17
ADVANCED DC/DC CONVERTERS Fang Lin Luo Hong Ye CRC PRESS Boca Raton London New York Washington, D.C.

Advanced Dc/Dc Converters

Embed Size (px)

Citation preview

Page 1: Advanced Dc/Dc Converters

ADVANCEDDC/DC CONVERTERS

Fang Lin LuoHong Ye

CRC PRESSBoca Raton London New York Washington, D.C.

Page 2: Advanced Dc/Dc Converters

Contents

1 Introduction 11.1 Historical Review 11.2 Multiple-Quadrant Choppers 2

1.2.1 Multiple-Quadrant Operation 21.2.2 The First-Quadrant Chopper 31.2.3 The Second-Quadrant Chopper 41.2.4 The Third-Quadrant Chopper 51.2.5 The Fourth-Quadrant Chopper 61.2.6 The First and Second Quadrant Chopper 71.2.7 The Third and Fourth Quadrant Chopper 81.2.8 The Four-Quadrant Chopper 9

1.3 Pump Circuits 91.3.1 Fundamental Pumps 10

1.3.1.1 Buck Pump 101.3.1.2 Boost Pump 101.3.1.3 Buck-Boost Pump 10

1.3.2 Developed Pumps 101.3.2.1 Positive Luo-Pump 121.3.2.2 Negative Luo-Pump 121.3.2.3 Cuk-Pump 12

1.3.3 Transformer-Type Pumps 141.3.3.1 Forward Pump 141.3.3.2 Fly-Back Pump 141.3.3.3 ZETAPump 15

1.3.4 Super-Lift Pumps 151.3.4.1 Positive Super Luo-Pump 161.3.4.2 Negative Super Luo-Pump 161.3.4.3 Positive Push-Pull Pump 161.3.4.4 Negative Push-Pull Pump 171.3.4.5 Double/Enhanced Circuit (DEC) 17

1.4 Development of DC/DC Conversion Technique 181.4.1 The First Generation Converters 19

1.4.1.1 Fundamental Converters 191.4.1.2 Transformer-Type Converters 231.4.1.3 Developed Converters 281.4.1.4 Voltage Lift Converters 321.4.1.5 Super Lift Converters 32

1.4.2 The Second Generation Converters 32

Page 3: Advanced Dc/Dc Converters

1.4.3 The Third Generation Converters 331.4.3.1 Switched Capacitor Converters 331.4.3.2 Multiple-Quadrant Switched Capacitor

Luo-Converters 341.4.3.3 Multiple-Lift Push-Pull Switched Capacitor

Converters 341.4.3.4 Multiple-Quadrant Switched Inductor Converters 34

1.4.4 The Fourth Generation Converters 351.4.4.1 Zero-Current-Switching Quasi-Resonant

Converters 351.4.4.2 Zero-Voltage-Switching Quasi-Resonant

Converters 351.4.4.3 Zero-Transition Converters 36

1.4.5 The Fifth Generation Converters 361.4.6 The Sixth Generation Converters 36

1.5 Categorize Prototypes and DC/DC Converter Family Tree 37References 39

2 Voltage-Lift Converters 412.1 Introduction 412.2 Seven Self-Lift Converters 42

2.2.1 Self-Lift Cuk Converter 442.2.1.1 Continuous Conduction Mode 442.2.1.2 Discontinuous Conduction Mode 48

2.2.2 Self-Lift P/O Luo-Converter 502.2.2.1 Continuous Conduction Mode 502.2.2.2 Discontinuous Conduction Mode 53

2.2.3 Reverse Self-Lift P/O Luo-Converter 542.2.3.1 Continuous Conduction Mode 542.2.3.2 Discontinuous Conduction Mode 58

2.2.4 Self-Lift N /O Luo-Converter 592.2.4.1 Continuous Conduction Mode 602.2.4.2 Discontinuous Conduction Mode 61

2.2.5 Reverse Self-Lift N/O Luo-Converter 622.2.5.1 Continuous Conduction Mode 632.2.5.2 Discontinuous Conduction Mode 65

2:2.6 Self-Lift SEPIC 662.2.6.1 Continuous Conduction Mode 662.2.6.2 Discontinuous Conduction Mode 69

