60
Incompressible Viscous Flow Analysis by a Domain Decomposition Method Hiroshi Kanayama, Daisuke Tagami and Masatsugu Chiba Kyushu University

Stationary Incompressible Viscous Flow Analysis by a Domain Decomposition Method

Embed Size (px)

DESCRIPTION

Stationary Incompressible Viscous Flow Analysis by a Domain Decomposition Method. Hiroshi Kanayama, Daisuke Tagami and Masatsugu Chiba ( Kyushu University). Contents. Introduction Formulations Iterative Domain Decomposition Method for Stationary Flow Problems Numerical Examples - PowerPoint PPT Presentation

Citation preview

Page 1: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Stationary Incompressible Viscous Flow Analysis by a Domain Decomposition Method

Hiroshi Kanayama, Daisuke Tagami

and Masatsugu Chiba( Kyushu University )

Page 2: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Contents Introduction Formulations Iterative Domain Decomposition Method for Stationary Flow Problems Numerical Examples     1 million DOF cavity flow, DDM v.s.

FEM A concrete example Conclusions

Page 3: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Objectives

In finite element analysis for stationary flow problems, our objectives are to analyze large scale (10-100 million DOF) problems.Why Iterative DDM ?

HDDM is effective.

Ex. Structural analysis ( 100 million DOF:

1999 R.Shioya and G.Yagawa )

Page 4: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Formulations

Stationary Navier-Stokes Equations Weak Form Newton Method Finite Element Approximation Stabilized Finite Element Method Domain Decomposition Method

Page 5: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

.2

1)(

),(2),(

,0

,),()(

:

i

j

j

iij

ijijij

x

u

x

uD

Dpp

p

u

uu

u

fuuu

jn u:D

.delta sKronecker':],m[ viscositykinematic:

,]mforce[body:],mpressure[:,]smvelocity[:2

222

ijs

ssp

fu

Stationary Navier-Stokes Eqs.

0),(: nu pN

Page 6: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Weak Form

thatsuch,Find QVp u

vfuvvuvuu ,,,,,, qbpbsa QVq ,for v

.),0(,on;

,

2

31

LQ

VVXV

HX

D vv

uu

vuvu

vuwvuw

qqb

DDs

a

d

mllmlm

:,

)()(2:,

:,,

,

Page 7: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Newton Method

thatsuch,Find QVp kk u

vuuvfuv

vuvuuvuu

,,,,,

,,,,,11

11

kkkk

kkkkk

aqbpb

saa

QVq ,for v

vfuvvuvuwvwu ,~

,,,,,,, qbpbsaa

fuuf

wu

uu

~11

1

kk

k

k

k

pp

Page 8: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Finite Element Approximation0

1 2

3

element. ltetrahedraais,

elements, ltetrahedraofconsisting

ofiontriangulatA

hK

KK

h

).0(,on;

,,|;

,,|;

10

31

30

hhDhhhh

hKhhh

hKhhh

VVXV

KKPqCQqQ

KKPCXX

vv

vv

Page 9: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Stabilized Finite Element Method thatsuch,Find

hhhhQVp u

hKhhhhhK

hhhhhhhhhhhh

p

qbpbsaa

,

,,,,,,,

uwwu

uvvuvuwvwu

KhhKKhhhhh q vuvwwv ,

hhhh QVq ,for v

24,

2min

2

K

h

K

K

hh

w

Kh

Kh

Kh

hw

w

,12

min22

KhK ofdiameterais

Stabilized Parameter

hK

KhhhhhKhqvwwvfvf ,

~,

~

1

Page 10: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Domain Decomposition Method

