17
Thermische Speicherung von Solarenergie Dr. Thomas Bauer Institut für Technische Thermodynamik Stuttgart, Köln 15. Kölner Sonnenkolloquium, 12.6.2012

Dr. Thomas Bauer Institut für Technische Thermodynamik · Thermische Speicherung von Solarenergie . Dr. Thomas Bauer . Institut für Technische Thermodynamik . Stuttgart, Köln

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Thermische Speicherung von Solarenergie Dr. Thomas Bauer Institut für Technische Thermodynamik Stuttgart, Köln 15. Kölner Sonnenkolloquium, 12.6.2012

www.DLR.de/TT • Slide 2 > 15. Kölner Sonnenkolloquium > T. Bauer • Thermische Speicherung von Solarenergie > 12.6.2012

Thermal Energy Storage (TES) Activities at the Institute of Technical Thermodynamics High temperature TES for CSP plants, CC plants, Adiabatic CAES, industrial process heat and CHP

- Sensible heat storage - Solids: Concrete, packed bed, regenerator - Liquids: Molten salt

- Latent heat storage (PCM-salt) - Thermo-chemical storage

www.DLR.de/TT • Slide 3 > 15. Kölner Sonnenkolloquium > T. Bauer • Thermische Speicherung von Solarenergie > 12.6.2012

CeraStorE (Competence Center for Ceramic Materials and Thermal Storage Technologies in Energy Research)

Institute of Technical Thermodynamics (TT) Thermochemical and

molten salt heat storage

Institute of Solar Research (SF) Solar-powered

thermochemical cylces

Thermochemical and

molten salt aspects

Institute of Materials Research (WF) WHIPOX (wound highly porous oxide composite)

Redox material development

Building 26 (opened 8.12.2011) 2000 m² Total Area for Research

Material aspects

www.DLR.de/TT • Slide 4 > 15. Kölner Sonnenkolloquium > T. Bauer • Thermische Speicherung von Solarenergie > 12.6.2012

Material screening

Heat exchanger / heat transfer enhancement

Stability, compatibility, corrosion

Thermal properties of storage material and heat transfer fluids

Thermophysical properties

Technical material quality

Thermo-mechanical design

System integration

Importance of Material Research Development Steps for Storage Systems

Lab-scale tests

Containment, Insulation

www.DLR.de/TT • Slide 5 > 15. Kölner Sonnenkolloquium > T. Bauer • Thermische Speicherung von Solarenergie > 12.6.2012

Materials and Sub-Components for Heat Storage

Take away: TES requires more than storage material research

Storage material Container Heat exchanger Heat transfer fluid

Additional components: pumps, valves, connection pipes, insolation, foundation, instrumentation and control devices

Water, natural rocks, ceramics, concrete salts, metal oxides

Pressurized vessels, packed bed designs,

corrosive media

Finned tubes, shell-and-tube heat

exchanger

Air, flue gas, water/steam, molten

salt, thermal oil

www.DLR.de/TT • Slide 6 > 15. Kölner Sonnenkolloquium > T. Bauer • Thermische Speicherung von Solarenergie > 12.6.2012

Impact of Specific Material Categories Example: PCM storage with Nitrate Salts

18%

27% 18%

37%

Heat exchanger, Tube register

Heat transfer enhancement (fins)

Isolation, Foundation Header, Containment

TES Material (Salt)

Operated with water/steam HTF

www.DLR.de/TT • Slide 7 > 15. Kölner Sonnenkolloquium > T. Bauer • Thermische Speicherung von Solarenergie > 12.6.2012

Solids Concrete Ceramics and rocks

Liquids Molten salt Pressurized water

Mixture of solids and liquids

High-Temperature TES materials and technologies

Sensible heat Latent heat Chemical heat

Source: ACS Cobra

Reactions Gas-gas Liquid-gas (Absorption) Solid-gas Ca(OH)2/CaO/H2O CaCl2/H2O Mn2O3/Mn3O4/O2

-sym

met

ric a

xis

-9 m -5 m

-1 m

Phase change Solid-solid Solid-liquid Alkali nitrate/ nitrite salts

www.DLR.de/TT • Slide 8 > 15. Kölner Sonnenkolloquium > T. Bauer • Thermische Speicherung von Solarenergie > 12.6.2012

Molten Salt Storage - Market status: Commercial CSP experience

- 2-tank indirect concept, max. 390 °C (Andasol, 2009) - 2-tank direct concept, max. 560 °C (Gemasolar, 2011)

- Technology: - Decoupled thermal power and capacity; constant power - Boundaries set by current storage medium (temperature levels, costs)

- Research focus/challenges: - Development of alternative salt systems

- Lower melting temperature to avoid freezing (< 140 °C)

- Stability at higher temperatures (up to 700 °C)

- Cost reduction – alternative tank design (e.g. Thermocline – single tank with filler)

- Components and materials for higher temperatures

Source: Ferrostaal Andasol 3

www.DLR.de/TT • Slide 9 > 15. Kölner Sonnenkolloquium > T. Bauer • Thermische Speicherung von Solarenergie > 12.6.2012

Molten Salt Storage – Phase diagrams 3 different Ions, Binary system with common ion 4 Ions, Additive Ternary

