25
Switching Regulators -1- SWITCHING REGULATORS INTRODUCTION Switching Regulators versus Linear Regulators Advantages: switching regulators have better power efficiency, therefore cheaper to operate, smaller in size and light weight, can operate without 60 Hz transformer (most expensive item of power supply), can step up or step down the input voltage. Disadvantages: they are more complex to design, harder to stabilise negative feedback loop, may have poor response to transient loads, normally designed for constant load current, generate a lot of ElectroMagnetic Interference (EMI) and Radio Frequency Interference (RFI) if not properly laid out and shielded. Efficiency of Linear Regulators Linear power supplies are easier to design and generally more expensive - because of 60 Hz power transformer - and waste more power because the power elements (transistors) operate in their active or linear mode. L O A D Vin VOLTAGE REGULATOR DC FEED BACK LINEAR D C O U T P U T Vin=Vo Vin η (% ) 100 Vin=Vo+Vdo η max Assuming that the standby power is negligible, that is P SBY = V in I SBY = 0, we have the following: P in = V in I in P o = V o I o = V o ( I in I Q ) V o I in η = P o P in = V o I in V in I in = V o V in From the results shown above, efficiency will be maximum for the minimum value of V in , V o being fixed. The minimum value for V in = V o +V DO where V DO is the drop-out voltage of the regulator which is the minimum differential voltage between input and output. In practice, this minimum V in is never used because one must use a good safety margin in order to guarantee output regulation. Example Using a 5V regulator, η = (5/10)*100=50% for V in =10V, and η = (5/20)*100=25% for V in =20V. Using a 15V regulator with V in =20V we have η = (15/20)*100=75% , and V in =25V we have η = (15/25)*100=60%.

SWITCHING REGULATORS - elearning.algonquincollege.comelearning.algonquincollege.com/coursemat/saurioc/linear/LIN-NOTES/... · exercise-1: buck regulator assume: vce(sat)˜ = 0.5v,

  • Upload
    voxuyen

  • View
    228

  • Download
    0

Embed Size (px)

Citation preview

Switching Regulators

-1-

S W I T C H I N G R E G U L A T O R S

INTRODUCTION Switching Regulators versus Linear Regulators Advantages: switching regulators have better power efficiency, therefore cheaper to operate, smaller in size and light weight, can operate without 60 Hz transformer (most expensive item of power supply), can step up or step down the input voltage. Disadvantages: they are more complex to design, harder to stabilise negative feedback loop, may have poor response to transient loads, normally designed for constant load current, generate a lot of ElectroMagnetic Interference (EMI) and Radio Frequency Interference (RFI) if not properly laid out and shielded. Efficiency of Linear Regulators Linear power supplies are easier to design and generally more expensive - because of 60 Hz power transformer - and waste more power because the power elements (transistors) operate in their active or linear mode.

LOAD

Vi n VOLTAGEREGULATOR

DC

FEEDBACK

LINEAR

DC

OUTPUT

Vin=VoVin

η(% )

100

Vin=Vo+Vdo

η m ax

Assuming that the standby power is negligible, that is PSBY = VinISBY = 0, we have the following:

Pin = VinIin Po = Vo Io = Vo(Iin − IQ) ≈ Vo Iin η = PoPin

= VoIinVinIin

= VoVin

From the results shown above, efficiency will be maximum for the minimum value of Vin, Vo being fixed. The minimum value for Vin = Vo+VDO where VDO is the drop-out voltage of the regulator which is the minimum differential voltage between input and output. In practice, this minimum Vin is never used because one must use a good safety margin in order to guarantee output regulation. Example Using a 5V regulator, η = (5/10)*100=50% for Vin=10V, and η = (5/20)*100=25% for Vin=20V. Using a 15V regulator with Vin=20V we have η = (15/20)*100=75% , and Vin=25V we have η = (15/25)*100=60%.

Switching Regulators

-2-

Efficiency of Switching Regulators

ON/OFF

FEEDBACK

LOAD

Vi n

PULSEWIDTHMODULATOR

ESRL

ESRC

C

L

IR

IL

IC

I in

ID

Vo

V L

-V o+V

DF

Vin -V o

I L

Imax

Imin

∆I

I L(ave) = I R

t

tDT

(1-D)T

T

D: duty cycle of the power MOSFET, that is tON/T VDF : diode forward voltage. Assuming linear rising and falling edges of the FET drain current and no delay between its ID and VDS waveforms, the efficiency of the above stepdown switching regulator can be shown to be given by the following expression: η =

Vo × IR

VoIR + VDF (1 − D)IR + ESRLIR2 +∆I2 ESRL + ESRC( )

12

+DRON Imin2 + Imin∆I + ∆I2

3

+ F3VON + Vin

2

Imintr + Imaxt f( )

The numerator of the above expression is the O/P power and the denominator represents the following items: O/P pwr+diode pwr+ind. DC pwr+ind. and cap. AC pwr+FET AC and DC power+FET switching pwr. ESRL and ESRC are equivalent series resistors that account for losses in inductor and capacitor respectively. tr and tf are the rise and fall times of drain current waveform of the MOSFET. ∆I is the ripple current through the inductor given by: ∆I = DT(Vin-Vo)/L = (1-D)T(Vo-VDF)/L. F is the switching frequency of the MOSFET determined by the pulsewidth modulator. One can see that efficiency of the regulator will go down as the switching frequency goes up, but the size of the inductor and the capacitor goes down and the cost of the regulator is reduced.