2.2.7 Enhanced Self-Lift P/O Luo-Converter 702.3 Positive Output Luo-Converters 72

2.3.1 Elementary Circuit 742.3.1.1 Circuit Description 742.3.1.2 Variations of Currents and Voltages 772.3.1.3 Instantaneous Values of Currents and Voltages 802.3.1.4 Discontinuous Mode 812.3.1.5 Stability Analysis 83

Page 4: Advanced Dc/Dc Converters

2.3.2 Self-Lift Circuit 852.3.2.1 Circuit Description 852.3.2.2 Average Current JC1 and Source Current Is 882.3.2.3 Variations of Currents and Voltages 882.3.2.4 Instantaneous Value of the Currents and

Voltages 1.912.3.2.5 Discontinuous Mode 922.3.2.6 Stability Analysis 94

2.3.3 Re-Lift Circuit 962.3.3.1 Circuit Description 962.3.3.2 Other Average Currents 982.3.3.3 Variations of Currents and Voltages 1002.3.3.4 Instantaneous Value of the Currents and

Voltages 1032.3.3.5 Discontinuous Mode 1052.3.3.6 Stability Analysis 107

2.3.4 Multiple-Lift Circuits 1102.3.4.1 Triple-Lift Circuit I l l2.3.4.2 Quadruple-Lift Circuit 114

2.3.5 Summary 1182.3.6 Discussion 119

2.3.6.1 Discontinuous-Conduction Mode 1192.3.6.2 Output Voltage Vo versus Conduction Duty k 1212.3.6.3 Switch Frequency/ 121

2.4 Negative Output Luo-Converters 1212.4.1 Elementary Circuit 124

2.4.1.1 Circuit Description 1252.4.1.2 Average Voltages and Currents 1252.4.1.3 Variations of Currents and Voltages 1262 A.I A Instantaneous Values of Currents and

Voltages 1292.4.1.5 Discontinuous Mode 130

2.4.2 Self-Lift Circuit 1322.4.2.1 Circuit Description 1322.4.2.2 Average Voltages and Currents 1322.4.2.3 Variations of Currents and Voltages 1352.4.2.4 Instantaneous Value of the Currents and

Voltages 1382.4.2.5 Discontinuous Mode 139

2.4.3 Re-Lift Circuit 1402.4.3.1 Circuit Description 1412.4.3.2 Average Voltages and Currents 1412.4.3.3 Variations of Currents and Voltages 1442.4.3.4 Instantaneous Value of the Currents and

Voltages 1472.4.3.5 Discontinuous Mode 149

Page 5: Advanced Dc/Dc Converters

2.4.4 Multiple-Lift Circuits 1512.4.4.1 Triple-Lift Circuit 1512.4.4.2 Quadruple-Lift Circuit 155

2.4.5 Summary 1582.5 Modified Positive Output Luo-Converters 162

2.5.1 Elementary Circuit 1622.5.2 Self-Lift Circuit 1632.5.3 Re-Lift Circuit 1652.5.4 Multi-Lift Circuit 1682.5.5 Application 170

2.6 Double Output Luo-Converters 1712.6.1 Elementary Circuit 173

2.6.1.1 Positive Conversion Path 1742.6.1.2 Negative Conversion Path 1762.6.1.3 Discontinuous Mode 178

2.6.2 Self-Lift Circuit 1812.6.2.1 Positive Conversion Path 1812.6.2.2 Negative Conversion Path 1832.6.2.3 Discontinuous Conduction Mode 186

2.6.3 Re-Lift Circuit 1882.6.3.1 Positive Conversion Path 1882.6.3.2 Negative Conversion Path 1912.6.3.3 Discontinuous Conduction Mode 194

2.6.4 Multiple-Lift Circuit 1962.6.4.1 Triple-Lift Circuit 1962.6.4.2 Quadruple-Lift Circuit 202

2.6.5 Summary 2082.6.5.1 . Positive Conversion Path 2082.6.5.2 Negative Conversion Path , 2102.6.5.3 Common Parameters 210

Bibliography 212

3 Positive Output Super-Lift Luo-Converters 2153.1 Introduction 2153.2 Main Series 216

3.2.1 Elementary Circuit 2163.2.2 Re-Lift Circuit 2193.2.3 Triple-Lift Circuit 2203.2.4 Higher Order Lift Circuit 222

3.3 Additional Series 2223.3.1 Elementary Additional Circuit 2233.3.2 Re-Lift Additional Circuit 2273.3.3 Triple-Lift Additional Circuit 2283.3.4 Higher Order Lift Additional Circuit 230