b

i

b

i

bbbi

ibii

f

f

a

a

KK

KK

faK

12

2

1

D

1 2

Stabilized Finite Element Method

Decomposition

i : corresponding to Inner DOF

b : corresponding to Interface DOF

Page 11: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Inner DOF

Solver by Skyline Method

bibiiii aKfaK

Interface DOF

iiibibbibiibibb fKKfaKKKK 11 )(

Solver by BiCGSTAB or GPBiCG

χS

Page 12: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

BiCGSTAB for the Interface Problem

end

,),(

),(

,

,

,),(

),(

,

,),(

),(

),(

begin

:dountil,,for

.set,,guessinitialanis

)()(

)()(

)(

)()(

)()()()(

)()()()()()(

)()(

)()()(

)()()()(

)()(

)()()(

)()()()()()(

)()(

)()()()(

k

k

k

kk

kkkk

kkkkkk

kk

kkk

kkkk

k

kk

kkkkkk

k

gg

gg

Sttg

tw

StSt

tSt

Swgt

Swg

gg

Swwgw

Errggk

Sλg

0

10

1

1

0

0

1111

0

1000

10

0

ς

ργ

ς

ςρλλ

ς

ρ

ρ

ςγ

γχλ

Page 13: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

t

b

i

t

b

i

btbbbi

itibii

f

f

f

a

a

a

E

KKK

KKK

00

,χbSa

,)(

),(11

1

titiibibtiiibib

ibiibibb

aKKKKfKKf

KKKKS

χ

Equations on the interface

Page 14: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

;)0()0(i

T

tbiitibii faaaKKK

;)0()0()0()0(b

T

tbibtbbbi faaaKKKwg

BiCGSTAB (1) Initialization

(a) Set   .

(b) Solve .  

(c) Solve .  

)0(ba

)0(ia

)0()0( , wg

Page 15: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

(2)     Iteration(a) Solve .

 

(b) Solve .  

(c) Compute .

;

;),(

),(

)()()()(

)()0(

)()0()(

kkkk

k

kk

Swgt

Swg

gg

;00)()( Tkk

itibii wvKKK

;0)()()( Tkkbtbbbi

k wvKKKSw

)(kv

)(kSw

)()( , kk t

Page 16: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

;

;

;),(

),(

)()()()1(

)()()()()()1(

)()(

)()()(

kkkk

kkkkkb

kb

kk

kkk

Sttg

twaa

StSt

tSt

;00)()( Tkk

itibii tvKKK

;0)()()( Tkkbtbbbi

k tvKKKSt

(d) Solve .

(e) Solve .

(f) Compute .

)(kv

)(kSt

)1()1()( ,, kkb

k ga

Page 17: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

(g) Convergence check for . If converged

, If not converged go to (h) .

(h) Compue .

(3)     Construction of solution .  (a) Solve .

);(

;),(

),(

)()()()()1()1(

)()0(

)1()0(

)(

)()(

kkkkkk

k

k

k

kk

Swwgw

gg

gg

;**i

T

tbiitibii faaaKKK

)1( kg)1(* k

bb aa

)1()( , kk w

*ia

Page 18: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Preconditioned BiCGSTAB for the Interface Problem

end

,),(

),(

,

,

,),(

),(

,

,),(

),(

),(

begin

:dountil,,for

,set,,guessinitialanis

)()(

)()(

)(

)()(

)()()()(

)()()()()()(

)()(

)()()(

)()()()(

)()(

)()()(

)()()()()()(

)()(

)()()()(

k

k

k

kk

kkkk

kkkkkk

kk

kkk

kkkk

k

kk

kkkkkk

k

gg

gg

tSMtg

tMwM

tSMtSM

ttSM

wSMgt

wSMg

gg

wSMwgw

Errggk

Sλg

0

10

11

111

11

1

1

10

0

11111

0

1000

10

0

ς

ργ

ς

ςρλλ

ς

ρ

ρ

ςγ

γχλ

Page 19: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

GPBiCG for the Interface Problem (1/2)

) ,),(

),( then , if(

,),)(,(),)(,(

),)(,(),)(,(

,),)(,(),)(,(

),)(,(),)(,(

,

,

,),(

),(

),(

begin

:dountil,,for

,,0set,χ,guessinitialanisλ

)()()(

)()()(

)()()()()()()()(

)()()()()()()()()(

)()()()()()()()(

)()()()()()()()()(

)()()()(

)()()()()()()(

)()(

)()()(

)()()()()(

)()(

)()()()()()(

00

10

0

11

0

0

111

0

111000

kkk

kkk

kkkkkkkk

kkkkkkkkk

kkkkkkkk

kkkkkkkkk

kkkk

kkkkkkk

k

kk

kkkkk

k

StSt

tStk

yStStyyyStSt

tStStytyStSt

yStStyyyStSt

ySttytStyy

Spgt

Spwgty

Spg

gg

upgp

Errggk

wtSλg

ης

η

ς

α

αα

α

β

β

Page 20: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

GPBiCG for the Interface Problem (2/2)