Switching Regulators

-3-

BUCK OR STEPDOWN REGULATOR

+

-Vin

SW ON forDT seconds

0A

OFF C

L

R

+ (V in-V o) -

Vo

IRIin

ICIL

+

-Vin

SW OFF for(1-D)T seconds

ON

L

R

- (V o+V DF) +

Vo

IR

ICIL

IDC

0A

-VDF+

I in

V SW

I L

VON

Vin+VDF

0A

Imax

Imin

Imax

Imin

∆I

∆I

I L(ave) = I R

I D

I C

0A

VL

-V o-V DF

Vin-V ON-V o

Imax

Imin

+∆I/2

−∆I/2

∆I

DT

(1-D)T

T

VL = Ld idt

= L∆ i∆ t

m− =∆ i∆ t

=VLL

= −Vo + VDFL

≈ −VoL

m + =∆ i∆ t

=VLL

=Vin − Vo − VON

L≈Vin − VoL

m+

m− = ∆ I DT∆ I (1 − D)T

= D1− D

≈ Vin − VoVo

⇒ Vo = DVin

Formulas

Vo = D Vin IL ave = IR ave

∆Vo ≈∆QCC

2

+ ∆I × ESRC( )2

where ∆Q = ICdt∫

Switching Regulators

-4-

BOOST OR STEPUP REGULATOR

+

-

+

-

0A

VinVo

SW ON forDT seconds

SW OFF for(1-D)T seconds

+ V in -

C

L

R

IR

IC

IL 0V - +OFF

Vo

- (V o+VDF- Vin) +

Vin

+ V DF - VoIR

IDIC

IL 0AISW

VoR

ON

V L

I L

Imax

Imin

∆I

I L(ave) = I R/(1-D)

+V in

-V o-VDF+Vin

I D

I C

0A

Imax

Imin

∆I

DT

(1-D)T

T

I R

IR-I max IR-I min

+∆Q−∆Q

VL ave=0

IC ave=0

t

t

t

t

m + =VinL

=∆ IDT

m − = −Vo + VDF −Vin

L≈ −Vo − VinL

=∆ I

(1− D)T

m+

m− =

∆ IDT∆ I

(1− D)T

=1− DD

VinL

Vo −VinL

⇒ Vo = Vin / (1− D)

Formulas

Vo = Vin/(1-D), IL ave = IR/(1-D)

∆Vo ( PP) ≈∆QC

2

+ ∆IC (PP )ESRC( )2

where ∆Q = ICdt∫

ID (ave) =1T

× ID (t )dt0

T

∫ =1T

× (1− D)T ×Imin + Imax

2

= (1 −D)IL (ave)

ID (ave) = (1−D)IL (ave) = IC (ave) + IR (ave) = IR (ave) ⇒ IR(ave ) = (1− D)IL (ave)

INVERTING BUCK-BOOST REGULATOR

Switching Regulators

-5-

+

-

- +0A

+Vin-

-V o+

SW ON forDT seconds

C R

IR

ICOFF

Vin L

IL

IR

+

-

SW OFF for(1-D)T seconds

-V DF+

Vin

IRID

ICIL

R

-V o+

-Vo+V DF

+

ON

IL IR

C

V L

I L

Imax

Imin

∆I

I L(ave) = I R/(1-D)

+Vin

-V o-V DF

I D

I C

0A

Imax

Imin

∆I

DT

(1-D)T

T

I R

IR-I max IR-I min

+∆Q−∆Q

VL ave=0

IC ave=0

t

t

t

t

m + = VinL

= ∆ IDT

m − = − Vo + VDFL

≈ − VoL

= ∆ I(1− D)T

m+

m− =

∆ IDT∆ I

(1− D)T

= 1− DD

VinLVoL

⇒ Vo = VinD / (1 − D)

Formulas

Vo = VinD/(D-1) IL ave = IR/(1-D)

∆Vo ( PP) ≈∆QC

2

+ ∆IC (PP )ESRC( )2

ID (ave) =1T

× ID (t )dt0

T

∫ =1T

× (1− D)T ×Imin + Imax

2

= (1 −D)IL (ave)

ID (ave) = (1−D)IL (ave) = IC (ave) + IR (ave) = IR (ave) ⇒ IR(ave ) = (1− D)IL (ave)

where ∆Q = ICdt∫

TL594/595 PULSE WIDTH MODULATOR OPERATION

Switching Regulators

-6-

+- D Q

Q

SAWTOOTHOSCILLATOR

+5VREFERENCE

UNDERVOLTAGELOCKOUT

Q1

Q2CLK

LOAD

VO (REG)

I LOAD

I LOAD

RF1

RE1

RE2

RF2

RSEN

+

-

RV 100R V

DEAD TIME CONTROL

OUTPUTCONTROL

VCCRT CT

VSEN

F/B

TL594/595

0,1V

4

1

2

16

15

3

6 5 14 12 7

8

9

10

11

13

VCON

VD

VC

VOUT

VOSC

VB1

VB2

0V TYP.

