20
1 Equazioni e sistemi non lineari a.a. 2010/2011

1 Equazioni e sistemi non lineari a.a. 2010/2011

Embed Size (px)

Citation preview

Page 1: 1 Equazioni e sistemi non lineari a.a. 2010/2011

1

Equazioni e sistemi non lineari

a.a. 2010/2011

Page 2: 1 Equazioni e sistemi non lineari a.a. 2010/2011

2

Equazioni non lineari Data una funzione consideriamo il problema di determinare i valori x

tali che

Tali valori sono solitamente chiamati zeri o radici della funzione f.

Esempi:Equazioni algebriche:

In generale non sono disponibili formule esplicite per la determinazione delle radici di una funzione (per esempio equazioni algebriche)

metodi iterativi

( ) 0f x

:f R R

0

( ) 0n

kn k

k

P x a x

24sin( ) 0, , log( ) 3xx x e x x x

Page 3: 1 Equazioni e sistemi non lineari a.a. 2010/2011

3

Metodi iterativi Tecniche che consentono di approssimare le soluzioni con un prestabilito grado

di precisione A partire da una approssimazione iniziale si costruisce una successione

tale che, sotto opportune ipotesi, risulta convergere alla radice cercata. E’ importante tener presente tre questioni fondamentali

1. Velocità di convergenza

Definizione: data una successione convergente ad un limite α, si ponga se esistono due numeri reali tali che sia

si dice che la successione ha ordine di convergenza p e fattore di convergenza C.

Per p=1 e p=2 la convergenza si dice anche lineare e quadratica. Nel caso p=1 si ha necessariamente C<1.

(0)x (1) (2), ,x x

(1) (2), ,x x

( ) ( )n ne x 1 0p e C

n

pn n

eC

e

( 1)

( )lim

Page 4: 1 Equazioni e sistemi non lineari a.a. 2010/2011

4

2. Scelta del valore di innesco. Un metodo converge localmente ad α se la convergenza della successione

dipende in modo critico dalla vicinanza di ad α. Il procedimento è globalmente convergente quando la convergenza non dipende da quanto è vicino ad α.

• Per i metodi a convergenza locale la scelta del punto di innesco è cruciale.

3. Criteri di arresto. Chiaramente non è possibile generare infinite iterate della successione . Il procedimento dovrebbe arrestarsi quando

Non disponendo della soluzione è necessario procurarsi una stima di . Una

possibile strategia è quella di approssimare con . Si ottiene il criterio relativo

Quando è molto piccolo tale criterio risulta troppo stringente ed è più opportuno usare un criterio di arresto assoluto dato da

(0)x(0)x

( )kx

(0)x

( )

rel

kxe toll

( )ke( )ke

( 1) ( )k kx x ( 1) ( )

( 1)

k k

k

x xtoll

x

( 1) ( )k kx x toll

( 1)kx

Metodi iterativi 2

Page 5: 1 Equazioni e sistemi non lineari a.a. 2010/2011

5

Fondendo i due criteri si ottiene il seguente Criterio di arresto misto

Dove sono rispettivamente la tolleranza relativa ed assoluta. Automaticamente il criterio sarà di tipo assoluto quando è molto piccolo e di tipo relativo nei restanti casi.

Si può vedere che è asintoticamente una buona stima di nel caso di convergenza quadratica o superlineare, mentre nel caso di convergenza lineare l’approssimazione sarà tanto migliore quanto la costante C è vicina a zero.

( 1) ( ) ( 1)k k kR Ax x toll x toll

eR Atoll toll( )kx

( 1) ( )k kx x ( )ke

Metodi iterativi 3

Page 6: 1 Equazioni e sistemi non lineari a.a. 2010/2011

6

Metodo di bisezione Il metodo di bisezione è il metodo iterativo più semplice per approssimare gli zeri reali di una

funzione. Ipotesi: 1) f(x) continua nell’intervallo [a,b]

2) f(a) f(b)<0

per il teorema degli zeri ammette almeno una soluzione α di f(x)=0, in (a,b).

Si procede suddividendo ad ogni passo l’intervallo [a,b] a metà e determinando in quale dei due sottointervalli si trova la soluzione, dimezzando cosi’ l’ampiezza dell’intervallo che contiene α.