end

,

,),(

),(

,

,λλ

,

),(

)()()()(

)()(

)()(

)(

)()(

)()()()()()(

)()()()()(

)()()()()()()(

)()()()()()()()(

kkkk

k

k

k

kk

kkkkkk

kkkkk

kkkkkkk

kkkkkkkk

SpStw

gg

gg

Stytg

zp

uzgz

ugtSpu

β

ς

αβ

ςη

α

αης

βης

0

10

1

1

1

111

Page 21: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

t

b

i

t

b

i

btbbbi

itibii

f

f

f

a

a

a

E

KKK

KKK

00

,χbSa

,)(

),(11

1

titiibibtiiibib

ibiibibb

aKKKKfKKf

KKKKS

χ

Equations on the interface

Page 22: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

;)()(i

Ttbiitibii faaaKKK 00

;

;

)()(

)()()(

00

000

gp

faaaKKKg bT

tbibtbbbi

GPBiCG(1) Initialization

(a) Set .

(b) Solve .  

(c) Set and .  

)(0ba

)(0ia

)(0g )(0p

Page 23: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

(2)     Iteration(a) Solve .

 

(b) Set .  

(c) Compute .

;)()( 00 Tkk

itibii pvKKK

;)()()( Tkkbtbbbi

k pvKKKSp 0

)(kv

)(kSp

)()()( ,, kkk tyα

,

,

,),(

),(

)()()()(

)()()()()()()(

)()(

)()()(

kkkk

kkkkkkk

k

kk

Spgt

Spwgty

Spg

gg

α

αα

α

11

0

0

Page 24: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

;00)()( Tkk

itibii tvKKK

;0)()()( Tkkbtbbbi

k tvKKKSt

(d) Solve .

(e) Set .

(f) Compute .

)(kv

)(kSt

)()( , kk ης

) ,),(

),( then , if(

,),)(,(),)(,(

),)(,(),)(,(

,),)(,(),)(,(

),)(,(),)(,(

)()()(

)()()(

)()()()()()()()(

)()()()()()()()()(

)()()()()()()()(

)()()()()()()()()(

00

kkk

kkk

kkkkkkkk

kkkkkkkkk

kkkkkkkk

kkkkkkkkk

StSt

tStk

yStStyyyStSt

tStStytyStSt

yStStyyyStSt

ySttytStyy

ης

η

ς

Page 25: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

(g) Compute .)()()( ,, 1kkk gzu

,

,

),(

)()()()()()(

)()()()()()()(

)()()()()()()()(

kkkkkk

kkkkkkk

kkkkkkkk

Stytg

uzgz

ugtSpu

ςη

αης

βης

1

1

111

Page 26: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

(h) Convergence check for . If converged

If not converged go to (h) .

(i) Compute .

(3)     Construction of solution .  (a) Solve .

;**i

T

tbiitibii faaaKKK

)1( kg

)1()()( ,, kkk pw

*ia

),(

,

,),(

),(

)()()()()(

)()()()(

)()(

)()(

)(

)()(

kkkkk

kkkk

k

k

k

kk

upgp

SpStw

gg

gg

β

β

ς

αβ

11

0

10

,λλ )()()()()(* kkkkkb zpa α1

Page 27: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Preconditioned GPBiCG for the Interface Problem (1/2)

