38
PET and SPECT Detector Developments and Applications to Multimodal Systems Ling‐Jian Meng, PhD Professor, Department of Nuclear Plasma and Radiological Engineering, Affiliate of Beckman Institute for Advance Science and Technology, and Department of Bioengineering, University of Illinois at Urbana‐Champaign Refresher Short Course RC4, MIC 2014

PET and SPECT Detector Developments and Applications to

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: PET and SPECT Detector Developments and Applications to

PET and SPECT Detector Developments and Applications to Multimodal Systems

Ling‐Jian Meng, PhD

Professor,Department of Nuclear Plasma and Radiological Engineering,

Affiliate of Beckman Institute for Advance Science and Technology, andDepartment of Bioengineering,

University of Illinois at Urbana‐Champaign

Refresher Short Course RC4, MIC 2014

Page 2: PET and SPECT Detector Developments and Applications to

• A brief introduction to multi‐model imaging

• Major technical challenges for detector development andsystem integration

• Recent advances in gamma ray detectors and imaging systemsfor multi‐model imaging

• Future outlook

Table of Content

Refresher Short Course RC4, MIC 2014

Page 3: PET and SPECT Detector Developments and Applications to

Introduction to Multi‐Model Imaging 

Refresher Short Course RC4, MIC 2014

Page 4: PET and SPECT Detector Developments and Applications to

An Overview of Mouse Imaging SystemsFrom “Scaling down imaging: molecular mapping of cancer in mice”, Ralph Weissleder, Nature Reviews Cancer 2, 11‐18 (January 2002)

L. J. Meng, Harvard Medical School, April 2th, 2013

Technique Resolution Depth Time Imaging agents Cost Primary use

Magnetic resonance imaging (MRI) 10–100 µm No 

limit Min/hoursGadolinium, 

dysprosium, iron oxide particles

$$$ phenotyping, physiological imagingand cell tracking

X‐ray computedtomography (CT ) 50 µm No 

limit Min Iodine $$ Lung, bone, tumour imaging

Ultrasound imaging 50 µm mm Min Microbubbles $$ Vascular and interventional imaging

Positron emissionTomography (PET) 0.8–2 mm No 

limit Min 18F, 11C, 15O $$$ Imaging metabolism of molecules, such as glucose, thymidine …

Single photon emission tomography (SPECT) 0.1‐1 mm No 

limit Min 99mTc, 111In $$ Imaging of probes such asantibodies, peptides …

Fluorescencereflectance imaging(FRI)

1–2 mm < 1 cm Sec/minFluorescent proteinsNIR

fluorochromes$ Rapid screening of molecular events 

in surface‐based tumours

Fluorescence‐mediatedtomography (FMT)

1–2 mm < 10 cm Sec/min NIR 

fluorochromes $$Quantitative imaging of targeted or ‘smart’ fluorochrome reporters in 

deep tumoursBioluminescenceimaging (BLI) Several mm cm Min Luciferin $$ Gene expression, cell tracking

Page 5: PET and SPECT Detector Developments and Applications to

“Emission tomography and its place in the matrix of molecular imaging technologies”

From S. R. Meikle et al, PMB Vol. 50,  Topical Review, 2005.

Nuclear imaging offers tremendous sensitivity !!

Refresher Short Course RC4, MIC 2014

Page 6: PET and SPECT Detector Developments and Applications to

FDG study: lung or ribs?

I‐124 study: bone or soft tissue?

Combining Nuclear Imaging with Other Imaging Modalities

Two images is better than one!Refresher Short Course RC4, MIC 2014

Page 7: PET and SPECT Detector Developments and Applications to

SPECT/CT Images

T. Pfluger et al, Radiology, vol. 217, pp. 453‐454, 2000.

Fused SPEM/CT image of a mouse’s brain. Two groups(5L and 0.3L) of radiolabeled T cells are visible in thebrain. Meng et al, NIM, 2009.

99mTc‐Labeled RGD Dimers and Tetramer in Tumor‐BearingMice, Image courtesy Shuang Liu

Refresher Short Course RC4, MIC 2014

Page 8: PET and SPECT Detector Developments and Applications to

Why Combine PET/SPECT with MRI

• Large variety of PET/SPECT tracers• Sensitivity of PET/SPECT is in the pico‐

molar range• MR delivers exquisite soft tissue 

contrast, and functional imaging capabilities (spectroscopy, fMRI)

• No additional radiation dose (from CT) Simultaneous imaging of PET and MRIo Reduced total acquisition timeo Image multiple dynamic processeso Use MRI to correct for motion in 

PET dataPET/CT

CT

Necrosis ??