ALGORITMO:1. Si pone

2. Per i=1,2,….,nmax si calcolano

1. Se

2. Altrimenti se

3. altrimenti

3. Il procedimento viene arrestato se per un indice i risulta

1 1,a a b b

e f( )2

i ii i

a bc c

1 1( ) ( ) 0 si pone ;i i i i i if c f a a a b c 1 1( ) ( ) 0 si pone ;i i i i i if c f a a c b b

( ) 0, si hai if c c ( ) /i

i i

f c e o

b a

Page 7: 1 Equazioni e sistemi non lineari a.a. 2010/2011

7

Ampiezza dell’intervallo ed errore

Per costruzione ad ogni passo l’ampiezza dell’intervallo e’ dimezzata, dopo n passi arriviamo all’intervallo di ampiezza

Se come stima di α prendiamo abbiamo

Se poniamo otteniamo n da

Il metodo di bisezione converge sempre alla soluzione con la sola ipotesi che f sia continua nell’intervallo [a,b]

La convergenza è però lenta e questo costituisce il limite del metodo. Una spiegazione può essere ricercata nel fatto che non si tiene conto dei valori della funzione ma soltanto dei segni. Geometricamente il metodo costruisce ad ogni passo l’approssimazione della radice calcolando l’intersezione con le ascisse della retta passante per i punti

,n na b n n n n

n n n

b ab a b ab a

0 01 1 2 22 ...

2 2 2

2n n

n

a bc

n n n n

b ae c e

0 0

12

( , sgn( ( )), ( , sgn( ( ))i i i ia f a b f b

0 012n

b a

n b a b an

1 0 0 0 0

22 log 1

Page 8: 1 Equazioni e sistemi non lineari a.a. 2010/2011

8

Metodo della regula falsi Un modo naturale per migliorare il metodo di bisezione è quello di considerare

anche i valori che la funzione assume negli estremi dell’intervallo e prendere come nuova approssimazione della soluzione l’intersezione delle ascisse con la retta passante per

Il metodo metodo risultante è noto come metodo regula falsi o della falsa posizione

1. Dato 2. Finchè non sia verificato un criterio di arresto, poni

1. Se 2. Altrimenti 3. k=k+1

3.

( , ( )), ( , ( ))k k k ka f a b f b

0 0 0 0[ , ] tale che ( ) ( ) 0a b f a f b

( ( ) ( ) ) / ( ( ) ( ))k k k k k k kw f b a f a b f b f a 1 1( ) ( ) 0, allora ,k k k k k kf a f w a a b w

1 1,k k k ka w b b

kw

Il metodo genera una successione di intervalli decrescenti in cui è contenuta la radice

è più veloce rispetto al metodi di bisezione, anche se in generale

pertanto il criterio di arresto basato sull’ampiezza dell’intervallo non è applicabile.

La scelta dell’intervallo comporta una convergenza globale Si può dimostrare che la velocità di convergenza è lineare:

[ , ]k ka b 0, per k

Page 9: 1 Equazioni e sistemi non lineari a.a. 2010/2011

9

Metodo delle secanti Una variante della regula falsi è il metodo delle secanti in cui sono richieste due

approssimazioni iniziali senza alcun’ altra condizione e senza la necessità di controllare il segno di f(x)

Assegnati due valori iniziali si costruisce la successione

La convergenza del metodo è garantita se le approssimazioni iniziali sono abbastanza vicine alla radice α: convergenza locale.

Vale il seguente risultato:

( 1) (0),x x

k kk k k

k k

x xx x f x k

f x f x

( ) ( 1)( 1) ( ) ( )

( ) ( 1) ( ) 0( ) ( )

Teorema: Sia , essendo un intorno opportuno della radice, e si assuma

Allora se i dati iniziali sono scelti in sufficientemente vicini ad α, la successione converge ad α in modo superlineare, con ordine

2( ) ( )f x C I''( ) 0f

( 1) (0),x x

p

(1 5)

1.632

Page 10: 1 Equazioni e sistemi non lineari a.a. 2010/2011

10

Metodo di Newton Se si vuole migliorare ancora di più la velocità di convergenza è necessario

utilizzare più informazioni della funzione. Nel caso in cui essa sia derivabile si può considerare anche la sua derivata f’(x).

Sviluppando f in serie di Taylor in un intorno di α ed arrestando lo sviluppo al prim’ordine si ottiene una versione linearizzata del problema f(x)=0.

