9
Fault Tolerant Switched Reluctance Machine's Comparative Analysis M. Ruba and L. Szabó, Technical University of Cluj, Department of Electrical Machines, Cluj, Romania

Fault Tolerant Switched Reluctance Machine's Comparative Analysis

Embed Size (px)

Citation preview

8/13/2019 Fault Tolerant Switched Reluctance Machine's Comparative Analysis

http://slidepdf.com/reader/full/fault-tolerant-switched-reluctance-machines-comparative-analysis 1/9

Fault Tolerant Switched Reluctance

Machine's Comparative AnalysisM. Ruba and L. Szabó,

Technical University of Cluj,

Department of Electrical Machines,

Cluj, Romania

8/13/2019 Fault Tolerant Switched Reluctance Machine's Comparative Analysis

http://slidepdf.com/reader/full/fault-tolerant-switched-reluctance-machines-comparative-analysis 2/9

Introduction

Fault tolerant concept emerged from IT

More fault tolerant interconnected equipments form a system

Machine design using FLUX 2D

Command system build in Matlab Simulink

Full simulation using FLUX to Simulink Technology

Comparison of the results

8/13/2019 Fault Tolerant Switched Reluctance Machine's Comparative Analysis

http://slidepdf.com/reader/full/fault-tolerant-switched-reluctance-machines-comparative-analysis 3/9

The structures in study

Geometries in study:

12/8 and 12/14 topology

Fault tolerance ability difference

Different flux paths

Full possibility of command

High fault tolerance

Higher manufacture costs

8/13/2019 Fault Tolerant Switched Reluctance Machine's Comparative Analysis

http://slidepdf.com/reader/full/fault-tolerant-switched-reluctance-machines-comparative-analysis 4/9

The power converters in study

6 phases divided in 2 groups

Half H bridge

Separate parallel connected groups Separate firing angles computation

High fault tolerance

V

A1

A2

B1

B2

C1

C2

D1

D2

E1

E2

F1

F2

8/13/2019 Fault Tolerant Switched Reluctance Machine's Comparative Analysis

http://slidepdf.com/reader/full/fault-tolerant-switched-reluctance-machines-comparative-analysis 5/9

The coupled simulation program Inverter simulation:

Cedrat Electriflux Each phase is compound from two coils

Switches modelled with resistances (100kΩ - 4mΩ)

Voltage source

Connection to the buss bars

8/13/2019 Fault Tolerant Switched Reluctance Machine's Comparative Analysis

http://slidepdf.com/reader/full/fault-tolerant-switched-reluctance-machines-comparative-analysis 6/9

The coupled simulation program

Command computation:

Matlab Simulink

Coupling block

Feedback loop

Data storage

torque

teta

curr BA1PL

curr BB1PL

curr BC1PL

curr BD1PL

RA1_1

RA1_2

RA2_1

RA2_2

RB1_1

RB1_2

RB2_1

RB2_2

RC1_1

RC1_2

RC2_1

RC2_2

RD1_1

RD1_2

RD2_1

RD2_2

VOLTAGE 240v

RE1_1

RE1_2

RE2_1

RE2_2

RF1_1

RF1_2

RF2_1

RF2_2

curr BE1PL

curr BF1PL

teta

250

Voltage value

z

1

Torque

mod

Teta

Cur_PH5

Comand C1

Comand C2

F

Teta

Cur_PH4

Comand C1

Comand C2

E

Teta

Cur_PH3

Comand C1

Comand C2

D

Curr E1

Coupling with Flux2d2

Periode

Teta

Cur_PH2

Comand C1

Comand C2

C

Teta

Cur_PH1

Comand C1

Comand C2

B

Teta

Cur_PH6

Comand C1

Comand C2

A

-1

8/13/2019 Fault Tolerant Switched Reluctance Machine's Comparative Analysis

http://slidepdf.com/reader/full/fault-tolerant-switched-reluctance-machines-comparative-analysis 7/9

Results

of simulation 0 0.005 0.01 0.015 0.02

-50

0

50

t [s]

C u r r e n t [ A ]

. . . .