Page 6: Advanced Dc/Dc Converters

3.4 Enhanced Series 2313.4.1 Elementary Enhanced Circuit 2313.4.2 Re-Lift Enhanced Circuit 2333.4.3 Triple-Lift Enhanced Circuit 2353.4.4 Higher Order Lift Enhanced Circuit 237

3.5 Re-Enhanced Series 2373.5.1 Elementary Re-Enhanced Circuit 2383.5.2 Re-Lift Re-Enhanced Circuit 2423.5.3 Triple-Lift Re-Enhanced Circuit 2433.5.4 Higher Order Lift Re-Enhanced Circuit 245

3.6 Multiple-Enhanced Series 2463.6.1 Elementary Multiple-Enhanced Circuit 2493.6.2 Re-Lift Multiple-Enhanced Circuit 2503.6.3 Triple-Lift Multiple-Enhanced Circuit 2513.6.4 Higher Order Lift Multiple-Enhanced Circuit .....253

3.7 Summary of Positive Output Super-Lift Luo-Converters 2543.8 Simulation Results 258

3.8.1 Simulation Results of a Triple-Lift Circuit 2583.8.2 Simulation Results of a Triple-Lift Additional Circuit 258

3.9 Experimental Results 2593.9.1 Experimental Results of a Triple-Lift Circuit 2593.9.2 Experimental Results of a Triple-Lift Additional Circuit 2593.9.3 Efficiency Comparison of Simulation and Experimental

Results '. 260Bibliography 261

4 Negative Output Super-Lift Luo-Converters 2634.1 Introduction 2634.2 Main Series 264

4.2.1 Elementary Circuit 2644.2.2 N/O Re-Lift Circuit 2684.2.3 N/O Triple-Lift Circuit 2704.2.4 N/O Higher Order Lift Circuit 272

4.3 Additional Series 2734.3.1 N/O Elementary Additional Circuit 2734.3.2 N/O Re-Lift Additional Circuit 2774.3.3 N/O Triple-Lift Additional Circuit 2794.3.4 N/O Higher Order Lift Additional Circuit 282

4.4 Enhanced Series 2834.4.1 N /O Elementary Enhanced Circuit 2834.4.2 N/O Re-Lift Enhanced Circuit 2854.4.3 N/O Triple-Lift Enhanced Circuit 2884.4.4 N/O Higher Order Lift Enhanced Circuit 291

Page 7: Advanced Dc/Dc Converters

4.5 Re-Enhanced Series 2914.5.1 N/O Elementary Re-Enhanced Circuit 2914.5.2 N/O Re-Lift Re-Enhanced Circuit 2954.5.3 N/O Triple-Lift Re-Enhanced Circuit 2954.5.4 N/O Higher Order Lift Re-Enhanced Circuit 296

4.6 Multiple-Enhanced Series 2974.6.1 N/O Elementary Multiple-Enhanced Circuit 2974.6.2 N/O Re-Lift Multiple-Enhanced Circuit 2994.6.3 N/O Triple-Lift Multiple-Enhanced Circuit 3014.6.4 N/O Higher Order Lift Multiple-Enhanced Circuit 302

4.7 Summary of Negative Output Super-LiftLuo-Converters 302

4.8 Simulation Results 3064.8.1 Simulation Results of a N/O Triple-Lift Circuit 3064.8.2 Simulation Results of a N/O Triple-Lift Additional

Circuit 3064.9 Experimental Results 306

4.9.1 Experimental Results of a N/O Triple-Lift Circuit 3064.9.2 Experimental Results of a N/O Triple-Lift Additional

Circuit 3074.9.3 Efficiency Comparison of Simulation and Experimental

Results 3084.9.4 Transient Process and Stability Analysis 308

Bibliography 309

5 Positive Output Cascade Boost Converters 3115.1 Introduction 3115.2 Main Series 312

5.2.1 Elementary Boost Circuit 3125.2.2 Two-Stage Boost Circuit 3135.2.3 Three-Stage Boost Circuit 3155.2.4 Higher Stage Boost Circuit 317

5.3 Additional Series 3185.3.1 Elementary Boost Additional (Double) Circuit 3185.3.2 Two-Stage Boost Additional Circuit 3205.3.3 Three-Stage Boost Additional Circuit 3225.3.4 Higher Stage Boost Additional Circuit 324