) ,),(

),( then , if(

,),)(,(),)(,(

),)(,(),)(,(

,),)(,(),)(,(

),)(,(),)(,(

,

,

,

,),(

),(

),(

begin

:dountil,,for

,,0set,χλ,guessinitialanisλ

)()()(

)()()(

)()()()()()()()(

)()()()()()()()()(

)()()()()()()()(

)()()()()()()()()(

)()()()(

)()()()(

)()()()()()()(

)()(

)()()(

)()()()()(

)()(

)()()()()()(

00

10

0

11

1

1111

1111

1111

11

111

11

0

0

1111

0

111000

kkk

kkk

kkkkkkkk

kkkkkkkkk

kkkkkkkk

kkkkkkkkk

kkkk

kkkk

kkkkkkk

k

kk

kkkkk

k

tSMtSM

ttSMk

ytSMtSMyyytSMtSM

ttSMtSMytytSMtSM

ytSMtSMyyytSMtSM

ytSMtyttSMyy

SpMgMtM

Spgt

Spwgty

Spg

gg

upgMp

Errggk

wtSg

ης

η

ς

α

α

αα

α

β

β

Page 28: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Preconditioned GPBiCG for the Interface Problem (2/2)

end

,

,),(

),(

,

,

,

),(

)()()()(

)()(

)()(

)(

)()(

)()()()()()(

)()()()()(

)()()()()()()(

)()()()()()()()(

kkkk

k

k

k

kk

kkkkkk

kkkkk

kkkkkkk

kkkkkkkk

SptSMw

gg

gg

tSMytg

zpλλ

uzgMz

ugMtMSpMu

β

ς

αβ

ςη

α

αης

βης

1

0

10

11

1

11

111111

Page 29: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

One More Analysis of Subdomains

Output Results

Read Data

Analyze Analyze Analyze

Converged?

Change B.C.

Yes

No

System Flowchart

Skyline Method

BiCGSTAB Method

Newton Method

Page 30: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Whole domain

Parts

Subdomains

HDDM Parents only

ParentDiskPart_1

Part_n

Part_2

Page 31: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

AdvTetMesh

AdvBCtool

AdvsFlow

AdvMetis

AdvVisual

AdvCAD

AdvTriPatch

CommercialCAD ・・・

Configure・・・ Patch

・・・ Mesh

・・・ Boundary Cond. ・・・ DD (-difn 4)

・・・ Flow Analysis・・・Visualization

Adventure System

Page 32: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

.05.0,5.0,5.0

:FEM

,0,0,0

,0

,1,0

,1,0

,0,0,1,1

321

3

22

11

3

pxxx

x

xx

xx

x

D

D

1.0

1.0

0.0

1.0

1x

3x

2x

Boundary Conditions

Numerical Examples(The Cavity Flow Problem )

Page 33: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

(8 parts, 8*125 subdomains)

Total DOF : 1,000,188Interface DOF : 384,817

About 1,000 DOF/ subdomain 8 processors for parents

Domain Decomposition

Page 34: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Precond. : Diagonal Scaling ( Abs. )6-1.0E

)0()0()()(

ggnk

Criterion :

1.00E- 07

1.00E- 06

1.00E- 05

1.00E- 04

1.00E- 03

1.00E- 02

1.00E- 01

1.00E+00

1.00E+01

1.00E+02

0 500 1000 1500 2000 2500 3000

反復回数

相対

残差

1回目 2回目 3回目 4回目 5回目

一回の反復が約 5 秒弱

Convergence of BiCGSTAB

Page 35: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

収束履歴( Newton 法)

Initial Value : Sol.of Stokes

Criterion : 4E0.1)0()()1(

uuu nn

Iteration counts of Newton method

1.00E- 06

1.00E- 05

1.00E- 04

1.00E- 03

1.00E- 02

1.00E- 01

1.00E+000 1 2 3 4 5

反復回数

相対

変化

(Nonlinear Convergence )

Page 36: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Velocity Vectors

Visualization of AVS

Pressure Contour

x2 = 0.5

Page 37: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

1.00E- 07

1.00E- 06

1.00E- 05

1.00E- 04

1.00E- 03

1.00E- 02

1.00E- 01

1.00E+00

1.00E+01

0 100 200 300 400 500 600

反復回数

相対

残差

1回目 2回目 3回目 4回目 5回目

Precod. : Diagonal Scaling ( with sign )6-1.0E

)0()0()()(

ggnk

Criterion :

一回の反復が約 5.5 秒弱

Convergence of GPBiCG

Page 38: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Initial : Sol. of Stokes

Criterion : 4E0.1)0()()1(

uuu nn

Iteretion counts of Newton method

収束履歴( Newton 法)

1.00E- 06

1.00E- 05

1.00E- 04

1.00E- 03

1.00E- 02

1.00E- 01

1.00E+000 1 2 3 4 5

反復回数

相対

変化

Page 39: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

x1 component of the velocity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.3 -0.1 0.1 0.3 0.5 0.7 0.9

BiCGSTAB GP-BiCG

Page 40: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

9 hours (BiCGSTAB)→   1 hour 40 min.(GPBiCG)

GPBiCG is a liitle faster than BiCGSTAB for small problems.

