringeability�characteristics�based�

on�low�viscosity�at�temperatures�tested�as�low�as�–�10°�C�

also�contribute�to�the�high�convenience�of�Zuprevo®��

Zuprevo®�has�a�high�safety�margin�as�confirmed�in�target-

animal�safety�studies�with�overdosing�up�to�10�times�the�

label�dose�and�is�well�tolerated�following�intravenous�(IV)�

administration�in�cattle��Zuprevo®´s�safety�for�the�con-

sumer�is�demonstrated�by�a�high�acceptable�daily�intake�

(ADI)�of�tildipirosin�(6000�µg�/�person�/�day)�derived�from��

a�comprehensive�package�of�toxicological�and�microbio-

logical�safety�studies;�the�ADI�is�about�10�times�higher�

than�that�of�tulathromycin�(660�µg�/�person�/�day,�Draxxin®:�

EPAR)�and�gamithromycin�(600�µg�/�person�/�day,�Zactran®:�

EPAR)��This�is�reflected�in�a�shorter�withdrawal�period�of�

47�days�for�Zuprevo®�in�comparison�to�other�macrolides�

(49�days,�Draxxin®:�EPAR;�64�days,�Zactran®:�EPAR)��

2

16

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

Page 17: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

What�differentiates�Zuprevo®�further�from�other�macro-

lides�is�its�unique�pharmacokinetic�profile��Pharmacoki-

netics�of�Zuprevo®�have�been�investigated�extensively�fol-

lowing�SC�administration�at�different�doses,�in�different�

matrices�and�following�IV�versus�SC�administration��Rapid�

absorption,�extensive�distribution�and�long�elimination�

half-lives�are�the�key�pharmacokinetic�features�of�Zuprevo®��

Mean�maximum�plasma�concentrations�(Cmax)�were�

reached�as�early�as�23�min�(Tmax)�after�SC�administration�

of�4�mg�tildipirosin�/�kg�BW��In�comparison�to�published�

plasma-concentration-versus-time�profiles�of�Draxxin®�

(Nowakowski�et�al�,�2004)�and�Zactran®�(Huang�et�al�,�

2010),�tildipirosin�concentrations�in�plasma�are�higher�and�

more�persistent�as�shown�in�Figures�1�–�3��This�is�reflected�

in�Zuprevo®’s�terminal�plasma�elimination�half�life�(T1�/�2)�

of�about�9�days�which�is�substantially�longer�than�those�

of�Draxxin®�(about�4�days,�Nowakowski�et�al�,�2004),�

Zactran®�(>�2�days,�Huang�et�al�,�2010)�and�Micotil®300�

(about�1�day,�Lombardi�et�al�,�2010)��

Macrolides�are�known�to�accumulate�in�lung�tissue�with�

multi-fold�higher�concentrations�than�in�plasma��With�

about�50�L/kg,�the�volume�of�distribution�of�Zuprevo®�

after�IV�administration�is�exceptionally�large�in�compari-

son�to�those�of�Draxxin®�(about�11�L/kg,�Nowakowski�et�

al�,�2004),�Zactran®�(about�25�L/kg,�Huang�et�al�,�2010)�

and�Micotil®300�(15�3�L/kg,�Lombardi�et�al�,�2010)��At�the�

same�time,�the�clearance�of�Zuprevo®�(144�mL�× h/kg)�is�

lower�than�those�of�Draxxin®�(180�mL × h/kg,�Nowa-

kowski�et�al�,�2004),�Zactran®�(712�mL × h/kg,�Huang�et�

al�,�2010)�and�Micotil®300�(686�mL × h/kg,�Lombardi�et�al�,�

2011)��These�observations�are�confirmed�by�prolonged�

high�lung-tissue�concentrations�of�Zuprevo®�in�compari-

son�to�Draxxin®�and�Zactran®�as�shown�in�Figures�4�–�6��

The�MIC90s�of�tildipirosin�were�determined�against�the�

pathogens�most�commonly�involved�in�the�etiology�of�BRD��

They�were�1�µg/mL�for�M. haemolytica�and�P. multocida�

and�4�µg/mL�for�H. somni��MIC90�values�were�determined�

under�standard�CLSI�testing�conditions�in�epidemio-

logically�unrelated�bovine�isolates�(wild-type)�collected��

in�different�European�countries��Similar�to�other�macro-

lides�such�as�tulathromycin,�gamithromycin�and�tilmico-

sin,�tildipirosin�plasma�concentrations�were�below�MIC90s�

(Nowakowski�et�al�,�2004;�Godinho,�2008;�Huang�et�al�,�

2010;�Modric�et�al�,�1998;�Shryock�et�al�,�1996)��Therefore,�

it�may�be�concluded�that�the�typical�pharmacodynamic�

analyses�appropriate�for�beta-lactam�antibiotics,��

quinolones�and�aminoglycosides�do�not�apply�in�the�

context�of�the�activity�of�the�newer�macrolides��

(Nightingale,�1997)��Other�potential�pharmacodynamic�

properties�of�this�drug�group�include�stimulation�of�

cytokine�pathways�and�enhancement�of�programmed�

cell�death�(apoptosis)�(Lees�et�al�,�2006)��Such�actions�

–�in�addition�to�the�direct�bactericidal�effects�–�may�

exert�additional�or�synergistic�beneficial�effects�in�

infectious�lung�diseases��

Tildipirosin�concentrations�in�lung�tissue�exceed�the��

MIC90�of�H. somni�for�about�16�days�and�the�MIC90s�of�

M. haemolytica�and�P. multocida�for�at�least�28�days�

which�is�much�longer�compared�to�Draxxin®�and�Zactran®�

as�shown�in�Table�1��In�field�trials�in�the�EU,�Zuprevo®’s�

clinical�efficacy�has�been�demonstrated�for�periods�of�

21�days��Predictions�of�efficacy�based�on�lung�homogenate�

concentrations�are�subject�to�scientific�discussions�

(Toutain,�2009)��All�3�respiratory�pathogens�targeted�by�

tildipirosin�attach�to�bronchial�epithelial�cells�and�remain�

extracellular��Therefore,�bronchial�fluid�obtained�from�live,�

non-anesthetized�cattle�at�serial�time�points�was�analysed�

to�demonstrate�bacterial�exposure�to�drug�concentrations�

at�the�site�of�infection��A�method�was�applied�on�the�

basis�of�procedures�described�by�Halstead�et�al��(1991)�

which�allows�the�safe�collection�of�bronchial�fluid��

samples�void�of�blood�and�unaffected�by�dilution�factors��

Bronchial�fluid�samples�were�taken�at�serial�time�points�

post-dose�in�the�same�non-anesthetized�animals��Mean�

bronchial�fluid�tildipirosin�concentrations�exceeded�the�

MIC90s�of�M. haemolytica�and�P. multocida�for�21�days,�

and�approximated�the�MIC90�of�H. somni�for�about�

3�days��The�concentration-versus-time�profiles�of�mean�

tildipirosin�concentrations�in�plasma,�bronchial�fluid�

and�lung�tissue�are�summarized�in�Figure�7��

While�protein�binding�of�tildipirosin�in�bovine�bronchial�

fluid�is�only�30�%,�it�is�acknowledged�that�drug�con-

centrations�measured�in�bronchial�fluid�using�the�method�

described�above�represents�a�conglomerate�of�intra-

cellular�and�extracellular�drug�contents��As�macrolides�are�

known�to�accumulate�within�phagocytic�cells�(Gladue��

et�al�,�1989;�Scorneaux�&�Shryock,�1998),�tildipirosin�con-

centrations�determined�in�bronchial�fluid�also�reflect�that�

portion�of�respiratory�drug�accumulation��Broncho-

alveolar�lavage�(BAL)�has�been�described�by�others�as�a�

17

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

2

Page 18: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

method�to�determine�extracellular�drug�concentrations�

in�the�pulmonary�epithelial-lining�fluid�(PELF)�and�intra-

cellular�drug�concentrations�in�the�BAL�cells�(Cox�et�al�,�

2010;�Giguère�et�al�,�2011)��However,�the�analytical��

procedures�remain�a�point�of�discussion�(Zeitlinger�et�

al�,�2005;�Kiem�&�Schentag,�2008),�thus�further�

research�is�required�to�accurately�describe�the�PK�/�PD�

relationships�of�macrolides�used�in�veterinary�medicine�

including�those�of�tildipirosin��

In�conclusion,�Zuprevo®�is�a�novel�16-membered-ring,�

tri-basic�macrolide�with�unique�pharamacokinetics,��

a�high�margin�of�safety,�and�a�comparatively�short�with-

drawal�period,�offered�in�a�convenient�formulation��

References:

1. Cox, S.R., McLaughlin, C., Fielder, A.E., Yancey, M.F., Bowersock, T.L., Garcia-Tapia, D., Bryson, L., Lucas, M.J., Robinson, J.A., Nanjiani, I. & Brown, S.A. (2010) Rapid and prolonged distribution of tulathromycin into lung homogenate and pulmonary epithelial lining fluid of Holstein calves following a single subcutaneous administration of 2.5 mg/kg body weight. International Journal of Applied Research in Veterinary Medicine, 8, 129 – 137.

2. Draxxin: EPAR – Scientific Discussion: http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/veterinary/medicines/000077/vet_med_000113.jsp&murl=menus/medicines/medicines.jsp&mid=WC0b01ac058001fa1c

3. EMA (2011) CVMP Assessment Report. Zuprevo (EMEA/V/C/002009). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/veterinary/002009/WC500106577.pdf

4. Halstead, S.L., Walker, R.D., Baker, J.C., Holland, R.E., Stein, G.E. & Hauptman, J.G. (1991) Pharmacokinetic evaluation of ceftiofur in serum, tissue chamber fluid and bronchial secretions from healthy beef-bred calves. Canadian Journal of Veterinary Research, 56: 269 – 274.

5. Huang, R.A., Letendre, L.T., Banav, N., Fischer, J. & Somerville, B. (2010) Pharmacokinetics of gamithromycin in cattle with comparison of plasma and lung tissue concentrations and plasma antibacterial activity. Journal of Veterinary Pharmacology and Therapeutics, 33, 227 – 237.

6. Giguère, S., Huang, R., Malinski, T.J., Dorr, P.M., Tessman, R.K. & Sommerville, B.A. (2011) Disposition of gamithromycin in plasma, pulmonary epithelial lining fluid, bronchoalveolar cells, and lung tissue in cattle. American Journal of Veterinary Research, 72, 326 – 330.

7. Gladue, R.P., Bright, G.M., Isaacson, R.E. & Newborg, M.F. (1989) In vitro and in vivo uptake of azithromycin (CP-62,993) by phagocytic cells: possible mechanism of delivery and release at sites of infection. Antimicrobial Agents Chemotherapy, 33, 277 – 282.

8. Godinho, K.S. (2008) Susceptibility testing of tulathromycin: Interpretative breakpoints and susceptibility of field isolates. Veterinary Microbiology, 129, 426 – 432.

9. Kiem, S. & Schentag, J.J. (2008) Interpretation of antibiotic concentration ratios measured in epithelial lining fluid. Antimicrobial Agents Chemotherapy, 52, 24 – 36.

10. Lees, P., Concordet, D., Aliabadi, F.S. & Toutain, P.L. (2006). Drug selection and optimization of dosage schedules to minimize antimicrobial resistance. In Antimicrobial Resistance in Bacteria of Animal Origin. Ed Aarestrup, F.M., pp. 49 – 60. ASM Press, Washington, D.C., USA.

11. Lombardi, K.R., Portillo, T., Hassfurther, R. & Hunter, R.P. (2011) Pharmacokinetics of timicosin in beef cattle following intravenous and subcutaneous administration. Journal of Veterinary Pharmacology and Therapeutics, doi:10.1111/j.1365 – 2885.2011.01268.x.

12. Nightingale, C.H. (1997) Pharmacokinetics and pharmacodynamics of newer macrolides. Pediatric Infectious Disease Journal, 16, 438 – 443.

13. Nowakowski, M.A., Inskeep, P.B., Risk, J.E., Skogerboe, T.L., Benchaoui, H.A., Meinert, T.R., Sherington, J. & Sunderland, S.J. (2004) Pharmacokinetics and lung tissue concentrations of tulathromycin, a novel triamilide antibiotic in cattle. Veterinary Therapeutics, 5, 60 – 74.

14. Scorneaux, B. & Shryock, T.R. (1999) Intracellular accumulation, subcellular distribution, and efflux of tilmicosin in bovine mammary, blood, and lung cells. Journal of Dairy Science. 82, 1202 – 1212.

15. Shryock, T.R., White, D.W., Staples, J.M. & Werner, C.S. (1996) Minimum inhibitory concentration breakpoints and disk diffusion inhibitory zone interpretive criteria for tilmicosin susceptibility testing against Pasteurella spp. associated with bovine respiratory disease. Journal of Veterinary Diagnostic Investigations, 8, 337 – 344.

16. Toutain, P.L. (2009) PK/PD approach for antibiotics: tissue or blood drug levels to predict antibiotic efficacy. Journal of Veterinary Pharmacology and Therapeutics, 32 (Suppl. 1), 19 – 21.

17. Zeitlinger, M., Mueller, M. & Joukhadar, C. (2005) Lung microdialysis – a powerful tool for the determination of exogenous and endogenous compounds in the lower respiratory tract (mini-review). The AAPS Journal, 7, E600 – E608.

18. Zactran: EPAR – Summary for the public: http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/veterinary/medicines/000129/vet_med_000198.jsp&murl=menus/medicines/medicines.jsp&mid=WC0b01ac058001fa1c

2

18

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

Page 19: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

Plasma concentrations

0.001

0.01

0.1

1

0.001

0.01

0.1

1

0.001

0.01

0.1

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (Days)

Co

nce

ntr

ati

on

g/m

L]

Plasma concentrations

Plasma concentrations

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (Days)

Co

nce

ntr

atio

n [

µg

/mL]

Co

nce

ntr

atio

n [

µg

/mL]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (Days)

Zuprevo®

Zactran®

Draxxin®

Plasma concentrations

0.001

0.01

0.1

1

0.001

0.01

0.1

1

0.001

0.01

0.1

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (Days)

Co

nce

ntr

ati

on

g/m

L]

Plasma concentrations

Plasma concentrations

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (Days)

Co

nce

ntr

atio

n [

µg

/mL]

Co

nce

ntr

atio

n [

µg

/mL]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (Days)

Zuprevo®

Zactran®

Draxxin®

Plasma concentrations

0.001

0.01

0.1

1

0.001

0.01

0.1

1

0.001

0.01

0.1

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (Days)

Co

nce

ntr

ati

on

g/m

L]

Plasma concentrations

Plasma concentrations

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (Days)

Co

nce

ntr

atio

n [

µg

/mL]

Co

nce

ntr

atio

n [

µg

/mL]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (Days)

Zuprevo®

Zactran®

Draxxin®

Time (Days)

Time (Days)

Time (Days)

Co

nce

ntr

atio

n [

µg

/mL]

Consolidated plasma concentrations

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0.001

0.01

0.1

1

0.001

0.01

0.1

1

10

100

0 1 2 3 4 5 6 7 8 9 10111213 14151617 18192021 22232425 262728

0.001

0.01

0.1

1

10

100

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728

Co

nce

ntr

ati

on

g/g

]

Lung concentrations

Lung concentrations

Co

nce

ntr

atio

n [

µg

/g]

Zuprevo®

Zactran®

Zuprevo®

Draxxin®

Draxxin®

Time (Days)

Time (Days)

Time (Days)

Co

nce

ntr

atio

n [

µg

/mL]