Very little additional information from CT

Mouse [18F]FLT scan

Martin S. Judenhofer, Seminars in Nuclear Medicine

Refresher Short Course RC4, MIC 2014

Page 9: PET and SPECT Detector Developments and Applications to

Why Combine PET/SPECT with MRI

FIGURE   1.    First   simultaneous  PET/MRI study  in 66‐y‐old  healthy volunteer. MRI sequences included T2‐weighted turbo  spin echo, echo planar, time‐of‐flight MR angiog‐ raphy, and MR spectroscopy. PET image displayed was reconstructed from 20‐min emission data recorded at steady state after injection of 370 MBq of 18F‐FDG. Data were acquired on BrainPET prototype (Siemens). MPRAGE  5 magnetization‐prepared  rapid gradient  echo;  MRS  5 MR  scintigraphy; TSE 5 turbo  spin echo. (Ciprian Catana et al, Journal of Nuclear Medicine, 2012) 

Refresher Short Course RC4, MIC 2014

Page 10: PET and SPECT Detector Developments and Applications to

Why Combine PET with MRI

FIGURE 5.    Simultaneous PET/MRI study  in Alzheimer disease patient.  (Top) Axial 18F‐FDG PET, high‐resolution MRI, and  fusion image.  Areas  with reduced metabolism (green) representing impaired neuronal function  are  visible in left temporoparietal cortex. (Middle and  bottom)  Surface projections of cerebral metabolism and  of z score images (comparison with controls). Data  were  acquired on Biograph  mMR scanner. (Ciprian Catana et al, Journal of Nuclear Medicine, 2012) 

Refresher Short Course RC4, MIC 2014

Page 11: PET and SPECT Detector Developments and Applications to

Diagnostic Imaging with EM Radiation

Refresher Short Course RC4, MIC 2014

Page 12: PET and SPECT Detector Developments and Applications to

Major Technical Challenges for Developing Combined Nuclear/MR Imaging Systems

Refresher Short Course RC4, MIC 2014

Page 13: PET and SPECT Detector Developments and Applications to

Electromagnetic Interferences Between Nuclear and MR Data Acquisition Systems

Refresher Short Course RC4, MIC 2014

Photomultiplier Tube (PMT)

http://nl.wikipedia.org/wiki/Fotomultiplicator

K F Knoll, Radiation Detection and Measurements, Third Edition, Wiley.

Page 14: PET and SPECT Detector Developments and Applications to

Magnetic Field Induced Distortion 

B

Measured (upper) and simulated (lower)energy responses of several adjacent pixels

12

34

56

78

12

34

56

78

0

500

1000

1500

12

34

56

78

12

34

56

78

0

1000

2000

3000

Outside, Measured Outside, Modeled

12

34

56

7

12

34

56

7

0

200

400

600

800

12

34

56

7

12

34

56

7

0

200

400

600

800

Inside, Measured Inside, Modeled

Refresher Short Course RC4, MIC 2014

Typical small‐pixel CZT detector for use in MR scanners

(Above) Measured MR‐induced projection shifting 

Page 15: PET and SPECT Detector Developments and Applications to

L. J. Meng et al., PSMR 2012

Electromagnetic Interference Between Nuclear and MR Data Acquisition Systems

Cathode

Anode

e‐hpair

B

E

Charge drifting inside a “perfect” pixel detectorCdTe, 1 mm thickness, 350 um pixels

vxvyvz

red

1 H2 Bx

2 H2 BxBy HBz H

2 BxBz HByH2 BxBy HBz 1 H

2 By2 H

2 ByBz HBxH2 BxBz HBy H

2 ByBz HBx 1 H2 Bz

2

ExEyEz

vxvyvz

1 H

2 B2 Ex0

HByEx

.

BH )tan(

The drifting velocity of an electron under the electric field E and the magnetic field B is given by(Castoldi et al., NIM, 1997)

where μ is the charge carrier mobility and μH isthe Hall mobility. In the simplest form, where E=Exand B=By, then

The Lorenz angle θ is given by

Page 16: PET and SPECT Detector Developments and Applications to

Interference Between Nuclear and MR Data Acquisition Systems

Magnetic field homogeneity

• Traditional PET detectors, based on PMTs, are sensitive to magnetic fields

• Magnetic field inhomogeneity induced by magnetic materiel in detector assembly and readout electronics

• MRI uses high frequency and high powerRF which can interfere with the operation of PET detectors

PET Signal without  MR RF PET Signal with  MR RF

This slide was derived from Martin S. Judenhofer, Seminars in Nuclear Medicine, with permission.

