28
updated on 6/26/2010 1 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. Acrylonitrile, hydrogen cyanide, and crude acetonitrile [107- 13-1] CONTENTS OF FACTORY GATE TO FACTORY GATE LIFE CYCLE INVENTORY SUMMARY Chemistry ....................................................................................................................................................... 2 Process Summary ........................................................................................................................................... 3 Summary of LCI Information ......................................................................................................................... 6 Process Diagram Interpretation Sheet ............................................................................................................ 8 Process Diagram or Boundary of LCI ............................................................................................................ 9 Mass Balance of Chemicals in Each Process Stream ....................................................................................14 Graph of Cumulative Chemical Losses through Manufacturing Process ......................................................23 Graph of Cumulative Contaminated Water Use / Emission through Manufacturing Process .......................24 Graph of Cumulative Non-Contaminated Water Use / Emission through Manufacturing Process ...............25 Energy Input for each Unit Process, Cumulative Energy Requirements, Cooling Requirements (exotherms), and Assumed Heat Recovery from Hot Streams Receiving Cooling ............................................................26 Graph of Cumulative Energy Requirements ..................................................................................................28 Authors E. Griffing, M. Luhrs, and Students Peer reviews, name (date) MR Overcash (1-1-1999); MR Overcash (1-1-2001); MR Overcash (6-14-2009) Gtg report last modified on 6-26-2010 Checked for database consistency on 6-26-2010 First gtg version finalized on 2-24-2009 Modification history, Author (date) EMG (6-26-2010), EMG (5-18-2006), MKL (1-1-2001), Stu (1-1- 1999), and EMG (6-14-2009) Products Acrylonitrile, Hydrogen cyanide, crude acetonitrile Standard inputs Sulfuric acid, Ammonia, Propylene, Oxygen from air Methodology: Environmental Clarity gtg lci reports are based on industrial practice information, standard methods of engineering process design, and technical reviews. These reports are intended to be representative of industrial production based on the stated route. Terms of use: Environmental Clarity does not assume any liability due to use of these lci data. Integration of these data with lci data based on other methodologies is the responsibility of the user. Each report may be updated to improve model accuracy or representativeness. Users of this report should cite: E. Griffing and M. Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999 - present. Reviewed by Michael Overcash 6-4-09 Rereviewed by Michael Overcash 6-14-09

Acrylonitrile, hydrogen cyanide, and crude acetonitrile [107- 13-1

Embed Size (px)

Citation preview

updated on 6/26/2010 1

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Acrylonitrile, hydrogen cyanide, and crude acetonitrile [107-

13-1] CONTENTS OF FACTORY GATE TO FACTORY GATE

LIFE CYCLE INVENTORY SUMMARY

Chemistry ....................................................................................................................................................... 2 Process Summary ........................................................................................................................................... 3 Summary of LCI Information ......................................................................................................................... 6 Process Diagram Interpretation Sheet ............................................................................................................ 8 Process Diagram or Boundary of LCI ............................................................................................................ 9 Mass Balance of Chemicals in Each Process Stream ....................................................................................14 Graph of Cumulative Chemical Losses through Manufacturing Process ......................................................23 Graph of Cumulative Contaminated Water Use / Emission through Manufacturing Process .......................24 Graph of Cumulative Non-Contaminated Water Use / Emission through Manufacturing Process ...............25 Energy Input for each Unit Process, Cumulative Energy Requirements, Cooling Requirements (exotherms),

and Assumed Heat Recovery from Hot Streams Receiving Cooling ............................................................26 Graph of Cumulative Energy Requirements ..................................................................................................28

Authors E. Griffing, M. Luhrs, and Students

Peer reviews, name (date) MR Overcash (1-1-1999); MR Overcash (1-1-2001); MR

Overcash (6-14-2009)

Gtg report last modified on 6-26-2010

Checked for database consistency on 6-26-2010

First gtg version finalized on 2-24-2009

Modification history, Author (date) EMG (6-26-2010), EMG (5-18-2006), MKL (1-1-2001), Stu (1-1-

1999), and EMG (6-14-2009)

Products Acrylonitrile, Hydrogen cyanide, crude acetonitrile

Standard inputs Sulfuric acid, Ammonia, Propylene, Oxygen from air

Methodology: Environmental Clarity gtg lci reports are based on industrial practice information, standard

methods of engineering process design, and technical reviews. These reports are intended to be

representative of industrial production based on the stated route.

Terms of use: Environmental Clarity does not assume any liability due to use of these lci data. Integration

of these data with lci data based on other methodologies is the responsibility of the user. Each report may

be updated to improve model accuracy or representativeness.

Users of this report should cite: E. Griffing and M. Overcash, Chemical Life Cycle Database,

www.environmentalclarity.com, 1999 - present.

Reviewed by Michael Overcash 6-4-09

Rereviewed by Michael Overcash 6-14-09

updated on 6/26/2010 2

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Chemistry Primary reaction:

C3H6 + NH3 + 3/2 O2 C3H3N + 3 H2O (1)

propylene + ammonia + oxygen acrylonitrile + water

Side reactions: (type of side rxns)

C3H6 + NH3 + 9/4 O2 C2H3N + 3 H2O + ½ CO2 + ½ CO (2)

propene + ammonia + oxygen --> acetonitrile + water + carbon dioxide + carbon monoxide

C2H3N + 3/2 O2 HCN + H2O + CO2 (3)

acetonitrile + oxygen --> hydrogen cyanide + water + carbon dioxide

Notes:

Side reactions: (type of side rxns)

C3H6 + 4.5O2 3CO2+3H2O (9)

propylene combustion

C3H8 + 5O2 3CO2 + 4H2O (10)

propane combustion

CO + 1/2 O2 CO2 (11)

carbon monoxide combustion

updated on 6/26/2010 3

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Process Summary Literature

Nearly all commercial acrylonitrile production is done via the Sohio process (Kirk Othmer, 2001).