5.4 Double Series 3255.4.1 Elementary Double Boost Circuit 3255.4.2 Two-Stage Double Boost Circuit 3255.4.3 Three-Stage Double Boost Circuit 3275.4.4 Higher Stage Double Boost Circuit 330

5.5 Triple Series 3315.5.1 Elementary Triple Boost,Circuit 3315.5.2 Two-Stage Triple Boost Circuit 3325.5.3 Three-Stage Triple Boost Circuit 3345.5.4 Higher Stage Triple Boost Circuit 337

Page 8: Advanced Dc/Dc Converters

5.6 Multiple Series 3375.6.1 Elementary Multiple Boost Circuit 3385.6.2 Two-Stage Multiple Boost Circuit 3395.6.3 Three-Stage Multiple Boost Circuit 3415.6.4 Higher Stage Multiple Boost Circuit 343

5.7 Summary of Positive Output Cascade Boost Converters 3435.8 Simulation and Experimental Results 345

5.8.1 Simulation Results of a Three-Stage Boost Circuit 3455.8.2 Experimental Results of a Three-Stage Boost Circuit 3475.8.3 Efficiency Comparison of Simulation and Experimental

Results 3485.8.4 Transient Process 348

Bibliography 349

6 Negative Output Cascade Boost Converters 3516.1 Introduction 3516.2 Main Series 351

6.2.1 N / O Elementary Boost Circuit 3526.2.2 N / O Two-Stage Boost Circuit 3536.2.3 N / O Three-Stage Boost Circuit 3556.2.4 N /O Higher Stage Boost Circuit 357

6.3 Additional Series 3586.3.1 N /O Elementary Additional Boost Circuit 3586.3.2 N /O Two-Stage Additional Boost Circuit 3606.3.3 N /O Three-Stage Additional Boost Circuit 3626.3.4 N / O Higher Stage Additional Boost Circuit 365

6.4 Double Series 3656.4.1 N / O Elementary Double Boost Circuit 3656.4.2 N / O Two-Stage Double Boost Circuit 3666.4.3 N / O Three-Stage Double Boost Circuit 3686.4.4 N / O Higher Stage Double Boost Circuit 370

6.5 Triple Series 3716.5.1 N /O Elementary Triple Boost Circuit 3716.5.2 N /O Two-Stage Triple Boost Circuit 3726.5.3 N /O Three-Stage Triple Boost Circuit 3746.5.4 N / O Higher Stage Triple Boost Circuit 377

6.6 Multiple Series 3776.6.1 N / O Elementary Multiple Boost Circuit 3786.6.2 N / O Two-Stage Multiple Boost Circuit 3786.6.3 N / O Three-Stage Multiple Boost Circuit 3816.6.4 N / O Higher Stage Multiple Boost Circuit 381

6.7 Summary of Negative Output Cascade Boost Converters 3836.8 Simulation and Experimental Results 385

6.8.1 Simulation Results of a Three-Stage Boost Circuit 3856.8.2 Experimental Results of a Three-Stage Boost Circuit 386

Page 9: Advanced Dc/Dc Converters

6.8.3 Efficiency Comparison of Simulation and ExperimentalResults 388

6.8.4 Transient Process 388Bibliography 388

7 Multiple Quadrant Operating Luo-Converters 3917.1 Introduction 3917.2 Circuit Explanation 393

7.2.1 Mode A 3947.2.2 ModeB 3957.2.3 ModeC 3967.2.4 ModeD 3967.2.5 Summary 396

7.3 Mode A (Quadrant I Operation) 3967.3.1 Circuit Description 3977.3.2 Variations of Currents and Voltages 4017.3.3 Discontinuous Region 402

7.4 Mode B (Quadrant II Operation) 4037.4.1 Circuit Description 4037.4.2 Variations of Currents and Voltages 4057.4.3 Discontinuous Region 406

7.5 Mode C (Quadrant III Operation) 4077.5.1 Circuit Description 4077.5.2 Variations of Currents and Voltages 4097.5.3 Discontinuous Region 410

7.6 Mode D (Quadrant IV Operation) 4117.6.1 Circuit Description 4117.6.2 Variations of Currents and Voltages 4137.6.3 Discontinuous Region 414