Consolidated plasma concentrations

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

0.001

0.01

0.1

1

0.001

0.01

0.1

1

10

100

0 1 2 3 4 5 6 7 8 9 10111213 14151617 18192021 22232425 262728

0.001

0.01

0.1

1

10

100

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728

Co

nce

ntr

ati

on

g/g

]

Lung concentrations

Lung concentrations

Co

nce

ntr

atio

n [

µg

/g]

Zuprevo®

Zactran®

Zuprevo®

Draxxin®

Draxxin®

Time (Days)

Time (Days)

0.001

0.01

0.1

1

10

100

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728

Consolidated lung concentrations

0.001

0.01

0.1

1

10

100

0 1 2 3 4 5 6 7 8 9 10111213 14151617 18192021 22232425 262728

Co

nce

ntr

ati

on

g/g

]

1 µg/mL

Co

nce

ntr

atio

n [

µg

/g]

Lung concentrations

Zuprevo®

Zactran®

Draxxin®

Zactran®

Tables and Figures

Figure 1.�Plasma�concentration-time�curve�of�tildipirosin�

(Zuprevo®)�after�SC�administration�of�the�product�label�dose�

DRAXXIN®:�Nowakowski�et�al�(2004)�Veterinary Therapeutics,�5,�60�–�74

DRAXXIN®:�Nowakowski�et�al�(2004)�Veterinary Therapeutics,�5,�60�–�74

ZACTRAN®:�Huang�et�al�(2010)�Journal of Veterinary Pharmacology and Therapeutics,�33,�227�–�237;�Giguère�et�al�(2011)�American Journal of Veterinary Research,�72,�326�–�330

ZACTRAN®:�Huang�et�al�(2010)�Journal of Veterinary Pharmacology and Therapeutics,�33,�227�–�237�

Figure 2.�Plasma�concentration-time�curve�of�tulathromycin�

(Draxxin®)�after�SC�administration�of�the�product�label�dose��

Figure 3.�Plasma�concentration-time�curve�of�

gamithromycin�(Zactran®)�after�SC�administration�

of�the�product�label�dose�

Figure 4.�Lung�tissue�concentration-time�curve�of�

tildipirosin�(Zuprevo®)�after�SC�administration�of�the�

product�label�dose�

Figure 5.�Lung�tissue�concentration-time�curve�of�

tulathromycin�(Draxxin®)�after�SC�administration�of�the�

product�label�dose�

Figure 6.�Lung�tissue�concentration-time�curve�

of�gamithromycin�(Zactran®)�after�SC�administration�

of�the�product�label�dose�

19

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

2

Page 20: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

Time (Days)

0 3 6 9 12 15 18 21 24 27 30

µg

Tild

ipir

osi

n/m

L o

r µ

g/g

0.001

0.01

0.1

1

10

100

Blood plasma

Bronchial fluid (in vivo)

Lung tissue

Figure 7.�Consolidated�concentration-time�curves�for�tildipirosin�(Zuprevo®)�in�lung�tissue,�

bronchial�fluid�(�in vivo)�and�plasma�after�SC�administration�of�the�product�label�dose�

Table 1.�Consolidated�times�(days)�above�MIC90�of�M. haemolytica,�P. multocida�and�

H. somni�for�tildipirosin�(Zuprevo®),�tulathromycin�(Draxxin®)�and�gamithromycin�

(Zactran®)�lung�tissue�concentrations�after�SC�administration�of�the�product�label�dose�

Days of drug concentrations in lung tissue above MIC90

M. haemolytica�(MIC90)

P. multocida�(MIC90)

H. somni�(MIC90)

ZUPREVO® >�28� (1�µg/mL) >�28� (1�µg/mL) ~�16� (4�µg/mL)

DRAXXIN® ~�10a� (2�µg/mLb) >�15a,�d�(1�µg/mLb) ~�0�5e� (4�µg/mLb)

ZACTRAN® ~�15c� (0�5�µg/mLc) ~�12c� (1�µg/mLc) ~�12c� (1�µg/mLc)

a�Nowakowski�et�al�(2004)�Veterinary�Therapeutics,�5,�60�–�74b�Godinho�(2008)�Veterinary�Microbiology,�129,�426�–�432c�Giguère�et�al�(2011)�American�Journal�of�Veterinary�Research,�72,�326�–�330d�Cox�et�al�(2010)�International�Journal�of�Applied�Veterinary�Medicine,�8,�129�–�137e��calculated�using�WinNonlin®�software�with�data�derived�from�Nowakowski�et�al�(2004)�Veterinary�Therapeutics,�5,�60�–�74

2

20

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

Page 21: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

2

Notes

21

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

Page 22: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

3

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

22

Page 23: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

1

2

4

3.Preventive efficacy of Zuprevo® in a Mannheimia haemolytica challenge study of bovine respiratory disease

Markus Rose, Wibke Metz, Joachim Ullrich, Eva Zschiesche, Silke Sczesny, Mark Allan and Rainer Röpke

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

23

3

Page 24: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

Preventive efficacy of Zuprevo® in a Mannheimia haemolytica challenge study of bovine respiratory diseaseMarkus�Rose,�Wibke�Metz,�Joachim�Ullrich,�Eva�Zschiesche,�Silke�Sczesny,�Mark�Allan�and�Rainer�Röpke

Intervet Innovation GmbH, a member of the MSD Animal Health Group

Abstract

Preventive antimicrobial treatment is an important

element in herd health programs aimed at minimiz-

ing the incidence and costs associated with Bovine

Respiratory Disease (BRD). MSD Animal Health has

recently been granted marketing authorization in

the European Union for Zuprevo® for the treatment

and prevention of respiratory disease in cattle. Its

active ingredient, tildipirosin, the first tri-basic

16-membered-ring macrolide is characterized by rapid

absorption from the subcutaneous injection site and

long-lasting high lung and bronchial fluid concen-

trations. These pharmacokinetic properties make

Zuprevo® an optimal choice for the prevention of

BRD as demonstrated in a Mannheimia haemolytica

challenge study. In this study, tildipirosin (4 mg/kg,

Zuprevo®) was shown to prevent mortality, and was

superior in terms of clinical symptoms and bacterial

counts in lung tissue compared to saline and tulath-

romycin (2.5 mg/kg, Draxxin®).

The role of preventive treatment in bovine respiratory disease (BRD) management

BRD�remains�very�important�to�the�modern�cattle�indus-

try�given�its�high�incidence�in�herds�leading�to�substantial�

economic�losses�through�the�reduced�performance�of�the�

affected�cattle�in�addition�to�treatment�costs�and�mor-

tality�(Babcock�et�al��2010;�Schneider�et�al��2009)��BRD�

outbreaks�most�frequently�occur�following�transportation�

and�commingling�stress�in�young,�newly�weaned�calves,�

often�originating�from�many�different�farms�and�with�

unknown�health�history�or�immune�status�(Step�et�al��

2008;�Taylor�et�al��2010)��The�incidence�of�BRD�in�these�

calves�peaks�within�the�first�few�weeks�after�commin-

gling�(Edwards�2010),�but�BRD�infection�rates�can�remain�

high�until�approximately�80�days�on�feed�(Snowder�et�al��

2006)��Since�commingling�of�calves�is�a�common�manage-

ment�practice,�total�eradication�of�BRD�pathogens�is�

unlikely�(Snowder�et�al��2006)�

BRD�is�a�multi-factorial�disease�caused�by�both�infectious�

and�non-infectious�factors�(Lekeux�1995;�Stoeber�2002;�

Edwards�2010;�Taylor�et�al��2010):

•� �viral�pathogens�(BRSV,�PI-3,�BHV-1,�BVD�/�MD)

•� �bacterial�pathogens�(M. haemolytica, P. multocida,

H. somni, M. bovis)

•� �exo-�and�endogenic�factors�(e��g��management,�

physiology,�environment)