Ullmann's (2002) states that 90% of world production is based on the Sohio process, which is a vapor-

phase ammoxidation of propylene. Propylene, ammonia, and air are fed to a reactor at about 2 atm and

440oC. The vapor phase product is absorbed in an aqueous phase. Crude acrylonitrile is distilled from

acetonitrile and water. HCN is then removed from the acrylonitrile. A final distillation produces

acrylonitrile as a distillate product, removing heavy impurities in the bottoms. The acetonitrile is recovered

by distillation from the waste water before treatment. Important process parameters are given in Table 1.

Ammonium sulfate can be isolated and used as a fertilizer or disposed of (Kirk Othmer, 2001). Kirk

othmer (2001) states that hydrogen cyanide is used as a product, but Ullmann's (2002) claims that the HCN

is normally incinerated due to an excess supply. Recent cuts in acrylonitrile production have caused a

shortage of acetonitrile (Chemical Week, 2009). In addition, ACS (2008) claims that increasing the

production of HCN as a byproduct of acrylonitrile is highly desirable. Thus, the final disposition of these

byproducts is likely to depend on current economic considerations. In this GTG report, we show the

ammonium sulfate as a waste, but consider the HCN and acetonitrile by-products. However, use of the

acetonitrile stream from this report would require further purification.

Table 1. Process parameters

Ullmann’s

(2002)

Kirk

Othmer

(2001)

CEH

(2005)

Faith,

Keyes, and

Clark (1965)

Petroleum

Handbook

Ulrich and

Vasudevan(2009)

Used in this

GTG report

Reaction T,

oC

400-500 400-

510

405 450 440

Reaction P,

atm

0.3 to 2 0.5 to 2 2 2.5 2

Propylene

conversion,

%

98

(pure

basis)

95.6 (pure

basis)

85 (based on full

feed)

97 (pure

basis)

Yield from

propylene,

%

63 to 71 72 66 to 75 67 – 70 71 69 69 (total

input)

72% (pure

basis)

Ammonia

used, kg /

kg

acrylonitrile

0.475 0.475

Air used,

kg / kg

acrylonitrile

7.0

(6.09 cubic

meter air /

kg

acrylonitrile)

7.0 used for

reaction,

1.3 used for

incineration

HCN

production,

kg/kg

acrylonitrile

0.17 to

0.24

0.1 0.1 (can

increase

to as

much as

0.15

with

catalyst)

0.155 0.11 0.11 0.14

Acetonitrile

production,

kg/kg

acrylonitrile

0.024 to

0.13

0.03 0.0357 0.058 (crude)

0.029 kg

acetonitrile

0.03

updated on 6/26/2010 4

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Annual world wide production of acrylonitrile has grown from 260 million pounds in 1960 to more than

11.4 billion pounds in 2005.

LCI design

Air is compressed to 2 atmospheres and sent to the reactor. Propylene enters as a gas at -37 oC, is

compressed to 2 atm, and sent to the reactor. Ammonia enters the process as a liquid at -34 oC (in order to

maintain a liquid phase). The ammonia is pumped to two atmospheres, and heated to a vapor at -15 oC

(required to vaporize at 2 atm), and sent to the reactor, which operates at 440 oC. The production of

acrylonitrile is highly exothermic, and heat must be removed from the reactor despite the low input

temperatures. The product is cooled to 148 oC in the vapor phase. In a second heat exchanger, the process

stream is cooled further to 85 oC, condensing out most of the water. The exit stream from the second heat

exchanger is fed to an absorber, where ammonia, acrylonitrile, hydrogen cyanide, and acetonitrile are

absorbed. The pressure is assumed to drop to one atmosphere as it passes through the heat exchangers and

absorber. The nitrogen, carbon dioxide, propene, propane, and carbon monoxide pass through the absorber

and are sent as gases to a combustion reactor.

From the absorber, sulfuric acid is added to the aqueous phase to neutralize the unreacted ammonia. A

distillation column separates the acrylonitrile from the acetonitrile and water at one atmosphere and 78 oC

(Di 1). This is a difficult separation, because of the small boiling point difference of acetonitrile and

acrylonitrile. The activity coefficients of these chemicals in water were used to calculate the relative vapor

pressure in this column. The acrylonitrile stream (tops from Di 1) is cooled to 26 oC, and hydrogen cyanide

is distilled from the acrylonitrile stream in Di 2. The acrylonitrile is then distilled in Di 3 from any heavy

by-products. The acetonitrile / water bottoms from Di 1 are sent to a recovery column. This column

operates at 81.6 oC. Acetonitrile forms an azeotrope with water at 75 wt% acetonitrile and atmospheric

pressure. In this separation, the distillate is less than 75 wt% acetonitrile. No further purification is done.

U.S. patent 6,326,508 gives the reflux ratio of this column as > 2.7. We use a reflux ratio of three.

References

Kirk Othmer (2001) Encyclopedia of Chemical Technology, Acrylonitrile (Brazdill, J.F, article author).

Ullmann's (2002) Ullmann's Encyclopedia of Industrial Chemistry, Acrylonitrile (Langvardt, P.W., article

author).

CEH (2005) Chemical Economics Handbook, Acrylonitrile (Sesto, B, and Toki, G., article authors)

Faith, W.L., Keyes, D.B., and Clark, R.E., (1965) Industrial Chemicals, 3rd Ed., John Wiley & Sons.

Ulrich, G., and Vasudevan, P. (2009) Acrylonitrile flow sheet, reproduced from Chemical Engineering

Process Design and Economics - A Practicle Guide, accessed online at

http://www.ulrichvasudesign.com/ACN.pdf.