7.7 Simulation Results 4157.8 Experimental Results 4157.9 Discussion 419

7.9.1 Discontinuous-Conduction Mode 4197.9.2 Comparison with the Double-Output Luo-

Converter 4197.9.3 Conduction Duty k 4217.9.4 Switching Frequency/ 421

Bibliography 421

8 Switched Component Converters 4238.1 Introduction 4248.2 A Two-Quadrant SC DC/DC Converter 424

8.2.1 Circuit Description 4248.2.1.1 Mode A 4258.2.1.2 Mode B 425

8.2.2 Mode A (Quadrant I Operation) 427

Page 10: Advanced Dc/Dc Converters

8.2.3 Mode B (Quadrant II Operation) 4308.2.4 Experimental Results 4338.2.5 Discussion 433

8.2.5.1 Efficiency 4338.2.5.2 Conduction Duty k 4348.2.5.3 Switching Frequency/ 434

8.3 Four-Quadrant Switched Capacitor DC/DCLuo-Converter 4348.3.1 Mode A (Qj: Forward Motoring) 440

8.3.1.1 Mode Al: Condition Va > V2 4408.3.1.2 Mode A2: Condition V1 < V2 4448.3.1.3 Experimental Results 447

8.3.2 Mode B (Qn: Forward Regenerative Braking) 4478.3.2.1 Mode Bl: Condition Vx > V2 4478.3.2.2 Mode B2: Condition V1 < V2 450

8.3.3 Mode C (Qin: Reverse Motoring) 4528.3.4 Mode D (Q^: Reverse Regenerative Braking) 452

8.4 Switched Inductor Four-Quadrant DC/DC Luo-Converter 4528.4.1 Mode A (Q,: Forward Motoring) 456

8.4.1.1 Continuous Mode 4568.4.1.2 Discontinuous Mode 458

8.4.2 Mode B (Qn: Forward Regenerative Braking) 4618.4.2.1 Continuous Mode 4618.4.2.2 Discontinuous Mode 463

8.4.3 Mode C (Qin: Reverse Motoring) 4658.4.3.1 Continuous Mode 4658.4.3.2 Discontinuous Mode 467

8.4.4 Mode D (Q^: Reverse Regenerative Braking) 4708.4.4.1 Continuous Mode 4708.4.4.2 Discontinuous Mode 471

8.4.5 Experimental Results 474Bibliography 474

9 Positive Output Multiple-Lift Push-Pull Switched-CapacitorLuo-Converters 477

9.1 Introduction 4779.2 Main Series 478

9.2.1 Elementary Circuit 4799.2.2 Re-Lift Circuit 4809.2.3 Triple-Lift Circuit 4819.2.4 Higher Order Lift Circuit 481

9.3 Additional Series 4819.3.1 Elementary Additional Circuit 4819.3.2 Re-Lift Additional Circuit 4829.3.3 Triple-Lift Additional Circuit 4839.3.4 Higher Order Lift Additional Circuit 487

Page 11: Advanced Dc/Dc Converters

9.4 Enhanced Series 4879.4.1 Elementary Enhanced Circuit 4879.4.2 Re-Lift Enhanced Circuit 4879.4.3 Triple-Lift Enhanced Circuit 4889.4.4 Higher Order Enhanced Lift Circuit 488

9.5 Re-Enhanced Series 4889.5.1 Elementary Re-Enhanced Circuit 4899.5.2 Re-Lift Re-Enhanced Circuit 4909.5.3 Triple-Lift Re-Enhanced Circuit 4929.5.4 Higher Order Lift Re-Enhanced Circuit 492

9.6 Multiple-Enhanced Series 4929.6.1 Elementary Multiple-Enhanced Circuit 4939.6.2 Re-Lift Multiple-Enhanced Circuit 4969.6.3 Triple-Lift Multiple-Enhanced Circuit 4989.6.4 Higher Order Lift Multiple-Enhanced Circuit 499

9.7 Theoretical Analysis 4999.8 Summary of This Technique 5019.9 Simulation Results 501

9.9.1 A Triple-Lift Circuit 5029.9.2 A Triple-Lift Additional Circuit 502

9.10 Experimental Results 5029.10.1 A Triple-Lift Circuit 5029.10.2 A Triple-Lift Additional Circuit 502

Bibliography 503

10 Negative Output Multiple-Lift Push-PullSwitched-Capacitor Luo-Converters 505

10.1 Introduction 50510.2 Main Series 506

10.2.1 N/O Elementary Circuit 50710.2.2 N/O Re-Lift Circuit 50910.2.3 N/O Triple-Lift Circuit 50910.2.4 N/O Higher Order Lift Circuit 509

