11
www.sciencemag.org/content/344/6191/1252817/suppl/DC1 Supplementary Materials for Capturing metastable structures during high-rate cycling of LiFePO 4 nanoparticle electrodes Hao Liu, Fiona C. Strobridge, Olaf J. Borkiewicz, Kamila M. Wiaderek, Karena W. Chapman, Peter J. Chupas, Clare P. Grey* *Corresponding author. E-mail: [email protected] Published 27 June 2014, Science 344, 1252817 (2014) DOI: 10.1126/science.1252817 This PDF file includes: Supplementary Text Figs. S1 to S5 Full Reference List

Supplementary Materials for - science.sciencemag.orgscience.sciencemag.org/highwire/filestream/595851/field_highwire... · Supplementary Text Verification of the whole pattern fitting

Embed Size (px)

Citation preview

www.sciencemag.org/content/344/6191/1252817/suppl/DC1

Supplementary Materials for

Capturing metastable structures during high-rate cycling of LiFePO4

nanoparticle electrodes

Hao Liu, Fiona C. Strobridge, Olaf J. Borkiewicz, Kamila M. Wiaderek, Karena W.

Chapman, Peter J. Chupas, Clare P. Grey*

*Corresponding author. E-mail: [email protected]

Published 27 June 2014, Science 344, 1252817 (2014)

DOI: 10.1126/science.1252817

This PDF file includes:

Supplementary Text

Figs. S1 to S5

Full Reference List

Supplementary Text

Verification of the whole pattern fitting method

In order to verify the validity of the fitting results, we treat the peak asymmetry of

the (200) and (301) reflections by fitting the selected regions with a series of peaks to

model reflections from phases of varying lithium composition. The (200) and (301)

reflections are chosen based on the fact that reflections from the LiFePO4 and the FePO4

phases are well separated to give a better resolution of the asymmetrical profile.

Peak positions of the two end phases, LiFePO4 and FePO4, are obtained from the

whole pattern fitting of the pattern at the beginning of charge and the top of first charge,

respectively. By trial and error, we found that at least 8 intermediate phases are needed to

achieve a good fitting of the reflection profile. The 8 intermediate reflections are

distributed equally in d-spacing between the LiFePO4 and the FePO4 reflections,

therefore, a total of 10 reflections are employed to fit each of the (200) and the (301)

reflection profiles. In the fitting process, the refined parameters are the intensities of

individual peaks and a global peak width parameter for all 10 peaks; all peak positions

are fixed.

Extraction of relative phase population is based on the work by Rudman (46). The

integrated intensity of each reflection corresponding to the composition LixFePO4 is

given by

)()(),()()(2

xNLPAxFKxI (S7)

where

F(x) – structure factor of LixFePO4,

A(, ) – absorption factor,

LP() – Lorentz-polarization factor,

N(x) – the number of unit cells of LixFePO4 in the irradiated volume.

Since the reflection profile of interest spans only over a small 2 range ((2)<1°),

to a first approximation, A(, ) and LP() can be considered as constant. Hence,

)()()(2

xNxFxI (S8)

and F(x) is treated as a linear combination of the experimentally determined F(0) and

F(1) (structure factors of LiFePO4 and FePO4, respectively), )0()1()1()( FxFxxF (S9)

As a result, we are able to extract the relative phase population from the integrated

peak intensity, and the fitting results of the (200) and (301) reflections are shown in figs.

S5A and B, respectively. Fig. S5B appears to be noisier than fig. S5A because of the

lower intensity of the (301) reflections. It can be seen that fig. S5 is in very good

agreement with the result obtained from the whole pattern fitting method shown in Fig. 3.

Fig. S1

Characterizations of the pristine C/LiFePO4 composite powder. (A) Image by scanning

electron microscope (SEM). (B) Rietveld refinement of the x-ray diffraction data for the

pristine LiFePO4 measured at ID31, ESRF, Grenoble, France. The wavelength

determined by calibration was 0.39996 Å. (C) Particle size distribution based on an

analysis of 95 particles observed in the SEM images.

Fig. S2

Development of peak asymmetry for the reflections from LiFePO4 (LFP). The (200),

(211)/(020), and (301) reflections from LiFePO4 asymmetrically broaden towards higher

2θ angles, while the (101) reflection asymmetrically broadens towards lower angles. The

same reflections from FePO4 (FP) are marked by dashed lines.

Fig. S3

Typical whole powder pattern fitting results. This pattern is taken at 720 s, corresponding

to the global composition of Li0.43FePO4. (A) Only symmetrical peak profile is used. (B)

Symmetrical peak profiles convoluted with the hkl-dependent exponential function.