Chemical Week (2009) Accessed online:

http://www.chemweek.com/markets/basic_chemicals/petrochemicals/acrylonitrile/Cuts-in-Acrylonitrile-

Output-Cause-a-Shortage-of-By-product-Acetonitrile_17731.html

ACS (2008) Patent Watch, January 21, 2008. accessed online,

http://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_ARTICLEMAIN&node_id=839

&content_id=WPCP_007946&use_sec=true&sec_url_var=region1&__uuid=170656df-daec-4abf-bffc-

40b026b589da

Critical parameters

Conversion / Yield information from both reactors

Conversion of or Yield

from propylene

Conversion of or

Yield from ammonia

Total conversion in reactor 1: From mass 97 % pure basis 91

updated on 6/26/2010 5

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

(% of reactant entering the process that

reacts)

balance

93 % total basis

Total per pass conversion in reactor 1:

(% of reactant entering the reactor that

reacts)

From mass

balance

97 % pure basis

93 % total basis

91

Total yield of reactor 1:

(% yield acrylonitrile produced in the

reactor based on reactant input to

process)

From mass

balance

77 77

Total yield of Process:

(% yield produced by the overall

process based on reactant input to

process)

From mass

balance

69 (72% on a pure

basis)

67

Notes:

Product purity

Acrylonitrile Comments

Used here 99.8

LiteratureSource 99.7 Ulrich (Chemical Engineering Process Design

and Economics, A Practical Guide, 2nd

Edition, G. D. Ulrich and P. T. Vasudevan)

updated on 6/26/2010 6

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Summary of LCI Information

Inputs

Input UID Input Name Input Flow Input

purity Units Comments

7664-93-9 Sulfuric acid 139 [kg/hr]

7664-41-7 Ammonia 477 [kg/hr]

115-07-1 Propylene 1148 [kg/hr]

UIDO2FromAir Oxygen from

air 1933 [kg/hr]

Total 3697 [kg/hr]

Non-reacting inputs UID Name Flow Purity Units Comments

7732-18-5 Water 1.20e+4 [kg/hr]

UIDN2FromAir Nitrogen

from air 6402 [kg/hr]

UIDO2FromAir Oxygen from

air 7.02 [kg/hr]

Total 1.84e+4 [kg/hr]

Ancillary inputs UID Name Flow Purity Units Comments No ancillary inputs

Products

Product UID Product

Name Product Flow Purity Units Comments

107-13-1 Acrylonitrile 1000 [kg/hr]

74-90-8 Hydrogen

cyanide 148 92.9 [kg/hr]

UIDCrudeAcetonitrile crude

acetonitrile 47.2 56.4 [kg/hr]

Has azeotrope with water.

Stream contains 8.90 kg

water and 10.2 kg

acrylonitrile

Total 1195 [kg/hr]

Benign Outflows UID Name Flow Purity Units Comments

7732-18-5 Water 1.36e+4 [kg/hr]

7782-44-7 Oxygen 7.02 [kg/hr]

7727-37-9 Nitrogen 6402 [kg/hr]

Total 2.00e+4 [kg/hr]

Chemical Emissions

Emission UID Emission

Name Gas

Flow Liquid

Flow Solid

Flow Solvent

Flow Units Comments

updated on 6/26/2010 7

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

630-08-0 Carbon

monoxide 0.414 0 0 0 [kg/hr]

124-38-9 Carbon

dioxide 733 0 0 0 [kg/hr]

7783-20-2 Ammonium

sulfate 0 173 0 0 [kg/hr]

74-90-8 Hydrogen

cyanide 0 2.09e-2 0 0 [kg/hr]

75-05-8 Acetonitrile 0.300 3.23 0 0 [kg/hr]

107-13-1 Acrylonitrile 10.3 10.2 0 0 [kg/hr]

7664-41-7 Ammonia 2.38 0 0 0 [kg/hr]

74-98-6 Propane 0.228 0 0 0 [kg/hr]

115-07-1 Propylene 5.71 0 0 0 [kg/hr]

Totals 752 186 0 0 [kg/hr]

Mass Balance

Total inputs 2.21e+4

Total outflows 2.21e+4

Net input -4.07

Energy use Energy type Amount Comments

electricity 742 [MJ/hr]

heating steam 1.07e+4 [MJ/hr]

coal 0 [MJ/hr]

Net input requirement 1.14e+4 [MJ/hr] Net of energies input to

system

cooling water -3.54e+4 [MJ/hr]

potential recovery -1.68e+4 [MJ/hr]

Net energy -5353 [MJ/hr] Net input requirement -

potential recovery

updated on 6/26/2010 8

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Process Diagram Interpretation Sheet

1) As much as possible, standard symbols are used for all unit processes.

2) Only overall input and output chemicals are labeled on these diagrams. All intermediate information is

given on the attached Process Mass Balance sheet

3) The physical state of most streams is shown (gas, g; liquid, l; solid, s)

4) The process numbering is as follows,

generally numbers progress from the start to the end of the process

numbers are used for process streams

C i , i = 1,..n are used for all cooling non-contact streams

S j, j = 1,...n are used for all steam heating non-contact streams

5) Recycle streams are shown with dotted lines

For most streams, the temperature and pressure are shown, if the pressures are greater than 1 atm

updated on 6/26/2010 9

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Process Diagram or Boundary of LCI Steam enters the process as a gas at 207

oC and leaves as a liquid at 207

oC. Cooling water enters at 20

oC and leaves at 50

oC.

Unless otherwise indicated, all processes are at 1 atm and 25oC.