. . . .

0 0.005 0.01 0.015 0.02-100

0

100

t [s]

T o r q u e [ N m ]

0 1 2 3 4 5 6 7 8

x 10-3

-50

0

50

t [s]

C u r r e n t [ A ]

0 1 2 3 4 5 6 7 8

x 10-3

-50

0

50

t [s]

T o r q u e [ N m ]

. . . . . . . . .

.

0 0.005 0.01 0.015 0.02-50

0

50

t [s]

C u r r e n t [ A ]

. . . .

. . . .

0 0.005 0.01 0.015 0.02-100

0

100

t [s]

T o r q u e [ N m ]

0 1 2 3 4 5 6 7 8

x 10-3

-50

0

50

t [s]

C u r r e n t

[ A ]

0 1 2 3 4 5 6 7 8

x 10-3

-50

0

50

t [s]

T o r q u e [ N m ]

. . . . . . . . .

.

0 0.005 0.01 0.015 0.02

-50

0

50

t [s]

C u r r e n t [ A ]

. . . .

. . . .

0 0.005 0.01 0.015 0.02-100

0

100

t [s]

T o r q u e [ N m ]

0 1 2 3 4 5 6 7 8x 10

-3

-50

0

50

t [s]

C u r r e n t [ A ]

0 1 2 3 4 5 6 7 8

x 10-3

-50

0

50

t [s]

T o r q u e [ N m ]

. . . . . . . . .

.

0 0.005 0.01 0.015 0.02-50

0

50

t [s]

C u r r e n t [ A ]

. . . .

. . . .

0 0.005 0.01 0.015 0.02-100

0

100

t [s]

T o r q u e [ N m ]

0 1 2 3 4 5 6 7 8

x 10-3

-50

0

50

t [s]

C u r r e n t [ A ]

0 1 2 3 4 5 6 7 8

x 10-3

-50

0

50

t [s]

T o r q u e [ N m ]

. . . . . . . . .

.

0 0.005 0.01 0.015 0.02-50

0

50

t [s]

C u r r e n t [ A ]

0 0.005 0.01 0.015 0.02

-100

0

100

t [s]

T o r q u e [ N m ]

0 1 2 3 4 5 6 7 8

x 10-3

-50

0

50

t [s]

C u r r e n t [ A ]

0 1 2 3 4 5 6 7 8

x 10-3

-50

0

50

t [s]

T o r q u e [ N m ]

.

Normal operation

One channel fault

One phase fault Two channel fault

Two channel fault

8/13/2019 Fault Tolerant Switched Reluctance Machine's Comparative Analysis

http://slidepdf.com/reader/full/fault-tolerant-switched-reluctance-machines-comparative-analysis 8/9

Results of simulation

Studied cases Mean torques [N·m] and

percentage of the rated torque

12/8

SRMtopology

Healthy case 52.21 (100%) Faulty case 1 49.10 (94.04%) Faulty case 2 35.27 (67.55%) Faulty case 3 46.31 (88.69%) Faulty case 4 33.36 (63.89%)

12/14

SRM

topology

Healthy case 19.93 (100%) Faulty case 1 19.59 (98.29%) Faulty case 2 16.16 (81.03%) Faulty case 3 19.28 (96.71%) Faulty case 4 13.79 (69.19%)

8/13/2019 Fault Tolerant Switched Reluctance Machine's Comparative Analysis

http://slidepdf.com/reader/full/fault-tolerant-switched-reluctance-machines-comparative-analysis 9/9

Conclusions

There are significant differences between the behaviour of the twomachine structures in faulty operation

The 12/14 structure has the advantages of better performance

regarding malfunction and lower losses, but has the disadvantagesof higher manufacture costs

Further researches will concern the fault-tolerance some specialSRM topologyes