High Reynolds number problems are not solved.

Strong preconditioners may be required.

Page 41: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

( 2 parts , 2*75 subdomains, ≒800 DOF/subdomain )

Total DOF : 119,164Interface DOF : 42,417

Domain Decomposition

Page 42: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Initial : Sol. of Stokes

Criterion : 4E0.1)0()()1(

uuu nn

Iteration counts of Newton method

収束履歴( Newton 法)

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+000 1 2 3 4 5

反復回数

相対

変化

HDDM FEM

Page 43: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

FEM

Velocity vectors and pressure at x2 = 0.5

HDDM

Page 44: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

x1-velocity component

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.3 -0.1 0.1 0.3 0.5 0.7 0.9

x1方向の流速

x 3座

Ghia 1000188dof(HDDM) 119164dof(HDDM) 119164dof(FEM)

Page 45: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

DDM ( 1 ) No. of Subdomins   64    No. of Nodes 9261    No. of DOF 37044    No. of Interface DOF 11718

DDM ( 2 ) No. of Subdomains   125    No. of Nodes 9261    No. of DOF 37044    No. of Interface DOF 14800

Computinal Conditions

Page 46: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

DDM(1) DDM(2)

Mesh

Page 47: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

The Vector Diagram and the Pressure Contour-Line on x2 = 0.5 ( Re:100 ) DDM(1) DDM(2) FEM

Page 48: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Comparison of the Velocity ( Re:100 )

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.2 0 0.2 0.4 0.6 0.8 1

x1 component of velocity

x 3

DDM(1) DDM(2) FEM

Page 49: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Relative Residual History of Newton Method ( Re:100 )

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-030 1 2 3 4

No. of Iterations

Re

lati

ve R

esi

du

al

DDM(1) DDM(2) FEM

Page 50: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

DDM(1) DDM(2) FEM

The Vector Diagram and the Pressure Contour-Line on x2 = 0.5 ( Re:1000 )

Page 51: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Comparison of the Velocity ( Re:1000 )

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.2 0 0.2 0.4 0.6 0.8 1

x1 component of velocity

x 3

DDM(1) DDM(2) FEM

Page 52: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Relative Residual History of Newton Method ( Re:1000 )

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-030 1 2 3 4 5 6

No. of Iterations

Re

lati

ve R

esi

du

al

DDM(1) DDM(2) FEM

Page 53: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

A subway station model

Constant flows

the natural boundary condition

Page 54: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Computational Conditions

)100(30Alpha21264

49)cos](/[1.0

)]([0.1)]([24Re

664,943,12

916,235,3

133,873,18

2

hourstimenalcomputatio

ityviskinematicsm

velocitysmlengthm

DOF

Nodes

ElementsofNumber

Page 55: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Convergence Criteria

5)0(

2

)0()(

2

)( 100.1 ggnk

Convergence of Newton method

4)1()()1( 100.1

nnn aaa

Convergence of the interface problem with GPBiCG method

Initial values of the interface problemwith GPBiCG method

0

0,0,0

pu

The solution of the previous step

• 0 step of Newton method

• other steps of Newton method

Page 56: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Convergence of GPBiCG

Page 57: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Nonlinear Convergence(Newton Method)

Page 58: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Visualization by AVS (Velocity)

Page 59: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Visualization by AVS (Pressure)

Page 60: Stationary Incompressible  Viscous Flow Analysis by a  Domain Decomposition Method

Conclusion

  

Future Works

A HDDM computing system for

stationary Navier-Stokes problems

has been developed and applied to

1- 10 million problems successfully.

More larger scale analysis based on

strong preconditioners and applications to high

Reynolds number problems and coupled problems