Viral�pathogens�frequently�play�an�initial�role,�predisposing�

cattle�to�secondary�bacterial�pathogens��However,�

M. haemolytica�is�also�known�to�be�a�primary�pathogen�

and�has�traditionally�been�the�most�commonly�isolated�

bacterial�pathogen�(Taylor�et�al��2010)��The�bacterial�

involvement�usually�turns�the�disease�into�a�fibrinous��

or�suppurative�bronchopneumonia�with�clinical�signs�of�

pronounced�dyspnoea�and�fever,�coughing,�nasal�dis-

charge�and�inappetence,�associated�with�moderate�to�

severe�depression�(Stoeber�2002)��However�at�slaughter,�

lung�lesions�may�occur�in�the�majority�of�untreated�cattle�

indicating�also�the�importance�of�subclinically�infected�

animals�and�challenges�with�the�visual�detection�of�BRD�

(Edwards�2010)��

Prevention�is�an�important�element�in�herd�health�pro-

grams�aimed�at�minimizing�the�incidence�and�costs�asso-

ciated�with�BRD�morbidity�and�mortality�(Edwards�2010)�

In�the�EU,�it�is�a�regulatory�requirement�that�the�presence�

3

24

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

Page 25: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

of�the�disease�should�be�confirmed�in�the�herd�before�

preventive�treatment�is�initiated��E��g��a�percentage�of��

the�cattle�in�the�herd�already�present�clinical�signs�of�BRD�

whereas�the�others�show�no�overt�disease�but�may�

already�be�subclinically�infected��In�this�regard,�in�a�recent�

investigation�measuring�body�temperature�by�reticulo-

rumen�temperature�boluses,�fever�episodes�began�4�to�

177�hours�before�treatment�upon�clinical�signs�of�BRD�

(Timsit�et�al��2010)��Therefore,�to�prevent�irreversible�lung�

damage�and�severe�economic�losses,�early�antimicrobial�

treatment�providing�rapid�onset�of�action�and�a�long�

duration�of�activity�is�crucial�to�cover�the�critical�early�fat-

tening�period�following�transportation�and�commingling,�

and�to�avoid�further�contracting�of�the�disease�in�the�herd��

Tildipirosin,�the�active�ingredient�of�Zuprevo®,�is�a�novel�

16-membered-ring,�tri-basic�macrolide�licensed�for�both�

the�treatment�and�prevention�of�BRD��It�is�characterized��

by�rapid�absorption�from�the�subcutaneous�injection�site�

and�long-lasting�high�concentrations�at�the�site�of�in�-

fection�(EMA�2011)��These�pharmacokinetic�features�make�

Zuprevo®�an�optimal�choice�for�the�prevention�of�BRD�

where�it�is�crucial�that�antibiotic�therapy�acts�rapidly�and�

provides�cover�over�a�sustained�period�of�time�to�avoid��

further�spread�of�the�disease�in�the�herd��The�principle�of�

preventive�efficacy�of�Zuprevo®�was�demonstrated�

in�a�Mannheimia haemolytica�challenge�model�of�BRD�

Mannheimia haemolytica challenge study

Materials and methods:�In�dose-finding�experiments,�

18�healthy�male�Holstein�black�pied�calves�were�allocated�

to�three�groups�of�six�animals�each��On�Day�0,�animals�

received�the�following�single�subcutaneous�(SC)�injection:�

•� Group 1:� Zuprevo®,�4�mg�tildipirosin�/�kg�BW�

•� �Group 2:� Draxxin®,�2�5�mg�tulathromycin�/�kg�BW�

•� �Group 3:� Saline,�2�mL�/�100�kg�BW��

Based�on�a�well-established�study�model�(Shoo,�1989),�

five�days�after�treatment�(Day�5)�all�animals�were�chal-

lenged�by�intratracheal�inoculation�of�approximately�1�–�2�

x�109�colony�forming�units�(CFU)�of�M. haemolytica�7�/�2�

Serotype�A�1�(tildipirosin�MIC�of�0�25�µg/mL)�(Figure�1)��

This�pathogenic�strain�provided�by�the�Moredun�Research�

Institute,�Scotland,�originated�from�pneumonic�pasteurel-

losis�and�was�successfully�used�in�other�challenge�studies��

All�animals�were�handled�and�treated�in�accordance�with�

German�animal�welfare�regulations�

Clinical�variables�(body�temperature,�general�behaviour,�

appetite,�and�rate�and�quality�of�respiration)�were�moni-

tored�daily�before�and�twice�daily�after�challenge�by�per-

sonnel�masked�to�treatment��Blinded�necropsy�was�

scheduled�three�days�after�infection�(Day�8)��Lungs�were�

evaluated�for�lung�consolidation�(%)�and�lung-body�

weight�ratios�(%)��Bacteriological�examinations�were�

performed�on�bronchial�swabs�and�lung�tissue�(limit��

of�quantification�[LOQ]�103�CFU�/�g)��

Statistical�analysis�was�performed�by�means�of�the�soft-

ware�package�SAS®��Treatment�unit�and�statistical�unit�

was�the�individual�animal��The�course�of�the�clinical�

examination�parameters�was�graphically�displayed�and�

statistically�analysed��Treatment�groups�were�compared�

pair-wise�as�contrasts�in�a�repeated�measures�analysis�of�

variance,�with�time�and�treatment-time-interaction�as��

the�within-subject�effects�and�treatment�as�the�between-

subject�effect��To�ensure�a�multiple�level�of�significance��

of�α�=�0�05,�the�local�level�of�significance�for�treatment�

effects�was�set�to�α�=�0�005�(Bonferroni�adjustment)��

A�comparison�of�treatment�groups�was�carried�out�for�the�

post�mortem�lung�examination�parameters��Pair-wise�

comparisons�between�treatment�groups�used�a�multiple-

comparison�procedure�to�detect�significant�differences��

The�Ryan-Einot-Gabriel-Welsch�Multiple�Range�Test�was�

used�as�the�multiple-stage�test�which�controlled�the�

maximum�experiment-wise�error�rate�(α�=�0�05)�

Clinical observations:�The�course�of�disease�in�ani-

mals�treated�with�saline�and�Draxxin®�reflects�the�severe�

challenge�by�M. haemolytica�in�this�study��Five�of�the�six�

animals�from�group 3�(saline)�and�one�animal�from�

group 2�(Draxxin®)�died�or�were�euthanized�prior�to�

scheduled�necropsy�for�animal-welfare�reasons�whereas�

no�animal�died�in�group 1�(Zuprevo®)�(Figure�2;�Figure�3)��

General�behaviour,�appetite�and�respiration�scores�(Fig-

ures�4�–�6)�indicated�signs�of�clinical�respiratory�disease�in�

groups 2 and 3�(Draxxin®�and�saline)�after�challenge�until�

the�end�of�the�experimental�phase;�in�contrast,�scores��

in�group 1�(Zuprevo®)�peaked�on�the�day�of�challenge�or�

the�next�day�and�rapidly�decreased�to�normal��Body�

temperature�in�group 1�(Zuprevo®)�increased�slightly�after�

the�challenge;�in�groups 2 and 3�(Draxxin®�and�saline)�

25

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

3

Page 26: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

the�increase�of�body�temperature�was�higher�(Figure�7)��

Feed�intake�after�infection�was�absent�or�reduced�in�

groups 2�and�3�(Draxxin®�and�saline)��In�group 1�(Zuprevo®),�

the�complete�daily�ration�was�consumed�from�one�day�

after�infection�until�the�end�of�the�study��Body�temperature,�

general�behaviour,�appetite�and�respiration�quality�

scores�were�significantly�lower�in�group 1�(Zuprevo®)�com-

pared�to�groups 2�and�3�(Draxxin®�and�saline)��These�

clinical�variables�were�not�significantly�different�between�

groups 2 and 3 (Draxxin®�and�saline)��

Pathology:�Figure�8�shows�an�example�from�group 3�

(saline�treated�controls)�of�a�lung�severely�affected�by�

bronchopneumonia��Lung�consolidation�(Figure�9)�and�

lung-body�weight�ratios�(Figure�10)�of�group 1�(Zuprevo®)�

were�significantly�lower�than�those�of�groups 2 and 3�

(Draxxin®�and�saline)��No�significant�difference�was�

detected�between�group 2 and 3�(Draxxin®�and�saline)�

Bacteriology:�In bronchial swabs�taken�at�necropsy,�

no�M. haemolytica�growth�was�detected�in�any�from�

the�cattle�treated�with�Zuprevo®�(n�=�0�/�6)��Substantial�

growth�of�M. haemolytica�was�detected�in�bronchial�

swabs�from�all�cattle�in�the�saline-treated�group 3�

(n�=�6�/�6)�and�all�except�for�one�animal�in�the�Draxxin®-

treated�group 2�(n�=�5�/�6)�(Table�1)��

In lung-tissue samples,�growth�of�M. haemolytica�was�

below�the�LOQ�of�103�CFU/g�(n�=�3�/�6)�or�comparatively�

low�(n�=�3�/�6,�105�–�107�CFU/g)�in�cattle�treated�with�Zuprevo®��

Substantially�higher�growth�was�observed�in�lung�tissue��

of�all�animals�in�the�saline-treated�group 3�(n�=�6�/�6;�

109�–�1010�CFU/g)�and�the�Draxxin®-treated�group 3�

(n�=�6�/�6;�107�–�109�CFU/g)�(Table�1)��

Clinical,�pathological�and�bacteriological�investigations�

showed�that�the�preventive�efficacy�of�Zuprevo®�in�this�

severe�M. haemolytica�challenge�model�of�BRD�was�superior�

in�comparison�to�saline-treated�controls�and�Draxxin®��

Preventive�treatment�with�Zuprevo®�provided�superior�

reduction�of�pulmonary�tissue�bacterial�counts��The�

reduction�of�M. haemolytica�to�below�the�LOQ�in�lung�

tissue�in�50�%�of�the�animals�and�in�bronchial�fluid��

in�100�%�of�the�animals�indicates�bactericidal�action��

of�Zuprevo®�(active�ingredient�tildipirosin)�against�

M. haemolytica�and�confirms�its�long�duration�of�action�

at�high�concentrations�at�the�site�of�infection�

References:

1. Babcock AH et al. (2010). Temporal distributions of respiratory disease events within cohorts of feedlot cattle and associations with cattle health and performance indices. Prev Vet Med 97, 198 – 219.

2. Step DL et al. (2008). Effects of commingling beef calves from different sources and weaning protocols during a forty-two-day receiving period on performance and bovine respiratory disease. J Anim Sci 86, 3146 – 3158.

3. Edwards TA (2010). Control methods for bovine respiratory disease for feedlot cattle. Vet Clin Food Anim 26, 273 – 284.

4. Schneider MJ et al. (2009). An evaluation of bovine respiratory disease complex in feedlot cattle: Impact on performance and carcass traits using treatment records and lung lesions scores. J Anim Sci 87, 1821 – 1827.

5. Taylor JD et al. (2010). The epidemiology of bovine respiratory disease: What is the evidence for predisposing factors? Can Vet J 51, 1095 – 1102.

6. Snowder GD et al. (2006). Bovine respiratory disease in feedlot cattle: Environmental, genetic, and economic factors. J Anim Sci 84, 1999 – 2008.

7. Lekeux P (1995). Bovine respiratory disease complex: A European perspective. Bovine Practitioner 29, 71 – 75.

8. Stoeber M (2002). Krankheiten der Atmungsorgane, des Zwerchfells und der Brustwand: Enzootische Bronchopneumonie. In: G Dirksen, H-D Gründer, M Stoeber (eds.) Innere Medizin und Chirurgie des Rindes, 4th ed, Blackwell, pp. 310 – 322.

9. Timsit E et al. (2010). Early detection of bovine respiratory disease in young bulls using reticulo-rumen temperature boluses. Vet J doi:10.1016/j.tvjl.2010.09.012.

10. EMA (2011). CVMP Assessment Report. Zuprevo (EMEA/V/C/002009). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/veterinary/002009/WC500106577.pdf

11. Shoo MK (1989). Experimental bovine pneumonic pasteurellosis: A review. Vet Record 124, 141 – 144.

3

26

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

Page 27: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

Necropsy &Bacteriology

0 7 85 63 421

Treatment

Studyday

Infection

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8Time (days)

Mo

rtal

itie

s /

no

n-s

che

du

led

eu

than

asia

Infection

Group 3: Saline

Group 2: Draxxin®

Group 1: Zuprevo®

Group 1: Zuprevo®

Group 2: Draxxin®

Group 3: Saline

0

1

2

3

4

5

6

Mo

rtal

itie

s /

no

n-s

ched

ule

deu

than

asia

Group 1: Zuprevo®

Group 2: Draxxin®

Group 3: Saline

Group 1: Zuprevo®

Group 2: Draxxin®

Group 3: Saline

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 6 7 8

Time (days)

Sco

re

Infection

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

0 1 2 3 4 5 6 7 8Time (days)

Sco

re

Infection

Group 1: Zuprevo®

Group 2: Draxxin®

Group 3: Saline

Tables and Figures

Figure 1.�Study�Schedule

Monitoring�of�general�behaviour,�body�temperature,�appetite,�rate�&�quality�of�respiration*

Infection�by�intratracheal�inoculation�of�~1�–�2�x�109�colony�forming�units�(CFU)�M. haemolytica�7�/�2�Serotype�A�1�(tildipirosin�MIC�of�0�25�µg/mL)

*�Personnel�masked�to�treatment

Score 0:�normal;�Score 1:�slight�depression;�Score 2:�moderate�depression;�Score 3:�severe�depression;�Score 4:�severe�prostration/recumbency�(animals�were�euthanized)Group�1�significantly�different�from�Groups�2�and�3�

Score 0:�normal�appetite�(animal�directly�approaches�the�feed);�Score 1:�appetite�slightly�restricted;�Score 2:�appetite�restricted;�Score 3:�no�appetite�Group�1�significantly�different�from�Groups�2�and�3�

Figure 2.�Mortality�

Figure 3.�Mortality�(summary)

Figure 4.�General�behavior�scores�(means;�Day�0�–�Day�8)�

Figure 5.�Appetite�scores�(means;�Day�0�–�Day�8)�

27

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

3

Page 28: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

05

1015

20253035404550

3 days after infection

3 days after infection

*

*

Lun

gco

nso

lidat

ion

(%)

1

1,2

1,4

1,6

1,8

2

2,2

Lun

g-b

od

yw

eig

ht

rati

o(%

)

Group 1: Zuprevo®

Group 2: Draxxin®

Group 3: Saline

Group 1: Zuprevo®

Group 2: Draxxin®

Group 3: Saline

05

1015

20253035404550

3 days after infection

3 days after infection

*

*

Lun

gco

nso

lidat

ion

(%)

1

1,2

1,4

1,6

1,8

2

2,2

Lun

g-b

od

yw

eig

ht

rati

o(%

)

Group 1: Zuprevo®

Group 2: Draxxin®

Group 3: Saline

Group 1: Zuprevo®

Group 2: Draxxin®

Group 3: Saline

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

0 1 2 3 4 5 6 7 8Time (days)

Sco

re

Infection

Group 1: Zuprevo®

Group 2: Draxxin®

Group 3: Saline

37

38

39

40

41

0 1 2 3 4 5 6 7 8Time (days)

Bo

dy

tem

per

atu

re (°

C)

Infection

Group 1: Zuprevo®

Group 2: Draxxin®

Group 3: Saline

Figure 6.�Respiration�quality�scores�(means;�Day�0�–�Day�8)�

Score 0:�normal;�Score 1:�slight�dyspnea;�Score 2:�moderate�dyspnea;�Score 3:�severe�dyspneaGroup�1�significantly�different�from�Groups�2�and�3

Group�1�significantly�different�from�Groups�2�and�3 *�Group�1�significantly�different�from�Groups�2�and�3