10.3 Additional Series 51010.3.1 N/O Elementary Additional Circuit 51110.3.2 N/O Re-Lift Additional Circuit 51110.3.3 N /O Triple-Lift Additional Circuit 51110.3.4 N/O Higher Order Lift Additional Circuit 513

10.4 Enhanced Series 51410.4.1 N/O Elementary Enhanced Circuit 51510.4.2 N/O Re-Lift Enhanced Circuit 51510.4.3 N/O Triple-Lift Enhanced Circuit 51510.4.4 N/O Higher Order Lift Enhanced Circuit 516

10.5 Re-Enhanced Series 51710.5.1 N/O Elementary Re-Enhanced Circuit 51710.5.2 N/O Re-Lift Re-Enhanced Circuit 518

Page 12: Advanced Dc/Dc Converters

10.5.3 N / O Triple-Lift Re-Enhanced Circuit 51810.5.4 N / O Higher Order Lift Re-Enhanced Circuit 519

10.6 Multiple-Enhanced Series 52110.6.1 N / O Elementary Multiple-Enhanced Circuit 52210.6.2 N / O Re-Lift Multiple-Enhanced Circuit 52410.6.3 N / O Triple-Lift Multiple-Enhanced Circuit 52410.6.4 N / O Higher Order Lift Multiple-Enhanced Circuit 525

10.7 Summary of This Technique 52510.8 Simulation and Experimental Results 525

10.8.1 Simulation Results 52510.8.2 Experimental Results 527

Bibliography 527

11 Multiple-Quadrant Soft-Switch Converters 52911.1 Introduction 53011.2 Multiple-Quadrant DC/DC ZCS Quasi-Resonant

Luo-Converters 53111.2.1 Mode A 532

11.2.1.1 Interval t = 0 to ^ 53311.2.1.2 Interval t = ̂ to t2 53411.2.1.3 Interval t = t2 to t3 53411.2.1.4 Interval t = t3 to t4 534

11.2.2 ModeB 53511.2.2.1 Interval t = 0 to tx 53611.2.2.2 Interval t = tx to t2 53711.2.2.3 Interval t = t2 to t3 53711.2.2.4 Interval t = t3 to r4 537

11.2.3 ModeC 53811.2.3.1 Interval t = 0 to ^ 53911.2.3.2 Interval t = tx to t2 54011.2.3.3 Interval t = t2 to t3 54011.2.3.4 Interval t = t3 to f4 540

11.2.4 ModeD 54111.2.4.1 Interval t = 0 to tx 54211.2.4.2 Interval t = ̂ to t2 54311.2.4.3 Interval t = t2to t3 54311.2.4.4 Interval t = t3 to t4 543

11.2.5 Experimental Results 54411.3 Multiple-Quadrant DC/DC ZVS Quasi Resonant

Luo-Converter 54411.3.1 Mode A 545

11.3.1.1 Interval t = 0 to ^ 54811.3.1.2 Interval t = ̂ to t2 54811.3.1.3 Interval t = t2 to t3 54811.3.1.4 Interval t = t3to t4 549

Page 13: Advanced Dc/Dc Converters

11.3.2 ModeB 54911.3.2.1 Interval t = 0 to tt 55111.3.2.2 Interval t = tx to t2 55111.3.2.3 Interval t = t2 to t3 55111.3.2.4 Interval t = t3 to r4 552

11.3.3 ModeC 55211.3.3.1 Interval t = 0 to tx 55411.3.3.2 Interval t = tx to t2 55411.3.3.3 Interval t = t2 to t3 55411.3.3.4 Interval t = t3 to f4 555

11.3.4 ModeD 55511.3.4.1 Interval t = 0 to tt 55711.3.4.2 Interval t = ^ to t2 55711.3.4.3 Interval f = t2 to t3 55711.3.4.4 Interval t = t3 to r4 558

11.3.5 Experimental Results 55911.4 Multiple-Quadrant Zero-Transition DC/DC

Luo-Converters 55911.4.1 Mode A (Quadrant I Operation) 56211.4.2 Mode B (Quadrant II Operation) 56411.4.3 Mode C (Quadrant III Operation) 56511.4.4 Mode D (Quadrant IV Operation) 56611.4.5 Simulation Results 56711.4.6 Experimental Results 56711.4.7 Design Considerations 570