Refresher Short Course RC4, MIC 2014

Page 17: PET and SPECT Detector Developments and Applications to

Major Challenges for Developing MR‐Compatible Gamma Ray Detector

• MR‐compatibility – minimized interferences between nuclearand MR imaging systems.

• Compact foot‐print for better integration with other imagingmodalities.

• A reasonable balance between spatial, energy and timingresolutions, detection efficiency and readout speed.

• Cost‐effectiveness and reduced complexity.

Refresher Short Course RC4, MIC 2014

Page 18: PET and SPECT Detector Developments and Applications to

Evolution of Scintillation Detectors for (Combined MR‐)PET and SPECT Applications

Refresher Short Course RC4, MIC 2014

Page 19: PET and SPECT Detector Developments and Applications to

First approach to acquire PET data inside an MRI scanner (1997)

If the scintillation light is transported away from the high magnetic field, PMT detectors may be used.

Light loss due to fiber coupling is significant and degrades PET performance

MR field of view is free from metallic materials which preserves good MR performance

Y. Shao, S.R. Cherry et al., Phys Med Biol 42 (1997) 1965‐1970P.K. Marsden et al., Brit J Radiology 75 (2002) S53‐S59

Refresher Short Course RC4, MIC 2014

Page 20: PET and SPECT Detector Developments and Applications to

• 2‐layer depth of interaction PET detectors

• Full ring of 12 detectors• Readout with position 

sensitive PMTs• Good spatial resolution• 0.3T MRI with hole in 

yoke used for MR imaging

Optical Fiber Coupled Scintillator‐PMT PET/MRI Detectors

Prof. S. Yamamoto, Kobe City College, Osaka University, Japan – Fibers with PSPMTs

Refresher Short Course RC4, MIC 2014

This slide was derived from Martin S. Judenhofer, Seminars in Nuclear Medicine, with permission.

Page 21: PET and SPECT Detector Developments and Applications to

Optical Fiber Coupled Scintillator‐PMT PET/MRI Detectors

University of Cambridge• Split magnet MRI system• Scintillator and fiber are in between 

magnet halves• Read out with PMTs based on 

commercial small animal PET• Special MRI coil design required

Refresher Short Course RC4, MIC 2014

Problems of the fiber coupled PET detectors: • Attenuation of scintillation light 

degrades both energy and timing resolution, 

• limited physical design options, and • Complexity. 

Page 22: PET and SPECT Detector Developments and Applications to

(Gas) Multiplication Process in Solid‐State Photon Sensors??

Refresher Short Course RC4, MIC 2014

Figures from K F Knoll, Radiation Detection and Measurements, Third Edition, Wiley. 

Page 23: PET and SPECT Detector Developments and Applications to

Photodiode Detectors

Refresher Short Course RC4, MIC 2014

Hamamatsu photodiode technical information

Typical reversed‐biased photodiode detectors• No internal gain• Very high QE for red light (up to 90%)• Limited timing resolution

Page 24: PET and SPECT Detector Developments and Applications to

Avalanche Photodiode (APD)

Avalanche Photo Diodes (APD), proof to be suitable detectors for PET/MRI• Could be operated inside strong magnetic field• Added internal gain• Fast timing property • Gain critically depends on bias voltage• Temperature stability could be an issue

http://learn.hamamatsu.com/articles/avalanche.html

Refresher Short Course RC4, MIC 2014

From K F Knoll, Radiation Detection and Measurements, Third Edition, Wiley. 

Page 25: PET and SPECT Detector Developments and Applications to

Next Generation PET/MRI Systems 

• Larger FOV transaxial 7.2 cm/ axial 7cm• LSO Blocks: 15x15 crystals (1.6x1.6x10mm3)• 16 cassettes each 3 blocks• Higher Sensitivity: 4‐5% (estimated)

University of Tuebingen, Germany

Refresher Short Course RC4, MIC 2014

This slide was derived from Martin S. Judenhofer, Seminars in Nuclear Medicine, with permission.