HX 3

S2

S1

Cmp 1

P1

R1

HX 4

C3

C4

HX 5

C5

C6

P3HX 6

C7

C8P2

C1 C2

Scrubber

See reactor 2 for

calculations

R2

A

B

1 (g)

6992 kg Air

25.0 oC

2 (g)

90.4 oC

2.0 atm

3 (g)

1142 kg Propylene

-37.0 oC

4 (g)

-12.1 oC

2.0 atm

5 (l)

475 kg Ammonia

-34.0 oC

6 (g)

-15.0 oC

2.0 atm

7 (g)

440.0 oC

2.0 atm

8 (g)

148.0 oC

1.5 atm 9 (g)

85 oC

10 (l)

8000 kg Water

25.0 oC

11 (l)

12 (l)

4000 kg Water

25.0 oC 13 (l)

14 (l)

10 oC

15 (g)

15 oC

20 (l)

51.9 oC

1.0 atm

Cmp 2

5a (l)

-34.0 oC

2.0 atm

updated on 6/26/2010 10

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Di 1

P7

P8

HX 7

C13

C14

HX 8

S11

S12

P4

P5

Mixer

electricity 1B

C

D

21 (l)

139 kg Sulfuric acid

25.0 oC

22 (l)

51.9 oC

1.0 atm

23 (l)

78 oC

24 (l)

78 oC

25 (l)

26 oC

34 (l)

81.6 oC

1.0 atm

A

R3

Blwr 1

HX 1

C9

C10

15 (g)

15 oC

16 (g)

1350 kg Air

25.0 oC

17 (g)

18 (g)

548.5 oC

1.0 atm 19 (g)

6402 kg Nitrogen

729 kg Carbon dioxide

200 kg Water

7.02 kg Oxygen

25.0 oC

20 (l)

P6

C11

C12

S3

S4

updated on 6/26/2010 11

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Di 2

P10

P11

C17

C18

HX 10

S8

P9

Refrigeration 1

C

E

25 (l)

26 oC

26 (l)

26 oC

28 (l)

26 oC

27 (l)

137 kg Hydrogen cyanide

10.2 kg Acrylonitrile

0.268 kg Water

1.95E-03 kg Acetonitrile

1.09E-05 kg Sulfuric acid

10.0 oC

29 (l)

78 oC

Fugitive Losses (Total) (g)

10.3 kg Acrylonitrile

5.71 kg Propylene

3.64 kg Carbon dioxide

2.38 kg Ammonia

0.414 kg Carbon monoxide

0.300 kg Acetonitrile

0.228 kg Propane

C15

C16

S5

S6

S7

updated on 6/26/2010 12

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Di 3

P13

P14

HX 13

C21

C22

HX 14

C23

C24

P12Acrylonitrile

Heavy Impurities

E

30 (g)

78 oC

32 (l)

78 oC

31 (l)

998 kg Acrylonitrile

1.38 kg Hydrogen cyanide

0.530 kg Water

0.116 kg Acetonitrile

1.08E-06 kg Sulfuric acid

25.0 oC

33 (l)

26.0 kg Water

10.1 kg Acrylonitrile

0.272 kg Acetonitrile

6.93E-03 kg Hydrogen cyanide

1.07E-03 kg Sulfuric acid

25.0 oC

C19

C20

S9

S10

29 (l)

78 oC

updated on 6/26/2010 13

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Di 4

P16

P17

HX 11

C27

C28

HX 12

C29

C30

P15 Crude Acetontrile

Aqueous to treat

D

34 (l)

35 (l)

81.6 oC

1.0 atm

37 (l)

81.6 oC

1.0 atm

36 (l)

26.7 kg Acetonitrile

10.2 kg Acrylonitrile

8.90 kg Water

1.39 kg Hydrogen cyanide

0.109 kg Sulfuric acid

25.0 oC

38 (l)

1.33E+04 kg Water

173 kg Ammonium sulfate

10.8 kg Sulfuric acid

2.96 kg Acetonitrile

0.103 kg Acrylonitrile

0.0140 kg Hydrogen cyanide

25.0 oC

C25

C26

S13

S14

updated on 6/26/2010 14

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Mass Balance of Chemicals in Each Process Stream All flow rates are given in kg / hr

Physical state of chemical losses:

Com

ments

Str

ea

ms

Tem

p [

C]

P

Phase

Tota

l F

low

Wate

r

Air

Nitro

gen

Oxygen

Pro

pyle

ne

Pro

pa

ne

Am

mon

ia

Acry

lonitrile

Aceto

nitri

le

Hydro

gen

cyanid

e

Sulfuric a

cid

Am

mon

ium

sulfate

C

arb

on d

ioxid

e

Carb

on

monoxid

e

Ste

am

Wate

r

Input 1 25.0 1.00 g 6992 6992

1a 25.0 1.00 g 6992 5363 1629

2 90.4 2.00 g 6992 5363 1629

Input see propylene report for input condition

3 -37.0 1.00 g 1142 1142

3a -37.0 1.00 g 1142 1096 45.7

4 -12.1 2.00 g 1142 1096 45.7

Input 5 -34.0 1.00 l 475 475

5a -34.0 2.00 l 475 475

6 -15.0 2.00 g 475 475

R1 815 kg Propylene is converted in rxn 1 ( 74.3 % of reactor input)

-243 kg Acetonitrile is lost in rxn 2

-140 kg Hydrogen cyanide

is lost in rxn 3

Input to reactor

: 8609 0 0 5363 1629 1096 45.7 475 0 0 0 0 0 0 0

R1 Reaction

: 3.00 -1.50 -1.00 -1.00

1.00

Gas

Liquid

Solid

updated on 6/26/2010 15

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Com

ments

Str

ea

ms

Tem

p [

C]

P

Phase

Tota

l F

low

Wate

r

Air

Nitro

gen

Oxygen

Pro

pyle

ne

Pro

pa

ne

Am

mon

ia

Acry

lonitrile

Aceto

nitri

le

Hydro

gen

cyanid

e

Sulfuric a

cid

Am

mon

ium

sulfate

C

arb

on d

ioxid

e

Carb

on

monoxid

e

Ste

am

Wate

r

Coefficient 1

R1 Conversion 1 [kg/hr]

: 0 1048 -931 -815 -330

1028

R1 Conversion 1 [kgmol/hr]

: 19.4 58.2 -29.1 -19.4 -19.4

19.4

R1 Reaction Coefficient 2

: 3.00 -2.25 -1.00 -1.00

1.00 0.500 0.500

R1 Conversion 2 [kg/hr]

: 0 320 -426 -249 -101

243 130 82.8

R1 Conversion 2 [kgmol/hr]