Bibliography 572

12 Synchronous Rectifier DC/DC Converters 57512.1 Introduction 57612.2 Flat Transformer Synchronous Rectifier Luo-Converter 579

12.2.1 Transformer Is in Magnetizing Process 57912.2.2 Switching-On 58012.2.3 Transformer Is in Demagnetizing Process 58012.2.4 Switching-Off 58012.2.5 Summary 581

12.3 Active Clamped Synchronous Rectifier Luo-Converter 58112.3.1 Transformer Is in Magnetizing 58212.3.2 Switching-On 58212.3.3 Transformer Is in Demagnetizing 58212.3.4 Switching-Off 58312.3.5 Summary 583

12.4 Double Current Synchronous Rectifier Luo-Converter 58312.4.1 Transformer Is in Magnetizing 58412.4.2 Switching-On 58512.4.3 Transformer Is in Demagnetizing 585

Page 14: Advanced Dc/Dc Converters

12.4.4 Switching-Off 58512.4.5 Summary 585

12.5 Zero-Current-Switching Synchronous RectifierLuo-Converter 58612.5.1 Transformer Is in Magnetizing, 58712.5.2 Resonant Period 58712.5.3 Transformer Is in Demagnetizing 58712.5.4 Switching-Off 58812.5.5 Summary 588

12.6 Zero-Voltage-Switching Synchronous RectifierLuo-Converter 58812.6.1 Transformer Is in Magnetizing 58912.6.2 Resonant Period 59012.6.3 Transformer Is in Demagnetizing 59012.6.4 Switching-Off 59012.6.5 Summary 590

Bibliography 591

13 Multiple Energy-Storage Element Resonant PowerConverters 593

13.1 Introduction 59313.1.1 Two-Element RPC 59413.1.2 Three-Element RPC 59513.1.3 Four-Element RPC 597

13.2 Bipolar Current and Voltage Source 59913.2.1 Bipolar Voltage Source 600

13.2.1.1 Two Voltage Source Circuit 60113.2.1.2 One Voltage Source Circuit 602

13.2.2 Bipolar Current Source 60313.2.2.1 Two Voltage Source Circuit 60313.2.2.2 One Voltage Source Circuit 603

13.3 A Two-Element RPC Analysis 60413.3.1 Input Impedance 60513.3.2 Current Transfer Gain 60613.3.3 Operation Analysis 60613.3.4 Simulation Results 61013.3.5 Experimental Results 610

Bibliography 612

14 IT-CLL Current Source Resonant Inverter 61514.1 Introduction 615

14.1.1 Pump Circuits 61514.1.2 Current Source 61514.1.3 Resonant Circuit 61614.1.4 Load 61614.1.5 Summary 616

Page 15: Advanced Dc/Dc Converters

14.2 Mathematic Analysis 61714.2.1 Input Impedance 61714.2.2 Components' Voltages and Currents 61814.2.3 Simplified Impedance and Current Gain 61914.2.4 Power Transfer Efficiency 626

14.3 Simulation Results 62714.4 Discussion 628

14.4.1 Function of the n-CLL Circuit 62814.4.2 Applying Frequency to this n-CLL CSRI 62914.4.3 Explanation of g > 1 62914.4.4 DC Current Component Remaining 62914.4.5 Efficiency 629

Bibliography 629

15 Cascade Double T-CL Current Source Resonant Inverter 63115.1 Introduction 63115.2 Mathematic Analysis 631

15.2.1 Input Impedance 63215.2.2 Components, Voltages, and Currents 63315.2.3 Simplified Impedance and Current Gain 63415.2.4 Power Transfer Efficiency 640

15.3 Simulation Result 64115.3.1 (3 = 1,/= 33.9 kHz, T = 29.5 us 64315.3.2 p = 1.4142,/= 48.0 kHz, T = 20.83 us 64315.3.3 p = 1.59,/= 54 kHz, T = 18.52 us 644

15.4 Experimental Result 64515.5 Discussion 647

15.5.1 Function of the Double T-CL Circuit 64715.5.2 Applying Frequency to this Double T-CL CSRI 64715.5.3 Explanation of g > 1 647

Bibliography 647

16 Cascade Reverse Double T-LC Resonant Power Converter .... 64916.1 Introduction 64916.2 Steady-State Analysis of Cascade Reverse Double

T-LCRPC 65016.2.1 Topology and Circuit Description 65016.2.2 Classical Analysis on AC Side 651