*�Group�1�significantly�different�from�Groups�2�and�3

Figure 7.�Body�temperature�(means;�Day�0�–�Day�8)

Figure 8:�Lung�severely�affected�by�bronchopneumonia�

(example�from�Group�3;�saline�treated�controls)

Figure 9.�Lung�consolidation�(means;�%)�

Figure 10.�Lung-body�weight�ratio�(means;�%)�

Table 1.�Bronchial-fluid�and�lung-tissue�bacteriology�

Matrix Treatment Growth�of�M. haemolytica*

Bron-chial fluid

Group�1:�Zuprevo® –�(6�/�6)

Group�2:�Draxxin® +++�or�++++�(5�/�6)

Group�3:�Saline ++++�(6�/�6)

Lung tissue

Group�1:�Zuprevo® <�LOQ�(3�/�6);�105�–�107�(3�/�6)

Group�2:�Draxxin® 107�–�109�(6�/�6)

Group�3:�Saline 109�–�1010�(6�/�6)

*��Bronchial�fluid:�“–“�no�growth;�“+++“�pre-confluent�growth;��“++++”�confluent�growth��Lung�tissue:�CFU/g;�limit�of�quantification�(LOQ)�=�103�CFU/g

3

28

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

Page 29: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

Notes

3

29

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

Page 30: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

4

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

30

Page 31: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

4.Zuprevo®: Efficacy in the treatment of BRD in calves in comparison to Draxxin®

Kerstin E. Müller, Franziska Schmidt, Nadja Rohdich, Eva Zschiesche and Rainer Röpke

1

2

3

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

31

4

Page 32: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

Zuprevo®: Efficacy in the treatment of BRD in calves in comparison to Draxxin®Kerstin�E��Müller1,�Franziska�Schmidt1,�Nadja�Rohdich2,�Eva�Zschiesche2�and�Rainer�Röpke2

1 Clinic for Ruminants and Swine, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany

2 Intervet Innovation GmbH, a member of the MSD Animal Health Group

Abstract

Bovine Respiratory Disease (BRD) in calves is still

a main problem in cattle production worldwide.

The multifactorial etiology of BRD poses a challenge

to farmers and veterinarians. Efficacious treatment

of BRD based on adequate diagnostic tools is crucial

to restore and maintain herd health. MSD Animal

Health has recently been granted marketing authori-

zation for Zuprevo® for the treatment and prevention

of respiratory disease in cattle. Its active ingredient,

tildipirosin, is the first tri-basic, 16-membered-ring

macrolide. Tildipirosin is characterized by rapid

absorption from the subcutaneous injection site and

long-lasting high lung and bronchial fluid concen-

trations. These pharmacokinetic properties make

Zuprevo® particularly suited for the treatment of

BRD as demonstrated in a field trial in calves with

BRD. In this study, Zuprevo® was efficacious and

safe in the treatment of BRD over an observation

period of 21 days. The onset of efficacy was most

rapid with Zuprevo®. Overall, efficacy results were sig-

nificantly non-inferior in comparison to Draxxin®.