Fig. S4

Refinement result of the scale factors of the LiFePO4 (LFP) and FePO4 (FP) phases

during the first two cycles.

Fig. S5

Phase population distribution obtained from multi-peak fitting. (A) shows the result for

the (200) reflection and (B) for the (301) reflection.

References and Notes

1. Y. Xia, T. Sakai, T. Fujieda, X. Yang, X. Sun, J. McBreen, M. Yoshio, Correlating capacity

fading and structural changes in Li1+yMn2–yO4–δ spinel cathode materials: A systematic

study on the effects of Li/Mn ratio and oxygen deficiency. J. Electrochem. Soc. 148,

A723–A729 (2001). doi:10.1149/1.1376117

2. N. Yabuuchi, T. Ohzuku, Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for

advanced lithium-ion batteries. J. Power Sources 119-121, 171–174 (2003).

doi:10.1016/S0378-7753(03)00173-3

3. D. Zeng, J. Cabana, J. Bréger, W. Yoon, C. P. Grey, Cation ordering in Li[NixMnxCo(1–2x)]O2-

layered cathode materials: A nuclear magnetic resonance (NMR), pair distribution

function, x-ray absorption spectroscopy, and electrochemical study. Chem. Mater. 19,

6277–6289 (2007). doi:10.1021/cm702241a

4. M. Kunduraci, G. G. Amatucci, Synthesis and characterization of nanostructured 4.7 V

LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. J. Electrochem. Soc. 153,

A1345–A1352 (2006). doi:10.1149/1.2198110

5. A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, Phospho-olivines as positive-electrode

materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997).

doi:10.1149/1.1837571

6. B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging. Nature 458, 190–

193 (2009). Medline doi:10.1038/nature07853

7. G. Chen, X. Song, T. J. Richardson, Electron microscopy study of the LiFePO4 to FePO4

phase transition. Electrochem. Solid-State Lett. 9, A295–A298 (2006).

doi:10.1149/1.2192695

8. L. Laffont, C. Delacourt, P. Gibot, M. Y. Wu, P. Kooyman, C. Masquelier, J. M. Tarascon,

Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss

spectroscopy. Chem. Mater. 18, 5520–5529 (2006). doi:10.1021/cm0617182

9. J. L. Allen, T. R. Jow, J. Wolfenstine, Analysis of the FePO4 to LiFePO4 phase transition. J.

Solid State Electrochem. 12, 1031–1033 (2008). doi:10.1007/s10008-007-0459-1

10. C. V. Ramana, A. Mauger, F. Gendron, C. M. Julien, K. Zaghib, Study of the Li-

insertion/extraction process in LiFePO4/FePO4. J. Power Sources 187, 555–564 (2009).

doi:10.1016/j.jpowsour.2008.11.042

11. Y. Zhu, J. W. Wang, Y. Liu, X. Liu, A. Kushima, Y. Liu, Y. Xu, S. X. Mao, J. Li, C. Wang,

J. Y. Huang, In situ atomic-scale imaging of phase boundary migration in FePO4

microparticles during electrochemical lithiation. Adv. Mater. 25, 5461–5466 (2013).

Medline doi:10.1002/adma.201301374

12. N. Meethong, H.-Y. S. Huang, W. C. Carter, Y.-M. Chiang, Size-dependent lithium

miscibility gap in nanoscale Li1–xFePO4. Electrochem. Solid-State Lett. 10, A134–A138

(2007). doi:10.1149/1.2710960

13. G. Kobayashi, S. Nishimura, M.-S. Park, R. Kanno, M. Yashima, T. Ida, A. Yamada,

Isolation of solid solution phases in size-controlled LixFePO4 at room temperature. Adv.

Funct. Mater. 19, 395–403 (2009). doi:10.1002/adfm.200801522

14. C. Delmas, M. Maccario, L. Croguennec, F. Le Cras, F. Weill, Lithium deintercalation in

LiFePO4 nanoparticles via a domino-cascade model. Nat. Mater. 7, 665–671 (2008).