: 5.92 17.8 -13.3 -5.92 -5.92

5.92 2.96 2.96

R1 Reaction Coefficient 3

: 1.00 -1.50 -1.00 1.00 1.00

R1 Conversion 3 [kg/hr]

: 0 93.3 -249 -213 140 228

R1 Conversion 3 [kgmol/hr]

: 2.59 5.19 -7.78 -5.19 5.19 5.19

Flow out of reactor

: 8609 1461 0 5363 22.8 32.9 45.7 44.5 1028 30.0 140 0 0 358 82.8

Primary product

: Acrylonitrile

Total : -12.2 -0 NA NA 93.1 NA 90.6 NA NA NA -0 NA NA NA

updated on 6/26/2010 16

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Com

ments

Str

ea

ms

Tem

p [

C]

P

Phase

Tota

l F

low

Wate

r

Air

Nitro

gen

Oxygen

Pro

pyle

ne

Pro

pa

ne

Am

mon

ia

Acry

lonitrile

Aceto

nitri

le

Hydro

gen

cyanid

e

Sulfuric a

cid

Am

mon

ium

sulfate

C

arb

on d

ioxid

e

Carb

on

monoxid

e

Ste

am

Wate

r

conversion

Per pass conversion

: NA -0 98.6 97.0 -0 90.6 NA NA NA NA NA

Total yield from reactor

: NA 58.0 76.6 76.6 NA

7 440 2.00 g 8609 1461 0 5363 22.8 32.9 45.7 44.5 1028 30.0 140 0 0 358 82.8

8 148 1.50 g 8609 1461 0 5363 22.8 32.9 45.7 44.5 1028 30.0 140 0 0 358 82.8

9 85.0 1.00 g 8609 1461 0 5363 22.8 32.9 45.7 44.5 1028 30.0 140 0 0 358 82.8

Input 10 25.0 1.00 l 8000 8000

11 25.0 1.00 l 8000 8000

Input 12 25.0 1.00 l 4000 4000

13 25.0 1.00 l 4000 4000

14 15.0 1.00 l 4000 4000

R2 kg No reactions specified; used to model temperature change in scrubber.

Input to reactor

: 2.06E+04 1.35E+04 0 5363 22.8 32.9 45.7 44.5 1028 30.0 140 0 0 358 82.8

Flow out of reactor

: 2.06E+04 1.35E+04 0 5363 22.8 32.9 45.7 44.5 1028 30.0 140 0 0 358 82.8

Primary product

: no reactions

15 15.0 1.00 g 5988 82.6 5363 22.8 32.9 45.7 0 358 82.8

Input 16 25.0 1.00 g 1350 1350

16a 25.0 1.00 g 1350 1040 311

17 25.0 1.00 g 1350 1040 311

R3 32.9 kg Propylene is converted in rxn 1 ( 100 % of reactor input)

45.7 kg Propane is lost in rxn 2

82.8 kg Carbon monoxide

is lost in rxn 3

Input to reactor

: 7338 82.6 0 6402 333 32.9 45.7 0 0 0 0 0 0 358 82.8

R3 : 3.00 -4.50 -1.00 3.00

updated on 6/26/2010 17

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Com

ments

Str

ea

ms

Tem

p [

C]

P

Phase

Tota

l F

low

Wate

r

Air

Nitro

gen

Oxygen

Pro

pyle

ne

Pro

pa

ne

Am

mon

ia

Acry

lonitrile

Aceto

nitri

le

Hydro

gen

cyanid

e

Sulfuric a

cid

Am

mon

ium

sulfate

C

arb

on d

ioxid

e

Carb

on

monoxid

e

Ste

am

Wate

r

Reaction Coefficient 1

R3 Conversion 1 [kg/hr]

: 0 42.3 -113 -32.9 103

R3 Conversion 1 [kgmol/hr]

: 0.783 2.35 -3.52 -0.783

2.35

R3 Reaction Coefficient 2

: 4.00 -5.00 -1.00 3.00

R3 Conversion 2 [kg/hr]

: 0 74.8 -166 -45.7 137

R3 Conversion 2 [kgmol/hr]

: 1.04 4.15 -5.19 -1.04 3.11

R3 Reaction Coefficient 3

: -0.500

1.00 -1.00

R3 Conversion 3 [kg/hr]

: -47.3 130 -82.8

R3 Conversion 3 [kgmol/hr]

: -1.48 2.96 -2.96

Flow out of reactor

: 7338 200 0 6402 7.02 0 0 0 0 0 0 0 0 729 0

Primary product

: NA

updated on 6/26/2010 18

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Com

ments

Str

ea

ms

Tem

p [

C]

P

Phase

Tota

l F

low

Wate

r

Air

Nitro

gen

Oxygen

Pro

pyle

ne

Pro

pa

ne

Am

mon

ia

Acry

lonitrile

Aceto

nitri

le

Hydro

gen

cyanid

e

Sulfuric a

cid

Am

mon

ium

sulfate

C

arb

on d

ioxid

e

Carb

on

monoxid

e

Ste

am

Wate

r

Total conversion

: -0.975 -0 NA NA 2.88 NA -0 NA NA NA -0 NA NA NA

Per pass conversion

: NA -0 97.9 100 100 NA 100

18 549 1.00 g 7338 200 0 6402 7.02 0 0 0 0 0 0 0 0 729 0

Waste 19 25.0 1.00 g -7338 -200 0 -6402

-7.02 0 0 0 0 0 0 0 0 -729 0 0 0

20 51.9 1.00 l 1.46E+04 1.34E+04 0 0 0 0 0 44.5 1028 30.0 140 0 0 0 0

Input 21 25.0 1.00 l 139 0 0 0 0 0 0 0 0 0 139 0 0 0

Neutralization reaction coefficients

-2.00

-1.00 1.00

Neutralization reaction , kg/hr

0 -44.5

-128 173

Feed 22 51.9 1.00 l 1.48E+04 1.34E+04 0 0 0 0 0 0 1028 30.0 140 10.9 173 0 0

Di 1 percentage of input in distillate

: 0.200 100 100 100 100 100 100 99.0 1.30 99.0 0.0100 0

percentage of input in bottoms

: 99.8 1.00 98.7 1.00 100.0 100

Boiling Temperature (Tb) [oC]