Bovine Respiratory Disease Complex – etiology, diagnosis and treatment

The�Bovine�Respiratory�Disease�Complex�(BRDC)�is�defined�

as�a�multifactorial�disease�of�the�respiratory�tract�resulting�

from�complex�interactions�between�environmental�and��

host�factors�and�pathogens�(U�S��National�Library�of�

Medicine®)��These�factors�act�as�stressors�that�adversely�

affect�the�immune�system�and�other�host�defence�mecha-

nisms�leading�to�an�enhanced�transmission�of�infectious�

agents��For�calves�several�risk�periods�have�been�identi-

fied�when�the�animals�are�prone�to�develop�respiratory�

diseases:�the�neonatal�period,�the�period�around�weaning�

and�the�period�when�maternal�antibodies�have�vanished��

Beef�and�veal�calves,�in�addition,�experience�extra�risk�

periods�due�to�commingling�of�animals�during�the�first�

ten�days�after�arrival�at�the�fattening�farm�and�whenever�

regrouping�of�animals�takes�place��Besides�these�critical�

periods,�numerous�factors�have�been�identified�that�con-

tribute�to�outbreaks�of�BRDC��These�include�host�factors�

(anatomical�and�functional�weaknesses�of�the�bovine�

respiratory�tract,�genetics),�the�macro-�and�the�microcli-

mate�(temperature,�humidity,�air�velocity,�toxic�gases,�

dust),�management�factors�(management�of�the�neonate,�

hygiene,�nutrition,�health�status�of�the�herd)�and�the�

presence�of�certain�microorganisms�(Figure�1)��Among�

viruses�of�relevance�for�the�BRDC,�the�Bovine�Virus��

Diarrhoea�Virus�(BVDV),�the�Bovine�Respiratory�Syncytial�

Virus�(BRSV)�and�the�Bovine�Herpesvirus�-1�(BoHV-1)�play��

a�major�role�(Thiery,�2007)��The�same�is�true�for�bacteria�

as�Mannheimia haemolytica,�Pasteurella multocida,�Biber-

steinia trehalosi,�Histophilus somni,�Arcanobacterium pyo-

genes�and�mycoplasmata�(M. bovis)�(Griffin�et�al�,�2010)��

Most�microorganisms�are�normal�inhabitants�of�the�bovine�

upper�respiratory�tract��Due�to�certain�strategies�the��

latter�bacteria�are�able�to�prevail�over�other�bacteria�and�

weaken�the�host’s�defence�mechanisms��Several�tech-

niques�are�available�to�sample�the�bovine�respiratory�tract�

in�order�to�detect�microorganisms�participating�in�BRDC�

(Cooper�and�Brodersen,�2010)��Less�invasive�techniques�

include�obtaining�nose�swabs,�sputum,�tracheal�swabs�

and�blood�samples��Trans-tracheal�lavage,�tracheobronchial�

lavage,�broncho�alveolar�lavage�and�lung�biopsy�are�more�

invasive�inter�ventions��The�procedure�of�(trans-)�tracheal�

lavage�is�a�suitable�tool�for�the�detection�of�bacteria�

species�that�participate�in�BRDC�as�the�lower�respiratory�

tract�of�healthy�calves�has�been�shown�to�be�sterile�

4

32

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

Page 33: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

(Fischer�et�al�,�1987;�Heckert�et�al�,�1997)�(Figure�2)��

Calves�suffering�from�BRDC�can�be�assigned�to�four�dif-

ferent�categories�based�on�clinical�findings�(Reinhold,�

2001):�Grade�I�(subclinical)�includes�alert�calves�with�normal�

breathing�sounds�at�auscultation,�Grade�II�(compensated)��

is�characterized�by�the�presence�of�symptoms�of�airway��

disease,�a�short�period�of�fever�and�sustained�appetence,�

Grade�III�(non-compensated)�describes�calves�demon-

strating�dyspnoea,�inappetence,�enhanced�or�even�bronchial�

breathing�sounds)�and�Grade�IV�(irreversible)�includes�calves�

exhibiting�severe�dyspnoea�and�anorexia�and�bronchial�

breathing�sounds�or�even�absent�breathing�sounds�over�

extended�areas�of�the�lung�field�(Table�1)��A�treatment�

advice�is�linked�to�each�of�the�four�grades�(Reinhold,�2001):�

Grade�I�calves�do�not�need�a�specific�treatment,�Grade�II�

demands�an�antibacterial�treatment,�Grade�III�a�combination�

of�antibiotics�and�anti-inflammatory�drugs�preferentially�

non-steroidal-anti-inflammtory�drugs��Grade�IV�(irreversible)�

calves�are�unlikely�to�recover�from�BRDC�due�to�the�

extended�and�irreversible�damage�to�their�lungs�and�for�

this�reason�should�be�euthanized�(Table�1)�

A Field Trial

Zuprevo®�(active�ingredient�tildipirosin)�is�efficacious�in�

the�treatment�of�naturally�acquired�Bovine�Respiratory�

Disease�(BRD)��Previously�performed�field�studies�had�

evaluated�the�primary�efficacy�endpoint�up�to�14�days�after�

treatment;�however,�secondary�efficacy�parameters�in�

those�studies�suggested�an�efficacy�determined�over�a�

21�days�observation�period�

This�study�was�designed�to�confirm�the�efficacy�of�Zuprevo®,�

administered�subcutaneously�at�a�single�dose�of�4�mg��

tildipirosin/kg�body�weight�(BW)�in�the�treatment�of�BRD�

under�field�conditions�over�an�observation�period�of�

21�days��Efficacy�was�compared�to�the�registered�product�

Draxxin®�(active�ingredient�tulathromycin,�2�5�mg/kg�BW)��

The�study�was�conducted�in�accordance�with�Good�Clinical�

Practice,�VICH�GL9�(CVMP/VICH/595/98-FINAL)�

Materials and methods

The�study�had�an�investigator-blinded,�positive-controlled�

design�and�was�conducted�at�one�site�in�Germany��

104�calves�(11�to�56�days�old)�were�included�in�the�study,�

52�per�treatment�group��Animals�showing�the�following�

signs�of�BRD�on�day�0�were�included�in�the�study�(Table�2):

•� Rectal�temperature�≥ 40°�C��

•� Abnormal�respiration�(respiratory�score�≥ 1)��

•� Abnormal�general�attitude�(attitude�score�≥ 1)��

Animals�were�randomly�allocated�to�treatment�with�either�

Zuprevo®�(4�mg�tildipirosin/kg�BW)�or�Draxxin®�(2�5�mg�

tulathromycin/kg�BW)��Treatments�were�administered�as�

a�single�subcutaneous�injection�

Clinical�examinations�were�performed�daily�from�day�0�until�

day�10�and�on�day�21��From�day�0�to�day�2,�examinations�

were�done�three�times�daily�(approximately�6�hours�apart)�

and�once�daily�from�day�3�to�day�10��Between�day�11�

and�day�20,�animals�were�observed�daily�for�general�health��

Detailed�examinations�were�performed�in�case�of�re-occur-

rence�of�BRD�signs��Injection�sites�were�observed�before�

treatment�and�on�days�1,�2,�3,�10,�and�21�after�treatment�

On�day�0,�all�animals�were�sampled�for�bacteriological�

examination�using�the�trans-tracheal�lavage�(TTL)�tech-

nique��On�day�0�and�21,�animal�weights�were�determined�

and�information�on�potential�concomitant�viral�and�myco-

plasma�infections�was�gathered�by�obtaining�paired�

serum�samples�from�all�animals��Haptoglobin�concentra-

tions�were�determined�by�photometric�assay�in�serum�

samples�taken�on�day�0,�1,�2,�3,�10,�and�21��Between�day�

0�and�day�21,�feed�intake�was�monitored�

Animals�were�regarded�as�treatment�failures�and�with-

drawn�from�the�study�if�they�fulfilled�the�following�criteria:

•� Between�day�2�and�day�10:�rectal�temperature�≥ 40°�C�

and�(respiratory�score�≥ 2�or�attitude�score�≥ 2)��

•� Between�day�11�and�day�20:�rectal�temperature�≥ 40°�C�

or�respiratory�score�≥ 2�or�attitude�score�≥ 1��

•� On�day�21:�rectal�temperature�≥ 40°�C�or�respiratory�

score�≥ 1�or�attitude�score�≥ 1��

In�case�of�animal�withdrawal�from�the�study�between�day�0�

and�day�21�due�to�BRD-related�reasons�(failure,�late�failure),�

these�animals�were�re-sampled�for�bacteriological�examina-

tion�using�the�TTL�technique�on�the�day�of�withdrawal�

Necropsy�was�performed�on�6�animals�which�completed�the�

study�successfully�on�day�21,�3�treated�with�Zuprevo®�and�3�

with�Draxxin®��Lung�tissue�was�sampled�for�bacteriological�

examination�and�lung�lesion�scores�were�determined�

33

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

4

Page 34: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

Primary�efficacy�criterion�was�the�treatment�success�rate��

on�day�21,�defined�as�the�percentage�of�animals�remaining�

in�the�study�on�day�21�

Results

Long�term�treatment�success�rates�(treatment�success�on�

day�21)�were�72�1�%�(31�of�43)�in�the�Zuprevo®�group�and�

62�2�%�(28�of�45)�in�the�Draxxin®�group�(per-protocol�[PP]�

population)��Short�term�treatment�success�rates�(inter-

mediate�treatment�success�on�day�10)�were�83�7�%�(36�of�

43)�in�the�Zuprevo®�group�and�84�4�%�(38�of�45)�in�the�

Draxxin®�group�(PP)��Long�term�treatment�failure�on�days�

11�–�21�after�short�term�(day�10)�success�(late�failures)�

were�13�9�%�(5�of�36)�in�the�Zuprevo®�group�and�26�3�%�

(10�of�38)�in�the�Draxxin®�group��For�all�3�criteria,�Zuprevo®�

was�non-inferior�to�Draxxin®�(Table�3)��

No�mortality�occurred�in�the�Zuprevo®�group,�but�2�

animals�treated�with�Draxxin®�died�(1�in�the�PP,�1�in�the�

intent-to-treat�[ITT]�population)��

Rectal�temperatures�(Figure�3),�respiratory�and�attitude�

scores�(Figure�4),�and�respiration�frequency�decreased�

markedly�in�both�treatment�groups�(PP)�starting�at�day�1��

Daily�weight�gains�or�lung�scores�did�not�differ�significantly�

between�groups�(PP)��

Before�treatment,�Mannheimia (M.) haemolytica�(18�3�%),�

Pasteurella (P.) multocida�(31�7�%),�and�Histophilus (H.)

somni�(1�0�%)�were�isolated�by�TTL�(ITT)�from�the�respira-

tory�tract�of�the�study�animals��At�withdrawal,�distri-

bution�of�isolates�was�as�follows:�8�3�%�M. haemolytica,�

33�3�%�P. multocida,�and�0�0�%�H. somni�(ITT)��Mycoplasma

( M.) bovis�was�not�isolated;�however,�4�animals�had�con-

comitant�M. bovis�infections�as�detected�by�seroconver-

sion�(ITT)��The�minimum�inhibitory�concentrations�(MIC)�of�

tildipirosin�were�determined�(Table�4)��

Haptoglobin�levels�reflected�the�disease�status�in�both�

treatment�groups�(data�not�shown)��During�the�study,�

feed�intake�did�not�differ�between�both�groups��

Mean�onset�of�efficacy�(i��e��first�treatment�effects�as�shown�

by�rectal�temperature�<�39�5°�C�and�attitude�score�=�0)��

was�26�8�h�in�the�Zuprevo®�group�and�39�4�h�in�the�Draxxin®�

group�(PP)�(Table�5)��

No�pain�reaction�was�noted�on�injection�in�86�5�%�of�

the�animals�in�the�Zuprevo®�group�and�in�65�4�%�in�the�

Draxxin®�group�(ITT)��9�6�%�of�animals�in�the�Zuprevo®�

group�and�13�5�%�in�the�Draxxin®�group�had�injection�site�

reactions�(ITT)��16�adverse�events�(concomitant�diseases�

e��g��otitis,�diarrhoea,�lameness,�omphalitis)�were�reported,�

12�in�the�Zuprevo®�group�and�4�in�the�Draxxin®�group��

All�except�one�(rated�“unknown”)�were�unlikely�related�to�

the�study�medication�(ITT)�

Conclusion

Zuprevo®�administered�subcutaneously�at�a�single�dose�

of�4�mg/kg�BW�was�efficacious�and�safe�in�the�treat-

ment�of�BRD�within�an�observation�period�of�21�days��

The�onset�of�efficacy�was�most�rapid�with�Zuprevo®��

Overall,�efficacy�results�were�significantly�non-inferior�

in�comparison�to�Draxxin®�

References:

1. Cooper, V.L., Brodersen, B.W. (2010): Respiratory Disease Diagnosis of Cattle. The Vet. Clin. North Am. 26(2): 409 – 416.