Assumendo quindi f’(α)≠0 (radice semplice) ed assegnato un valore iniziale si ottiene il metodo di Newton

kk k

k

f xx x k

f x

( )( 1) ( )

( )

( )0

'( )

ff x x f x ( ) 0 ( ) ( ) '( ) ( , ) (0)x

Geometricamente si prende come nuova approssimazione l’intersezione delle ascisse con la retta tangente in Alla k-esima iterazione questo metodo richiede due valutazioni funzionali . L’aumento del costo computazionale è compensato dal fatto che la convergenza (locale) è di ordine superiore al primo. In generale è quadratica

( ) ( )( , ( ))k kx f x

( ) ( )( ) e '( )k kf x f x

Page 11: 1 Equazioni e sistemi non lineari a.a. 2010/2011

11

Metodi di iterazione funzionale La ricerca degli zeri di una funzione f è ricondotta allo studio dei punti fissi di

un’opportuna funzione g

La successione delle approssimazioni sarà definita come La funzione di iterazione g non è unica e può essere costruita nei modi più

diversi, ma non tutti daranno luogo a strumenti efficienti. Bisogna studiare sotto quali condizioni la successione delle iterate appartenga

sempre al dominio di f e sia convergente ad α.

Teorema: Data la successioneSupponiamo che la funzione g soddisfi le seguenti condizioni

(i) g: [a,b] →[a,b]

(ii)

(iii)

Allora g ha un unico punto fisso α in [a,b] e la successione delle iterate da essa generate converge ad α, per ogni scelta del punto iniziale in [a,b]. Inoltre

dim. L’ipotesi (i) e la continuità di g (implicita in (ii)) garantiscono che g abbia almeno un punto fisso in [a,b]. L’hp (iii) assicura che g è una contrazione per cui il punto fisso è unico (si dimostra per assurdo).

f g ( ) 0 ( ) ( 1) ( )( )k kx g x

( 1) ( ) (0)( ) per 0 e assegnato.k kx g x k x

( 1)

( )lim '( )k

kk

xg

x

1[ , ]

1 : '( ) [ , ]

g C a b

k g x k x a b

Page 12: 1 Equazioni e sistemi non lineari a.a. 2010/2011

12

Per dimostrare che la successione converge si considera

applicando il teorema della media

Inoltre dalla continuità di g’ si ha

k kx g x g ( 1) ( )( ) ( )

( ) ( ) ( ) ( )

1 per ( )

( 1) ( ) 1 (0)

( 1)

'( ) ( ) dove ( , )

per cui lim 0

k k k k

k iii

k k k

k

k

g x x

x k x k x

x

k

k

kk

xg g

x

( 1)

( )

( )lim lim '( ) '( )

Metodi di iterazione funzionale 2

Page 13: 1 Equazioni e sistemi non lineari a.a. 2010/2011

13

Convergenza Risultato importante teoricamente, ma nella pratica è difficile stabilire a priori

l’intervallo [a,b] in cui sono soddisfatte le ipotesi.

Teorema (Otrowski): Sia α un punto fisso di Se

allora

la successione delle iterate generata da g è tale che

(a)

(b)

La convergenza può esserci in insiemi molto più grandi di quelli in cui (condizione sufficiente, convergenza locale)

1[ , ].g C

'( ) 1, [ , ],g x x

(0) [ , ],x

( ) [ , ],kx ( ) (unico punto fisso)kx

'( ) 1g

g 1 '( ) 0

convergenza alternata

g 0 '( ) 1

convergenza monotona

Page 14: 1 Equazioni e sistemi non lineari a.a. 2010/2011

14

Ordine di convergenza

Per i metodi di iterazione funzionale è possibile anche dare una relazione tra ordine del metodo e molteplicità di α rispetto a g’

Teorema: Sia (opportuno intervallo) punto fisso di

Se per un punto la successione è convergente e se

per i=1,....p-1 e allora il metodo ha ordine di convergenza p e

risulta

A parità di ordine di convergenza p, quanto più piccola risulterà la quantità tanto più veloce sarà la convergenza delle iterate ad

α

I [ ] , con 2pg C p I(0)x I ( )kx ( )( ) 0ig

( )( ) 0pg

k p

pkk

x gpx

( 1) ( )

( )

( )!lim

( )( ) / !pg p

Page 15: 1 Equazioni e sistemi non lineari a.a. 2010/2011

15

Convergenza metodo di Newton Il metodo di Newton può essere visto come un metodo di iterazione funzionale

con la funzione g data da

Osservando che se

il metodo è localmente sempre convergente La convergenza è quadratica per radici semplici e si riduce a lineare per radici

multiple. Risultati di convergenza globale:

Teorema: Sia

(i)

(ii)

la successione originata dal metodo di Newton DECRESCE monotonicamente ad α.