: 99.9 77.9 81.6 25.9 340 s

Distillate 23 78.0 1.00 l 1184 26.8 0 0 0 0 0 0 1018 0.390 139 1.09E-03

0 0 0

Bottoms 24 78.0 1.00 l 1.36E+04 1.34E+04 0 0 0 0 0 0 10.3 29.6 1.40 10.9 173 0 0

Feed 25 26.0 1.00 l 1184 26.8 0 0 0 0 0 0 1018 0.390 139 1.09E-03

0 0 0

Di 2 percentage of input in distillate

1.00 l 1.00 1.00 0.500 99.0 1.00

percentage of input in bottoms

99.0 99.0 99.5 1.00 99.0

Boiling Temperature (Tb) [oC]

: 99.9 77.9 81.6 25.9 340

Distillate 26 26.0 1.00 l 148 0.268 0 0 0 0 0 0 10.2 1.95E-03

137 1.09E-05

0 0 0

Bottoms 28 26.0 1.00 l 1036 26.5 0 0 0 0 0 0 1008 0.388 1.39 1.08E-03

0 0 0

updated on 6/26/2010 19

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Com

ments

Str

ea

ms

Tem

p [

C]

P

Phase

Tota

l F

low

Wate

r

Air

Nitro

gen

Oxygen

Pro

pyle

ne

Pro

pa

ne

Am

mon

ia

Acry

lonitrile

Aceto

nitri

le

Hydro

gen

cyanid

e

Sulfuric a

cid

Am

mon

ium

sulfate

C

arb

on d

ioxid

e

Carb

on

monoxid

e

Ste

am

Wate

r

By-product 27 10.0 1.00 l -148 -0.268 0 0 0 0 0 0 -10.2 -1.95E-

03

-137 -1.09E-

05

0 0 0 0 0

Feed 29 78.0 1.00 l 1036 26.5 0 0 0 0 0 0 1008 0.388 1.39 1.08E-03

0 0 0

Di 3 percentage of input in distillate

: 2.00 99.0 30.0 99.5 0.100

percentage of input in bottoms

: 98.0 1.00 70.0 0.500 99.9

Boiling Temperature (Tb) [oC]

: 99.9 77.9 81.6 25.9 340

Distillate 30 78.0 1.00 l 1000 0.530 0 0 0 0 0 0 998 0.116 1.38 1.08E-06

0 0 0

Bottoms 32 78.0 1.00 l 36.3 26.0 0 0 0 0 0 0 10.1 0.272 6.93E-03

1.07E-03

0 0 0

Main product 31 25.0 1.00 l -1000 -0.530 0 0 0 0 0 0 -998 -0.116 -1.38 -1.08E-

06

0 0 0 0 0

Waste 33 25.0 1.00 l -36.3 -26.0 0 0 0 0 0 0 -10.1 -0.272 -6.93E-

03

-1.07E-

03

0 0 0 0 0

Feed 34 81.6 1.00 l 1.36E+04 1.34E+04 0 0 0 0 0 0 10.3 29.6 1.40 10.9 173 0 0

Di 4 percentage of input in distillate

: 0.0667 99.0 90.0 99.0 1.00 0

percentage of input in bottoms

: 99.9 1.00 10.0 1.00 99.0 0

Boiling Temperature (Tb) [oC]

: 99.9 77.9 81.6 25.9 340 s

Distillate 35 81.6 1.00 l 47.2 8.90 0 0 0 0 0 0 10.2 26.7 1.39 0.109 0 0 0

Bottoms 37 81.6 1.00 l 1.35E+04 1.33E+04 0 0 0 0 0 0 0.103 2.96 0.0140 10.8 173 0 0

By-product 36 25.0 1.00 l -47.2 -8.90 0 0 0 0 0 0 -10.2 -26.7 -1.39 -0.109 0 0 0 0 0

Waste 38 25.0 1.00 l -1.35E+04 -1.33E+04

0 0 0 0 0 0 -0.103

-2.96 -0.0140

-10.8 -173

0 0 0 0

Product purity (%)

99.8

updated on 6/26/2010 20

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Com

ments

Str

ea

ms

Tem

p [

C]

P

Phase

Tota

l F

low

Wate

r

Air

Nitro

gen

Oxygen

Pro

pyle

ne

Pro

pa

ne

Am

mon

ia

Acry

lonitrile

Aceto

nitri

le

Hydro

gen

cyanid

e

Sulfuric a

cid

Am

mon

ium

sulfate

C

arb

on d

ioxid

e

Carb

on

monoxid

e

Ste

am

Wate

r

Main product

Acrylonitrile

Overall Rxn coefficients

1.00 -1.50 -1.00 -1.00

1.00

Total yield of process (from reactant)

NA NA 68.9 67.0 NA

Waste Fugitive Losses (Total)

g -23.0 0 0 0 0 -5.71 -0.228

-2.38

-10.3 -0.300 0 0 0 -3.64 -0.414

0 0

Input Sum 2.21E+04 1.20E+04 8342 0 0 1142 0 475 0 0 0 139 0 0 0

Fugitive Replacement of Reactants

8.09 0 5.71 2.38

Total Input (Input + Fugitive Replacement)

2.21E+04 1.20E+04 8342 0 0 1148 0 477 0 0 0 139 0 0 0

Product Sum

1195 9.70 0 0 0 0 0 0 1018 26.8 140 0.109 0 0 0

Main product flow

1000 0.530 0 0 0 0 0 0 998 0.116 1.38 1.08E-06

0 0 0

Net Input (in - out, omitting fugitives)

3.47E-05

Input C1 20.0 1.00 l 9.25E+04 9.25E+04

Cooling out

C2 50.0 1.00 l -9.25E+04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -9.25E+04