4 Ions, Reciprocal Ternary

5 Ions, Additive Quaternary (e.g. KNO3-NaNO3-LiNO3-Ca(NO3)2)

5 Ions, Reciprocal Quaternary (e.g. Li, Na, K // NO2, NO3, Tmin ≈ 80 °C)

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100NaNO3 [wt%]

Tem

pera

ture

[°C

]

Melting range

Phase diagram KNO3-NaNO3

Solidus

Liquidus

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100Mol %

Mol

%

150°C160°C180°C200°C220°C240°C260°C280°C320°C360°C400°C

NO3

Na

NO2

K

www.DLR.de/TT • Slide 10 > 15. Kölner Sonnenkolloquium > T. Bauer • Thermische Speicherung von Solarenergie > 12.6.2012

Molten Salt Storage – Novel Salt Mixtures

-1

0

1

2

3

4

5

6

7

-50 0 50 100 150 200Temperature [°C]

DS

C s

igna

l [μV

/mg] 5 K/min

2 K/min1 K/min 81

82838485

0 1 2 3 4 5 6Heating rate [K/min]

Liqu

idus

te

mpe

ratu

re [°

C]

Heating rate

Take away: Low melting temperature alkali nitrate/nitrite mixtures are feasible

www.DLR.de/TT • Slide 11 > 15. Kölner Sonnenkolloquium > T. Bauer • Thermische Speicherung von Solarenergie > 12.6.2012

Molten Salt Storage – Solar Salt Stability

Take away: Stability of nitrate salts depends on several parameters

First decomposition reaction:

NO3- → NO2

- + ½ O2(gas) (reversible) Second decomposition reaction:

NO3- or NO2

- → O2- + NOx(gas) or N2(gas)

Other Side reactions with CO2 and H2O

Na NO3

Cation Anion

Air

www.DLR.de/TT • Slide 12 > 15. Kölner Sonnenkolloquium > T. Bauer • Thermische Speicherung von Solarenergie > 12.6.2012

Molten Salt Storage – Steel Corrosion with Nitrates

- Major structural alloys: - Low alloyed carbon steel (≤ 400°C) - Cr-Mo steel (≤ 500°C) (Cr-content up to about 9 wt%) - Stainless Cr-Ni steel (≤ 570°C) (with/without Mo, Nb, Ti alloying) - Ni-alloys (≤ 650°C) (i.e. Alloy 800)

- Corrosion aspects: - Nitrate salt impurities (e.g., chlorides) - Nitrate salt decomposition products - Solubility of chromium from oxide layer - Stress corrosion cracking (SCC)

Source: Materials Testing Institute (MPA), University of Stuttgart

www.DLR.de/TT • Slide 13 > 15. Kölner Sonnenkolloquium > T. Bauer • Thermische Speicherung von Solarenergie > 12.6.2012

Molten Salt Test Facility “Tesis”

- Technical figures: - 20 m³ Solar Salt

(60 wt% NaNO3 and 40 wt% KNO3) - Temperature range 250 to 560 °C - Mass flow rate up to 8 kg/s

- Research focus/challenges: - Molten salt storage concepts

(e.g. single tank / thermocline) - Component tests

(e.g. pumps, valves, receiver tubes, measurement & control) industrial partners

- Operational molten salt aspects

www.DLR.de/TT • Slide 14 > 15. Kölner Sonnenkolloquium > T. Bauer • Thermische Speicherung von Solarenergie > 12.6.2012

Thermo-chemical Heat Storage - DLR Development status: Lab-test rigs

- Ca(OH)2 /CaO (300 – 700 °C) - Salt hydrates, reference CaCl2 (up to 200 °C) - Metal oxides (up to 1000 °C)

- Target applications: CSP, industrial heat recovery - Technology:

- Reversible Gas-Solid Reactions - High storage density - Loss-free and long-term storage feasible - Heat transformation possible

- Research focus/challenges: - Characterization of suitable material system - Complexity of heat and mass transfer

with chemical reaction - Reactor designs - Separation of thermal power and capacity

(movement of the reaction bed) Source: DLR

www.DLR.de/TT • Slide 15 > 15. Kölner Sonnenkolloquium > T. Bauer • Thermische Speicherung von Solarenergie > 12.6.2012

Thermochemical Ca(OH)2/CaO storage

- Target applications: - CSP, industrial process heat - Temperatures 300 – 700 °C

- Technology - Ca(OH)2 + ∆H ↔ CaO + H2O - Direct/indirect contact concepts

- Start of larger test rig in progress - Research focus/challenges

- Up-scaling of reactor design - Movement of the

reaction bed - System modeling and

process integration

www.DLR.de/TT • Slide 16 > 15. Kölner Sonnenkolloquium > T. Bauer • Thermische Speicherung von Solarenergie > 12.6.2012

Summary and Conclusions

- Molten salt TES technology - Several parameters affect nitrate salt stability no single limit - Tower systems require novel salts with stabilities up to 700 °C - Parabolic through systems require salts as fluids with a liquidus

temperature as low as possible to avoid freezing

- Thermochemical TES technology offers unique advantages Storage of educts/products at room temperature, heat transformation

- Diversity of fluids and storage materials in the high temperature range Molten salt is one TES option among several others

- TES material development not only refers to improved storage materials, but also to material aspects in other components (e.g., containment)

www.DLR.de/TT • Slide 17 > 15. Kölner Sonnenkolloquium > T. Bauer • Thermische Speicherung von Solarenergie > 12.6.2012

Thank you for your attention !