16.2.2.1 Basic Operating Principles 65116.2.2.2 Equivalent Load Resistance 65116.2.2.3 Equivalent AC Circuit and Transfer Functions 65216.2.2.4 Analysis of Voltage Transfer Gain and the

Input Impedance 65416.2.3 Simulation and Experimental Results 658

16.2.3.1 Simulation Studies 65916.2.3.2 Experimental Results 660

Page 16: Advanced Dc/Dc Converters

16.3 Resonance Operation and Modeling 66016.3.1 Operating Principle, Operating Modes and Equivalent

Circuits 66116.3.2 State-Space Analysis 663

16.4 Small-Signal Modeling of Cascade Reverse Double T-LC RPC 66616.4.1 Small-Signal Modeling 667

16.4.1.1 Model Diagram 66716.4.1.2 Nonlinear State Equation 66716.4.1.3 Harmonic Approximation 66816.4.1.4 Extended Describing Function 66916.4.1.5 Harmonic Balance 67016.4.1.6 Perturbation and Linearization 67116.4.1.7 Equivalent Circuit Model 672

16.4.2 Closed-Loop System Design 67316.5 Discussion 678

16.5.1 Characteristics of Variable-Parameter ResonantConverter 679

16.5.2 Discontinuous Conduction Mode (DCM) 682Bibliography 688Appendix: Parameters Used in Small-Signal Modeling 690

17 DC Energy Sources for DC/DC Converters 69117.1 Introduction 69117.2 Single-Phase Half-Wave Diode Rectifier 692

17.2.1 Resistive Load 69217.2.2 Inductive Load 69317.2.3 Pure Inductive Load 69617.2.4 Back EMF Plus Resistor Load 69717.2.5 Back EMF Plus Inductor Load 699

17.3 Single-Phase Bridge Diode Rectifier 69917.3.1 Resistive Load 70117.3.2 Back EMF Load 70317.3.3 Capacitive Load 705

17.4 Three-Phase Half-Bridge Diode Rectifier 70717.4.1 Resistive Load. 70717.4.2 Back EMF Load (0.5 J2Vin < E < J2Vin) 70817.4.3 Back EMF Load (E < 0.5 J2Vin) 710

17.5 Three-Phase Full-Bridge Diode Rectifierwith Resistive Load 710

17.6 Thyristor Rectifiers 71217.6.1 Single-Phase Half-Wave Rectifier with Resistive Load 71317.6.2 Single-Phase Half-Wave Thyristor Rectifier with

Inductive Load 71417.6.3 Single-Phase Half-Wave Thyristor Rectifier with Pure

Inductive Load 715

Page 17: Advanced Dc/Dc Converters

17.6.4 Single-Phase Half-Wave Rectifier with Back EMFPlus Resistive Load 716

17.6.5 Single-Phase Half-Wave Rectifier with Back EMFPlus Inductive Load 718

17.6.6 Single-Phase Half-Wave Rectifier with Back EMF PlusPure Inductor 719

17.6.7 Single-Phase Full-Wave Semicontrolled Rectifierwith Inductive Load 721

17.6.8 Single-Phase Full-Controlled Rectifier with InductiveLoad..... 722

17.6.9 Three-Phase Half-Wave Rectifier with Resistive Load 72317.6.10 Three-Phase Half-Wave Thyristor Rectifier with Inductive

Load 72517.6.11 Three-Phase Full-Wave Thyristor Rectifier with Resistive

Load 72617.6.12 Three-Phase Full-Wave Thyristor Rectifier with Inductive

Load 727Bibliography 729

18 Control Circuit: EMI and Application Examplesof DC/DC Converters 731

18.1 Introduction 73118.2 Luo-Resonator 731

18.2.1 Circuit Explanation 73218.2.2 Calculation Formulae 73318.2.3 A Design Example 73418.2.4 Discussion 734

18.3 EMI, EMS and EMC 73518.3.1 EMI/EMC Analysis 73518.3.2 Comparison to Hard-Switching and Soft-Switching 73718.3.3 Measuring Method and Results 73718.3.4 Designing Rule to Minimize EMI/EMC 741

18.4 Some DC/DC Converter Applications 74218.4.1 A 5000 V Insulation Test Bench 74218.4.2 MIT 42/14 V 3 KW DC/DC Converter 74318.4.3 IBM 1.8 V/200 A Power Supply 745

Bibliography 747

Index 749