Medline doi:10.1038/nmat2230

15. G. Brunetti, D. Robert, P. Bayle-Guillemaud, J. L. Rouvière, E. F. Rauch, J. F. Martin, J. F.

Colin, F. Bertin, C. Cayron, Confirmation of the domino-cascade model by

LiFePO4/FePO4 precession electron diffraction. Chem. Mater. 23, 4515–4524 (2011).

doi:10.1021/cm201783z

16. R. Malik, F. Zhou, G. Ceder, Kinetics of non-equilibrium lithium incorporation in LiFePO4.

Nat. Mater. 10, 587–590 (2011). Medline doi:10.1038/nmat3065

17. B. Orvananos, H.-C. Yu, K. Thornton, R. Malik, A. Abdellahi, G. Ceder, C. P. Grey,

Architecture dependence on the dynamics of nano-LiFePO4 electrodes. Electrochim. Acta

10.1016/j.electacta.2014.06.029 (2014). doi:10.1016/j.electacta.2014.06.029

18. P. Bai, D. A. Cogswell, M. Z. Bazant, Suppression of phase separation in LiFePO4

nanoparticles during battery discharge. Nano Lett. 11, 4890–4896 (2011). Medline

doi:10.1021/nl202764f

19. Y. Orikasa, T. Maeda, Y. Koyama, H. Murayama, K. Fukuda, H. Tanida, H. Arai, E.

Matsubara, Y. Uchimoto, Z. Ogumi, Direct observation of a metastable crystal phase of

LixFePO4 under electrochemical phase transition. J. Am. Chem. Soc. 135, 5497–5500

(2013). Medline doi:10.1021/ja312527x

20. N. Sharma, X. Guo, G. Du, Z. Guo, J. Wang, Z. Wang, V. K. Peterson, Direct evidence of

concurrent solid-solution and two-phase reactions and the nonequilibrium structural

evolution of LiFePO4. J. Am. Chem. Soc. 134, 7867–7873 (2012). Medline

doi:10.1021/ja301187u

21. Y. Orikasa, T. Maeda, Y. Koyama, H. Murayama, K. Fukuda, H. Tanida, H. Arai, E.

Matsubara, Y. Uchimoto, Z. Ogumi, Transient phase change in two phase reaction

between LiFePO4 and FePO4 under battery operation. Chem. Mater. 25, 1032–1039

(2013). doi:10.1021/cm303411t

22. O. J. Borkiewicz, B. Shyam, K. M. Wiaderek, C. Kurtz, P. J. Chupas, K. W. Chapman, The

AMPIX electrochemical cell: A versatile apparatus for in situ x-ray scattering and

spectroscopic measurements. J. Appl. Cryst. 45, 1261–1269 (2012).

doi:10.1107/S0021889812042720

23. C. Fongy, A.-C. Gaillot, S. Jouanneau, D. Guyomard, B. Lestriez, Ionic vs electronic power

limitations and analysis of the fraction of wired grains in LiFePO4 composite electrodes.

J. Electrochem. Soc. 157, A885–A891 (2010). doi:10.1149/1.3432559

24. G. Ouvrard, M. Zerrouki, P. Soudan, B. Lestriez, C. Masquelier, M. Morcrette, S. Hamelet,

S. Belin, A. M. Flank, F. Baudelet, Heterogeneous behaviour of the lithium battery

composite electrode LiFePO4. J. Power Sources 229, 16–21 (2013).

doi:10.1016/j.jpowsour.2012.11.057

25. B. E. Warren, in X-ray Diffraction (Addison-Wesley, Reading, MA, 1969), chap. 13.

26. G. Pawley, Unit-cell refinement from powder diffraction scans. J. Appl. Cryst. 14, 357–361

(1981). doi:10.1107/S0021889881009618

27. A. L. Goodwin, M. Calleja, M. J. Conterio, M. T. Dove, J. S. Evans, D. A. Keen, L. Peters,

M. G. Tucker, Colossal positive and negative thermal expansion in the framework

material Ag3[Co(CN)6]. Science 319, 794–797 (2008). Medline

doi:10.1126/science.1151442

28. A. A. Coelho, TOPAS-Academic, version 4.1 (computer software) (Coelho Software,

Brisbane, 2007).

29. G. Barsch, J. Krumhansl, Twin boundaries in ferroelastic media without interface

dislocations. Phys. Rev. Lett. 53, 1069–1072 (1984). doi:10.1103/PhysRevLett.53.1069

30. J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. J.

Chem. Phys. 28, 258–267 (1958). doi:10.1063/1.1744102

31. M. Wagemaker, D. P. Singh, W. J. Borghols, U. Lafont, L. Haverkate, V. K. Peterson, F. M.

Mulder, Dynamic solubility limits in nanosized olivine LiFePO4. J. Am. Chem. Soc. 133,

10222–10228 (2011). Medline doi:10.1021/ja2026213

32. J. L. Dodd, R. Yazami, B. Fultz, Phase diagram of LixFePO4. Electrochem. Solid-State Lett.

9, A151–A155 (2006). doi:10.1149/1.2164548

33. C. Delacourt, P. Poizot, J.-M. Tarascon, C. Masquelier, The existence of a temperature-

driven solid solution in LixFePO4 for 0 ≤ x ≤ 1. Nat. Mater. 4, 254–260 (2005).