2. Fischer, W., Amtsberg, G., Luitjens, B. (1987): Vergleichende Untersuchungen zur Keimbesiedlung der Nasen- und Tracheobronchial-schleimhaut bei bronchopneumonisch erkrankten Kälbern und Jungrindern. Tierärztl. Umsch. 42(6): 476 – 480.

3. Griffin, D. Chengappa, M.M., Kuszak, J., McVey, D. (2010): Bacterial Pathogens of the Bovine Respiratory Disease Complex. The Vet. Clin. North Am. 26(2): 381 – 394.

4. Heckert, H.-P., Rohn, M., Hofmann W. (1997): Diagnostische Probenentnahmen bei infektiösen Atemwegserkrankungen der Rinder. Der Praktische Tierarzt 78(12): 1056 – 1065.

5. Reinhold, P. (2001): Untersuchungen zur Bestimmung pulmonaler Funktionen beim Rind. Habilitationsschrift Freie Universität Berlin.

6. Thiry, E. (2007): Clinical Virology of Ruminants. Wolters-Kluwer, France pp. 19 – 54.

4

34

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

Page 35: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

microorganisms

macro- and microclimate

host genetics�immune�system�general�condition

management care�for�neonates�crowding�nutrition�(weaning)�loss�of�colostral�protection�hygiene

0.0

0.4

0.8

1.2

1.6

2.0

2.4

Day

0,

Tim

e 1

Day

0,

Tim

e 2

Day

0,

Tim

e 3

Day

1,

Tim

e 1

Day

1,

Tim

e 2

Day

1,

Tim

e 3

Day

2,

Tim

e 1

Day

2,

Tim

e 2

Day

2,

Tim

e 3

Day

3

Day

4

Day

5

Day

6

Day

7

Day

8

Day

9

Day

10

Study day

Mea

n a

ttit

ud

e s

core

38,0

38,5

39,0

39,5

40,0

40,5

41,0

Day

0,

Tim

e 1

Day

0,

Tim

e 2

Day

0,

Tim

e 3

Day

1,

Tim

e 1

Day

1,

Tim

e 2

Day

1,

Tim

e 3

Day

2,

Tim

e 1

Day

2,

Tim

e 2

Day

2,

Tim

e 3

Day

3

Day

4

Day

5

Day

6

Day

7

Day

8

Day

9

Day

10

Study day

Rec

tal

Tem

per

atu

re [

°C]

Zuprevo®

Draxxin®

Zuprevo®

Draxxin®

0.0

0.4

0.8

1.2

1.6

2.0

2.4

Day

0,

Tim

e 1

Day

0,

Tim

e 2

Day

0,

Tim

e 3

Day

1,

Tim

e 1

Day

1,

Tim

e 2

Day

1,

Tim

e 3

Day

2,

Tim

e 1

Day

2,

Tim

e 2

Day

2,

Tim

e 3

Day

3

Day

4

Day

5

Day

6

Day

7

Day

8

Day

9

Day

10

Study day

Mea

n a

ttit

ud

e s

core

38,0

38,5

39,0

39,5

40,0

40,5

41,0

Day

0,

Tim

e 1

Day

0,

Tim

e 2

Day

0,

Tim

e 3

Day

1,

Tim

e 1

Day

1,

Tim

e 2

Day

1,

Tim

e 3

Day

2,

Tim

e 1

Day

2,

Tim

e 2

Day

2,

Tim

e 3

Day

3

Day

4

Day

5

Day

6

Day

7

Day

8

Day

9

Day

10

Study day

Rec

tal

Tem

per

atu

re [

°C]

Zuprevo®

Draxxin®

Zuprevo®

Draxxin®

Figure 1.�Etiology�of�BRD�

Figure 2.�Trans-tracheal�lavage�(TTL)�technique�

Figure 3.�Course�of�rectal�temperatures�(PP�population)� Figure 4.�Attitude�score�(PP�population)�

Tables and Figures

35

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

4

Page 36: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

Table 1.�Severity�of�Bovine�Respiratory�Disease�based�on�clinical�symptoms�and�treatment�advice�(Reinhold�2001)�

Table 3.�Efficacy�results�

Table 2.�Study�schedule�

Grade Description Treatment

I Subclinical�(alert,�normal�breathing�sounds) No�treatment

II Compensated�(symptoms�of�airway�disease,�appetence,�short�period�of�fever) Antibiotics�*

III Non-compensated�(dyspnoea,�inappetence,�enhanced�or�bronchial�breathing�sounds) Antibiotics��and�NSAID�*

IV Irreversible�(severe�dyspnoea,�anorexia,�bronchial�or�even�absent�breathing�sounds) Euthanasia

*�Bronchosecretolytica�on�indication

Parameter Zuprevo® Draxxin®

Long-term�treatment�success�day�21�(Treatment�success�day�21) 72�1�%*� (31�of�43) 62�2�%� (28�of�45)

Short-term�treatment�success�day�10�(Intermediate�success�day�10) 83�7�%*� (36�of�43) 84�4�%� (38�of�45)

Long-term�failure�(days�11�–�21)�after�short-term�(day�10)�success(Late�failure�day�11�–�21)

13�9�%*� (5�of�36) 26�3�%� (10�of�38)

*Significantly�non-inferior�to�Draxxin®

Study day Action Sample Evaluation injection site

Day�0 Clinical�examinationInclusionWeighing

Allocation�to�the�treatment�groups

TTL�and��serum�sampling1

Yes�3

Group A

Treatment�with�Zuprevo®:�4�mg�tildipirosin/kg�BW

Group B

Treatment�with�Draxxin®:�2�5�mg�tulathromycin/kg�BW

Clinical�examination�2�x

Day�1�–�Day�2 Clinical�examination�3�x Clinical�examination�3�x Serum�day�1,�2�2 Yes�3

Day�3�–�Day�10 Clinical�examination�once�daily�(scheduled�examination) Serum�day�3,�10�2 Days�3,�10

Day�11�–�Day�20 General�health�observations,�examination�if�necessary��(unscheduled�examination)

In�case�of�examination

Day�2�–�Day�21 Withdrawal�due�to�BRD TTL

Day�21 Clinical�examination,�weighing Serum�sampling1 Yes

Necropsy�of�3�animals�4 Necropsy�of�3�animals�4 Lung�tissue

End�of�animal�phase

1�Serum�sampling�for�determination�of�antibodies�and�haptoglobin2�Serum�sampling�for�determination�of�haptoglobin3�Once�per�day4�Animals�that�completed�the�study�as�treatment�success

4

36

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

Page 37: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

Notes

4

Table 4.�Minimum�inhibitory�concentrations�(MICs)�of�tildipirosin�

Table 5.�Onset�of�efficacy�(PP�population)�

Parameter MIC of tildipirosin [µg/mL]

M. haemolytica (N = 21) P. multocida (N = 42) H. somni (N = 1)

Minimum�MIC� 0�25 0�25 2

Maximum�MIC� 0�5 2 2

Treatment group Onset of efficacy [h]*

Mean Standard deviation Min Max

Zuprevo®�(N�=�31) 26�8 18�9 5�8 96�0

Draxxin®�(N�=�28) 39�4 42�8 10�8 216�0

*First�treatment�effects�as�shown�by�rectal�temperature�<�39�5°�C�and�attitude�score�=�0

37

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

Page 38: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

Notes

38

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

Page 39: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

Notes

39

6th European Congress of Bovine Health ManagementZuprevo® – A new paradigm in the treatment and prevention of BRD – September 2011

Page 40: Zuprevo® – A new paradigm in the treatment and prevention ... · Zuprevo® – A new paradigm in the treatment and prevention of BRD ... focus on microbiological, food safety and

R0300_11