Page 26: PET and SPECT Detector Developments and Applications to

Next Generation PET/MRI Systems 

University of Davis, California, USA• Located inside 7 Tesla MRI• Use position sensitive APDs (14x14mm2)• 4 rings with 24 detector blocks (each),• based on LSO arrays (1.2x1.2x14mm3) and 

PSAPDs• 60 mm axial FOV (whole body mouse)• ~ 3‐4% sensitivity (simulation)• 1.3mm spatial resolution

Refresher Short Course RC4, MIC 2014

Page 27: PET and SPECT Detector Developments and Applications to

Silicon PhotomultipliersSilicon Photo Multipliers (SiPM, Geigermode‐APD)a novel MR compatible PET detector

G‐APD 6.5 x 7 mm2 3 x 3 mm2, 60x60 cells Each cell 50 x 50 µm2

• Each cell is operated above breakdown• Output signal is sum of all cells• Each cell provides maximum‐gain signal on 

photon interaction 

This slide was derived from Martin S. Judenhofer, Seminars in Nuclear Medicine, with permission.

Refresher Short Course RC4, MIC 2014

Page 28: PET and SPECT Detector Developments and Applications to

Silicon Multiplier (SiPM) Detectors

Refresher Short Course RC4, MIC 2014

FIGURE 1. (a) Simplified structure of a SiPM composed of G‐APDcells. The G‐APDs are joined together on a common substrateand are electrically decoupled. The outputs of the cells areconnected to an Al grid used for the readout of the outputsignals. Each cell has a quenching resistor in series. (b) Each cell(G‐APD) is a p–n junction with a very thin depletion layerbetween p+ and n+ layers.15 Drawings courtesy of Julien Bec,UC Davis.

EMILIE RONCALI and SIMON R. CHERRY, Application of Silicon Photomultipliers to Positron Emission Tomography, Annals ofBiomedical Engineering, Vol. 39, No. 4, April 2011 ( 2011) pp. 1358–1377

FIGURE 2. (a) Simplified electric structure of a SiPM com‐ posed ofseveral G‐APDs in series with a quenching resistor. (b) Equivalentcircuit of a single cell when the device is on (a bias voltage Vbias isapplied) and is detecting photons. The capacitor Ccell initiallycharged at Vbias discharges through Rcell dropping the biasvoltage to Vbreakdown. The avalanche process is quenched via thequenching resistor and then the device is recharged.

Page 29: PET and SPECT Detector Developments and Applications to

Silicon Multiplier (SiPM) Detectors

Refresher Short Course RC4, MIC 2014

FIGURE. (a) Resistive network for a 4 x 4 SiPM array, (b)Crystal map acquired with a 22Na source irradiating a 4x4array of 1.5 x 1.5 x 20 mm3 LSO scintillator crystals coupledto the SiPM array.

EMILIE RONCALI and SIMON R. CHERRY, Application of Silicon Photomultipliers to Positron Emission Tomography, Annals of Biomedical Engineering, Vol. 39,No. 4, April 2011 ( 2011) pp. 1358–1377

FIGURE 3. Pulse height spectra from a 1 3 1 mm2 Ham‐ amatsuMPPC S10362‐11‐025C acquired for three different light intensities(the red and blue curves correspond to the lowest and strongestintensities, respectively) showing peaks corresponding to differentnumbers of photoelectrons generated.

Page 30: PET and SPECT Detector Developments and Applications to

Sogang University, Korea – GAPD based PET insert

• based on 4x4 GAPD arrays• 3x3x10 mm3LYSO scintillators• 16 block detectors• 70 mm inner diameter / 13 mm axial• 2.8 mm spatial resolution• charge signal transmission readout

Kang J, et al., A small animal PETbased on GAPDs and charge signaltransmission approach for hybridPET‐MRJInst. 6‐P08012, Aug 2011

Silicon Multiplier (SiPM) Detectors

Refresher Short Course RC4, MIC 2014

Page 31: PET and SPECT Detector Developments and Applications to

Conventional readout of SiPM for PET

Readout of “digital” SiPM for PET

• Energy is estimated by counting the pulses of firedcells

• Cells with bad performancecan be deactivated online

Frach T. , et al. 2009 IEEE Nuclear Science Symposium Conference Record

“Digital” Silicon Photo MultiplierSiPM Microphotograph

• Each cell’s bias voltage and output signal can becontrolled

• A trigger network and embedded time to digital (TDC) converter provide fast timing information

~8100 cells

Silicon Multiplier (SiPM) Detectors

Refresher Short Course RC4, MIC 2014

This slide was derived from Martin S. Judenhofer, Seminars in Nuclear Medicine, with permission.