Input C3 20.0 1.00 l 2.28E+04 2.28E+04

Cooling out

C4 50.0 1.00 l -2.28E+04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2.28E+04

Input C5 20.0 1.00 l 2.74E+04 2.74E+04

Cooling out

C6 50.0 1.00 l -2.74E+04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2.74E+04

Input C7 20.0 1.00 l 1135 1135

Cooling out

C8 50.0 1.00 l -1135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1135

Input C9 20.0 1.00 l 2.82E+04 2.82E+04

updated on 6/26/2010 21

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Com

ments

Str

ea

ms

Tem

p [

C]

P

Phase

Tota

l F

low

Wate

r

Air

Nitro

gen

Oxygen

Pro

pyle

ne

Pro

pa

ne

Am

mon

ia

Acry

lonitrile

Aceto

nitri

le

Hydro

gen

cyanid

e

Sulfuric a

cid

Am

mon

ium

sulfate

C

arb

on d

ioxid

e

Carb

on

monoxid

e

Ste

am

Wate

r

Cooling out

C10 50.0 1.00 l -2.82E+04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2.82E+04

Input C11 20.0 1.00 l 3.38E+04 3.38E+04

Cooling out

C12 50.0 1.00 l -3.38E+04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3.38E+04

Input C13 20.0 1.00 l 836 836

Cooling out

C14 50.0 1.00 l -836 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -836

Input C15 20.0 1.00 l 1850 1850

Cooling out

C16 50.0 1.00 l -1850 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1850

Input C17 20.0 1.00 l 41.3 41.3

Cooling out

C18 50.0 1.00 l -41.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -41.3

Input C19 50.0 1.00 l 7897 7897

Cooling out

C20 56.0 1.00 l -7897 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -7897

Input C21 62.0 1.00 l 669 669

Cooling out

C22 68.0 1.00 l -669 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -669

Input C23 74.0 1.00 l 46.0 46.0

Cooling out

C24 80.0 1.00 l -46.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -46.0

Input C25 86.0 1.00 l 1267 1267

Cooling out

C26 92.0 1.00 l -1267 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1267

Input C27 86.0 1.00 l 45.9 45.9

Cooling out

C28 92.0 1.00 l -45.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -45.9

Input C29 86.0 1.00 l 2.15E+04 2.15E+04

Cooling out

C30 92.0 1.00 l -2.15E+04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2.15E+04

Input S1 207 1.00 l 397 397

Steam S2 207 1.00 l -397 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -397 0

updated on 6/26/2010 22

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Com

ments

Str

ea

ms

Tem

p [

C]

P

Phase

Tota

l F

low

Wate

r

Air

Nitro

gen

Oxygen

Pro

pyle

ne

Pro

pa

ne

Am

mon

ia

Acry

lonitrile

Aceto

nitri

le

Hydro

gen

cyanid

e

Sulfuric a

cid

Am

mon

ium

sulfate

C

arb

on d

ioxid

e

Carb

on

monoxid

e

Ste

am

Wate

r

out

Input S3 207 1.00 l 4011 4011

Steam out

S4 207 1.00 l -4011 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -4011

0

Input S5 207 1.00 l 166 166

Steam out

S6 207 1.00 l -166 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -166 0

Input S7 207 1.00 l 63.8 63.8

Steam out

S8 207 1.00 l -63.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -63.8

0

Input S9 207 1.00 l 716 716

Steam out

S10 207 1.00 l -716 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -716 0

Input S11 207 1.00 l 125 125

Steam out

S12 207 1.00 l -125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -125 0

Input S13 207 1.00 l 115 115

Steam out

S14 207 1.00 l -115 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -115 0

updated on 6/26/2010 23

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Graph of Cumulative Chemical Losses through Manufacturing Process

Cumulative Chemical Loss

0

100

200

300

400

500

600

700

800

900

1,000

1

1a 2 3

3a 4 5

5a 6 7 8 9

10

11

12

13

14

15

16

16

a

17

18

19

20

21

22

23

24

25

26

28

27

29

30

32

31

33

34

35

37

36

38

Fu

g.

loss

Process Stream

kg

ch

em

ica

l lo

ss

/ h

r

updated on 6/26/2010 24

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Graph of Cumulative Contaminated Water Use / Emission through Manufacturing Process

Cumulative Contaminated Water Use

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

1

1a 2 3

3a 4 5

5a 6 7 8 9

10

11

12

13

14

15

16

16

a

17

18

19

20

21

22

23

24

25

26

28

27

29

30

32

31

33

34

35

37

36

38

Process Stream

kg

co

nta

min

ate

d w

ate

r /

hr

updated on 6/26/2010 25

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Graph of Cumulative Non-Contaminated Water Use / Emission through Manufacturing Process

Cumulative Non-Contamintated Water Use

0

50,000

100,000

150,000

200,000

250,000

300,000

C1

C2

C3

C4

C5

C6

C7

C8

C9

C1

0

C1

1

C1

2

C1

3

C1

4

C1

5

C1

6

C1

7

C1

8

C1

9

C2

0

C2

1

C2

2

C2

3

C2

4

C2

5

C2

6

C2

7

C2

8

C2

9

C3

0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S1

0

S1

1

S1

2

S1

3

S1

4

Process Stream

kg

no

n-c

on

tam

ina

ted

wa

ter

/ h

r

updated on 6/26/2010 26

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Energy Input for each Unit Process, Cumulative Energy Requirements, Cooling Requirements (exotherms),

and Assumed Heat Recovery from Hot Streams Receiving Cooling Reactor 2 and 3 are adiabatic, and the energy requirement should be zero. The non-zero calculated values appear in this Table as a check.