doi:10.1038/nmat1335

34. W. C. Chueh, F. El Gabaly, J. D. Sugar, N. C. Bartelt, A. H. McDaniel, K. R. Fenton, K. R.

Zavadil, T. Tyliszczak, W. Lai, K. F. McCarty, Intercalation pathway in many-particle

LiFePO4 electrode revealed by nanoscale state-of-charge mapping. Nano Lett. 13, 866–

872 (2013). Medline doi:10.1021/nl3031899

35. J. D. Sugar, F. El Gabaly, W. C. Chueh, K. R. Fenton, T. Tyliszczak, P. G. Kotula, N. C.

Bartelt, High-resolution chemical analysis on cycled LiFePO4 battery electrodes using

energy-filtered transmission electron microscopy. J. Power Sources 246, 512–521

(2014). doi:10.1016/j.jpowsour.2013.08.003

36. A. Yamada, Y. Kudo, K.-Y. Liu, Phase Diagram of LixMnyFe1–yPO4 (0 ≤ x, y ≤ 1). J.

Electrochem. Soc. 148, A1153–A1158 (2001). doi:10.1149/1.1401083

37. J. Molenda, W. Ojczyk, J. Marzec, Electrical conductivity and reaction with lithium of LiFe1–

yMnyPO4 olivine-type cathode materials. J. Power Sources 174, 689–694 (2007).

doi:10.1016/j.jpowsour.2007.06.238

38. K.-W. Nam, X.-J. Wang, W.-S. Yoon, H. Li, X. Huang, O. Haas, J. Bai, X.-Q. Yang, In situ

x-ray absorption and diffraction studies of carbon coated LiFe1/4Mn1/4Co1/4Ni1/4PO4

cathode during first charge. Electrochem. Commun. 11, 913–916 (2009).

doi:10.1016/j.elecom.2009.02.031

39. K.-W. Nam, W.-S. Yoon, K. Zaghib, K. Yoon Chung, X.-Q. Yang, The phase transition

behaviors of Li1–xMn0.5Fe0.5PO4 during lithium extraction studied by in situ x-ray

absorption and diffraction techniques. Electrochem. Commun. 11, 2023–2026 (2009).

doi:10.1016/j.elecom.2009.08.044

40. A. Perea, M. T. Sougrati, C. M. Ionica-Bousquet, B. Fraisse, C. Tessier, L. Aldon, J.-C.

Jumas, Operando 57

Fe Mössbauer and XRD investigation of LixMnyFe1–yPO4/C

composites (y = 0; 0.25). RSC Adv. 2, 2080–2086 (2012). doi:10.1039/c1ra00256b

41. H. Gwon, D.-H. Seo, S.-W. Kim, J. Kim, K. Kang, Combined first-principle calculations and

experimental study on multi-component olivine cathode for lithium rechargeable

batteries. Adv. Funct. Mater. 19, 3285–3292 (2009). doi:10.1002/adfm.200900414

42. K.-Y. Park, J. Hong, J. Kim, Y.-U. Park, H. Kim, D.-H. Seo, S.-W. Kim, J.-W. Choi, K.

Kang, Factors that affect the phase behavior of multi-component olivine (LiFexMnyCo1–x–

yPO4; 0 < x, y < 1) in lithium rechargeable batteries: One-phase reaction vs. two-phase

reaction. J. Electrochem. Soc. 160, A444–A448 (2013). doi:10.1149/2.036303jes

43. D. B. Ravnsbæk, K. Xiang, W. Xing, O. J. Borkiewicz, K. M. Wiaderek, P. Gionet, K. W.

Chapman, P. J. Chupas, Y. M. Chiang, Extended solid solutions and coherent

transformations in nanoscale olivine cathodes. Nano Lett. 14, 1484–1491 (2014). Medline

doi:10.1021/nl404679t

44. N. C. Popa, Texture in Rietveld refinement. J. Appl. Cryst. 25, 611–616 (1992).

doi:10.1107/S0021889892004795

45. M. Järvinen, Application of symmetrized harmonics expansion to correction of the preferred

orientation effect. J. Appl. Cryst. 26, 525–531 (1993). doi:10.1107/S0021889893001219

46. P. S. Rudman, An x-ray diffraction method for the determination of composition distribution

in inhomogeneous binary solid solutions. Acta Crystallogr. 13, 905–909 (1960).

doi:10.1107/S0365110X60002211