Per gli intorni sinistri [α+ρ, α) si ottiene una successione che converge in modo monotono CRESCENTE ad α.

f xg x x

f x

( )( )

'( )2

2

''( ) ( )e '( ) 0 : '( ) '( ) 0

( '( ))f x f x

f C f g x gf x

2[ ] tale chef C ( ) ''( ) 0 in ( ]f x f x '( ) 0 in ( )f x

0 ( ]x

Page 16: 1 Equazioni e sistemi non lineari a.a. 2010/2011

16

Sistemi non lineari

La maggior parte dei metodi considerati per il caso monodimensionale possono venire generalizzati con successo al caso di sistemi. Tra essi non ci possono essere quei metodi che considerano, ad ogni iterazione, una scelta opportuna di un intervallo in cui era compresa la radice (bisezione, regula falsi).

Problema: data Tra i metodi il più usato è l’estensione vettoriale del metodo di Newton

dove indica la matrice Jacobiana Dal punto di vista implementativo il metodo può essere riscritto considerando,

ad ogni iterazione, due sottopassi

Risolvere

Calcolare

Ad ogni passo k si deve risolvere un sistema lineare con matrice

* *: , trovare tale che ( )n n n F x F x 0R R R

k k k kJ 1( 1) ( ) ( ) ( )( ) ( )Fx x x F x

( )JF x ,( ) ( )i

i jj

FJ

x

F x x

k k kJ ( ) ( ) ( )( ) ( )F x δx F x

k k k ( 1) ( ) ( )x x δx

( )( )kJF x

Page 17: 1 Equazioni e sistemi non lineari a.a. 2010/2011

17

Per quanto riguarda la convergenza si può dimostrare (risultato dovuto a Kantorovich) che se la matrice Jacobiana è non singolare, partendo da una approssimazione iniziale sufficientemente buona, il processo iterativo genera una successione convergente alla radice L’ordine di convergenza è quadratico

La sensibilità del metodo alla scelta del punto iniziale è molto più marcata che nel caso scalare Il costo richiesto ad ogni passo per la risoluzione del sistema lineare è molto elevato per n grande La matrice Jacobiana può essere malcondizionata dando luogo a soluzioni non necessariamente accurate.

VARIANTI METODO DI NEWTON

(0)x*x

Page 18: 1 Equazioni e sistemi non lineari a.a. 2010/2011

18

Varianti metodo di Newton Valutazione ciclica della matrice Jacobiana: si mantiene la stessa

matrice Jacobiana per un certo numero p>1 di iterazioni: metodo di Newton modificato. L’aumento di efficienza è pagato da una velocità di convergenza più bassa.

Risoluzione inesatta dei sistemi lineari: si risolvono i sistemi lineari con un metodo iterativo (facendone solo alcuni passi); per esempio Jacobi, Gauss-Seidel o Gauss-Seidel con rilassamento: metodi di Newton inesatti.

Approssimazione Jacobiana con rapporti incrementali: ad ogni passo si considera al posto della matrice Jacobiana una sua approssimazione mediante rapporti incrementali n-dimensionali (come vantaggio non si deve calcolare le derivate parziali costituenti J(x)

kk k k

j jh j k

j

hJ k

h

( )( ) ( ) ( )

( )

( ) ( )( ) , 0

F x e F x

2n

Page 19: 1 Equazioni e sistemi non lineari a.a. 2010/2011

19

Metodi di iterazione funzionale Come nel caso monodimensionale il problema può essere riformulato in

modo da trovale la soluzione come punto fisso di una opportuna funzione di iterazione

Si considerano metodi iterativi della forma

Teorema: Se è punto fisso di G, condizione sufficiente per la convergenza alla radice , del metodo iterativo è che esistano due numeri positivi K e ρ, con K<1, tali che si abbia

purché sia scelto in ; in tal caso è l’unico punto fisso di G in

n n n * * *Data : , trovare tale che ( )G x G x xR R R

k k ( 1) ( )( )x G x

*x

(0)x *x

K D *( ) , : G x x x x x

D D

Page 20: 1 Equazioni e sistemi non lineari a.a. 2010/2011

20

Per quanto riguarda l’ordine di convergenza, il teorema monodimensionale non può essere esteso direttamente, tuttavia se esistono continue le derivate seconde delle componenti di G, si può dimostrare che condizione sufficiente perché il metodo (se converge al punto fisso) converga linearmente è che sia

Se la convergenza è almeno quadratica ed è esattamente quadratica se risulta non nulla almeno una delle matrici hessiane

*( )G x 0*( ) G x 0

i i i

n

i

i i i

n n n

G G Gx x x x x

H

G G Gx x x x x

*

2 2 2

21 1 2 1

*

2 2 2

21 2

( )

x x

x