Energy Input [MJ / hr] Cooling Requirements [MJ / hr]

Pro

cess

Dia

gra

m L

abe

l

Unit

Energ

y inp

ut

[MJ / 1

000 k

g

Pro

duct]

Cum

ula

tive

energ

y [

MJ /

1000

kg

Pro

duct]

To [C

]

(Used to

dete

rmin

e

energ

y type)

Energ

y T

ype

Pro

cess

dia

gra

m lab

el

Unit

Energ

y L

oss

Cum

ula

tive

coolin

g w

ate

r

energ

y

Tef [C

] (f

or

recovery

effic

iency)

Recovery

Effic

iency

Energ

y

Recovere

d

Cum

ula

tive

recovere

d [M

J

/ 100

0 k

g

Pro

duct]

Cmp1 Compressor 1 611 611 E R1 Reactor 1 -1.37E+04 -1.37E+04 440 0.600 -8198 -8198

Cmp2 Compressor 2 51.9 663 E Hx4 Heat exchanger 4 -3364 -1.70E+04 440 0.600 -2018 -1.02E+04

P1 Pump 1 0.160 663 E Hx5 Heat exchanger 5 -4046 -2.11E+04 148 0.250 -1012 -1.12E+04

Hx3 Heat exchanger 3 646 1309 -15.0 S Hx6 Heat exchanger 6 -168 -2.12E+04 25.0 0 0 -1.12E+04

P3 Pump 3 0.252 1309 E Hx1 Heat exchanger 1 -4167 -2.54E+04 549 0.750 -3126 -1.44E+04

P2 Pump 2 0.557 1309 E Di1 Distillation condenser 1

-4985 -3.04E+04 78.0 0.250 -1246 -1.56E+04

R2 Reactor 2 0.838 1310 15.0 NA Hx7 Heat exchanger 7 -123 -3.05E+04 78.0 0.250 -30.9 -1.56E+04

Blw1 Blower 1 65.0 1375 E Di2 Distillation condenser 2

-273 -3.08E+04 24.9 0 0 -1.56E+04

R3 Reactor 3 0 1375 549 NA Ref1 Refrigerator cooling 1

-6.09 -3.08E+04 25 0 0 -1.56E+04

P4 Pump 4 1.36 1377 E Di3 Distillation condenser 3

-1166 -3.20E+04 76.9 0.250 -292 -1.59E+04

P5 Pump 5 4.35E-03 1377 E Hx13 Heat exchanger 13 -98.8 -3.21E+04 78.0 0.250 -24.7 -1.59E+04

MxE1 Mixer electricity 1 5.24 1382 E Hx14 Heat exchanger 14 -6.79 -3.21E+04 78.0 0.250 -1.70 -1.59E+04

P6 Pump 6 1.38 1383 E Di4 Distillation condenser 4

-187 -3.22E+04 81.6 0.250 -46.8 -1.60E+04

Di1 Distillation reboiler 1

6518 7901 78.0 S Hx11 Heat exchanger 11 -6.77 -3.23E+04 81.6 0.250 -1.69 -1.60E+04

P7 Pump 7 0.0848 7902 E Hx12 Heat exchanger 12 -3179 -3.54E+04 81.6 0.250 -795 -1.68E+04

P9 Pump 9 0.0848 7902 E

Di2 Distillation reboiler 2

270 8172 24.9 S

P10 Pump 10 0.0121 8172 E

updated on 6/26/2010 27

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Ref1 Refrigerator elect. 1 1.68 8174 0 E

P11 Pump 11 0.0741 8174 E

Hx10 Heat exchanger 10 104 8277 78.0 S

P12 Pump 12 0.0741 8278 E

Di3 Distillation reboiler 3

1164 9441 76.9 S

P13 Pump 13 0.0715 9441 E

P14 Pump 14 2.10E-03 9441 E

P8 Pump 8 1.20 9443 E

Hx8 Heat exchanger 8 203 9645 81.6 S

P15 Pump 15 1.20 9646 E

Di4 Distillation reboiler 4

187 9833 81.6 S

P16 Pump 16 3.36E-03 9833 E

P17 Pump 17 1.19 9835 E

Potential recovery -1.68E+04 -6957

Net energy -6957 Potential recovery: -1.68E+04

Electricity 742 E [MJ/hr]

DowTherm 0 D [MJ/hr]

Heating steam 9091 S [MJ/hr]

Direct fuel use 0 F [MJ/hr]

Heating natural gas 0 G [MJ/hr]

Diesel process 0 Ds [MJ/hr]

Undefined 0 U [MJ/hr]

Heating coal 0 C [MJ/hr]

Energy input requirement

9834 [MJ/hr]

Cooling water -3.54E+04 [MJ/hr]

Cooling refrigeration

[MJ/hr]

Potential heat recovery

-1.68E+04 [MJ/hr]

Net energy -6958 [MJ/hr]

updated on 6/26/2010 28

Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.

Graph of Cumulative Energy Requirements

Cumulative Energy Input

-8,000

-6,000

-4,000

-2,000

0

2,000

4,000

6,000

8,000

10,000

12,000

Sta

rt

Co

mp

resso

r 1

Co

mp

resso

r 2

Pu

mp

1

He

at

exch

an

ge

r 3

Pu

mp

3

Pu

mp

2

Re

acto

r 2

Blo

we

r 1

Re

acto

r 3

Pu

mp

4

Pu

mp

5

Mix

er

ele

ctr

icity 1

Pu

mp

6

Dis

tilla

tio

n r

eb

oile

r 1

Pu

mp

7

Pu

mp

9

Dis

tilla

tio

n r

eb

oile

r 2

Pu

mp

10

Re

frig

era

tor

ele

ct.

1

Pu

mp

11

He

at

exch

an

ge

r 1

0

Pu

mp

12

Dis

tilla

tio

n r

eb

oile

r 3

Pu

mp

13

Pu

mp

14

Pu

mp

8

He

at

exch

an

ge

r 8

Pu

mp

15

Dis

tilla

tio

n r

eb

oile

r 4

Pu

mp

16

Pu

mp

17

Po

ten

tia

l re

co

ve

ry

Process Unit

MJ

/ h

r