Page 32: PET and SPECT Detector Developments and Applications to

/MRI Systems

HYPER Imaging Project, RWTH‐University, Aachen

22 x 22 = 484LYSO crystals, each1.32 x 10 mm3

SiPM with 42 mm2 inmonolithic arraysof 2 x 2 SiPMs

2 x ASICs with40(32) channelswith individual EDC/TDC

Parallel FPGAdata processing

Slide Courtesy: Volkmar Schulz, RWTH

Small animal PET insert buildfor 3T Human MRI

Silicon Multiplier (SiPM) Detectors for PET Applications

Refresher Short Course RC4, MIC 2014

This slide was adopted from Martin S. Judenhofer, Seminars in Nuclear Medicine, with permission.

Page 33: PET and SPECT Detector Developments and Applications to

INSERT: INtegrated SPECT/MRI for Enhanced Stratification in Radio-chemo Therapy

GA n. 305311Kickoff: 01/03/13Duration: 4 years

Goal: to provide improved personalized radio-chemo therapies for brain tumour(Glioma) patients using a specifically developed multi-modality imaging tool

INSERT members• Politecnico di Milano (Italy)• Mediso Medical Imaging Systems (Hungary)• Fondazione Bruno Kessler (Italy)• Nuclearfields International BV (Netherlands)• MRI.Tools GmbH (Germany)• University College London (UK)• UniversitaVita-Salute San Raffaele (Italy)• Universita Degli Studi di Milano (Italy)• Cromed Research and Services ltd. (Hungary)• CF Consulting srl. (Italy)

Salvadoetal.ProcIEEENSS/MIC2014;imagescourtesyUCL,NuclearFields

Page 34: PET and SPECT Detector Developments and Applications to

Clinical system:MRI: 3 T MRI(internal bore diameter ~60 cm) Customized RF coil

SPECT: Stationary system Multi Slit-Slat collimator 25 independent detection

modules (FOV ~ 10x5 cm2) Foreseen radiotracers:99mTc (140 keV)123I (159 keV)111In (171/254 keV)

Detection module

CollimatorRF CoilimagecourtesyMediso

Page 35: PET and SPECT Detector Developments and Applications to

Detection module:• Monolithic slanted scintillator (CsI:Tl. Area~10x5 cm2 .Thickness 8 mm)• Silicon PhotoMultiplier matrix• ASIC readout and Data Acquisition System

Expected performance from Monte Carlo simulations: Intrinsic spatial resolution: between 0.8 and 1.0 mm Energy resolution: between 11% and 15% (Tc-99m - 140 keV)depending on the dark count rate of the SiPM technology (100-500 kHz/mm2).

Buscaetal.M08‐5,IEEENSS/MIC2014;imagecourtesyPolimi.Milan

Page 36: PET and SPECT Detector Developments and Applications to

Novel ‘internal’ Multi-Slit-Slat (MSS)– Slit-slat: combines pinhole collimation in the transaxial

and parallel-hole collimation in the axial dimension

– Array of short slits placed internal to slats– Improves radial sampling – Optimal use of limited space

Salvadoetal.M12‐2,IEEENSS/MIC2014;imagescourtesyUCL,NuclearFields

Collimator design:

Page 37: PET and SPECT Detector Developments and Applications to

slightly better transaxialresolution

D Salvado etal. M12‐2,IEEEMIC2014 08/12

Reconstructed Images• Simulations of digital phantoms (uniform, Derenzo,

Defrise) with attenuation included, but not scatter• Projection: based on angular blurring

[Bousse et al. Fully 3D Recon Meeting 2013]• Reconstruction: MLEM based on the same projector

Methods&Results (2)

Defrise

Derenzo

Uniform

~40% better sensitivity and uniform axial coverage

Sagittal

Transaxial

Transaxial

5+10½8+4½4⨯2 1+2½MSS2

Simulated results:

geometry simulat

Page 38: PET and SPECT Detector Developments and Applications to

Refresher Short Course RC4, MIC 2014

PMT APD Si‐PM

Amplification 106 102 106

Magnetic Field Sensitive Not sensitive Not sensitive

Bias Voltage 1000V 350‐2000V 20‐70V

Signal / Noise Ratio High Relatively Low High

Dynamic Range High High Small

Timing Properties* < a few hundred ps – a few ns

Electronic Readout VoltageAmplifier

Charge sensitivepre‐ amplifier

VoltageAmplifier, digital read out

Pros and Cons of PMT, APD and SiPM Detectors

This slide was partially derived from Martin S. Judenhofer, Seminars in Nuclear Medicine, with permission.

Towards:Large internal gain, high signal‐to‐noise ratio

Simplified high‐speed readout electronicsSolid‐state detectors, very compact and potentially low cost

Immune to strong magnetic field induced distortions