VCON

VDEAD + 0,1

+3,1V TYP.

t

VC

VD

VOUT

VB1

VB2

NOTE: Above waveforms for output control high in push-pull applications. If output control is tied low, VB1 and VB2 will be the same, that is Q1 and Q2 are turned ON and OFF at the same time.

Switching Regulators

-7-

BUCK REGULATOR EXAMPLE -FIG.19 MC3460A DATA SHEETS Assume: VCE(sat) = 0.5V, VDF = 1V, Vin = 8V and a constant load of 1A.

I in

V SW

I L

0A

I D

I C

0A

VL

0.5V

9V

0.46 A PP

0.46 A PP

0.46 A PP

1A ave

27.7µs

11.5µs

39.2µs

+2.5V

-6V

-0.23A P

+0.23A P +2.25µC

OV ave

0A ave

0.706A ave

1A ave

EQUAL AREAEQUALAREA

-2.25µC

Switching Regulators

-8- 8

EXERCISE-1: BUCK REGULATOR Assume: VCE(sat) = 0.5V, VDF = 1V, Vin = 40V and load of 1A

LOAD

NI-1

INV-1

COMP

DEAD

CT

RT

GND

NI-2

INV-2

REF

Vcc

C

E

MC34060

Vin = +8V t o 40V Vo = 5V

1AFIXEDLOAD

10 nF47K

1M

47 µF63V

10 µF16V 4, 7K

3901 nF

47K

4, 7K

47

75

1000 µF10V

TIP32

MR850

10 nF

ESR50 m

150 µHat 2A

ESR50 m

0, 1

4, 7K

3, 3K

1000V 0,38V

+5V

FOSC ≈1,2RTCT

∆Vo ≈∆QCC

2

+ ∆I × ESRC( )2

I in

V SW

I L

I D

I C

VLEQUAL AREA

EQUALAREA

Switching Regulators

-9- 9

EXAMPLE-2: BOOST REGULATOR Assume: RdsON = 0.1Ω, VDF = 1V, Vin = 8V and load of 0,5A

0V 0,38V

+5V

LOAD

NI-1

INV-1

COMP

DEAD

CT

RT

GND

NI-2

INV-2

REF

Vcc

C

E

MC34060 HIGH-SPEED

MOSFETDRIVER

10 µF16V 4, 7K

3901 nF

47K

4, 7K

10 nF

3, 3K

100

Vin = +8V t o 26V

22K

3, 9K

47 µF35V

33K47 nF

2, 7M

0, 3

470 µF40V

ESR100 m

150 µHat 4A

470 µF40V

ESR100 m

0, 5AFIXEDLOAD

Vo = 28V

20 µHat 4A

MR850

1K

Vo=+28,4V

FOSC ≈ 1,2RTCT

∆VC ≈∆QCC

2

+ ∆I × ESRC( )2 ∆VC1 ≈ 0.262 VPP ∆VC2 ≈ 8,26 mVPP

V L1

I L1

I L1 (ave) = I R/(1-D)

I D

I C1

t

t

t

t

I SW

(FET)

0A ave

2.6A

1.08A

0,5A

-2,1A

2,6A

1,08A

2,6A

1,08A

1,52 A pp

1,52 A pp

1,838Aave

+8V

-21,4V

28,5 µs10,66 µs

-14,25 µC+14,25 µC-0,58A

Switching Regulators

-10- 10

EXERCISE-2: BOOST REGULATOR Assume: RdsON = 0.1Ω, VDF = 1V, Vin = 26V and load of 0,5A

0V 0,38V

+5V

LOAD

NI-1

INV-1

COMP

DEAD

CT

RT

GND

NI-2

INV-2

REF

Vcc

C

E

MC34060 HIGH-SPEED

MOSFETDRIVER

10 µF16V 4, 7K

3901 nF

47K

4, 7K

10 nF

3, 3K

100

Vin = +8V t o 26V

22K

3, 9K

47 µF35V

33K47 nF

2, 7M

0, 3

470 µF40V

ESR100 m

150 µHat 4A

470 µF40V

ESR100 m

0, 5AFIXEDLOAD

Vo = 28V

20 µHat 4A

MR850

1K

Vo=+28,4V

V L1

I L1

I L1 (ave) = I R/(1-D)

I D

I C

t

t

t

t

I SW

(FET)

Switching Regulators

-11- 11

EXAMPLE-3: BUCK-BOOST REGULATOR RdsON = 0.1Ω, VDF = 1V, Vin = 8V and load of 0,25A

LOAD

NI-1

INV-1

COMP

DEAD

CT

RT

GND

NI-2

INV-2

REF

Vcc

C

E

MC34060

HIGH-SPEEDMOSFETDRIVER

L2

10 µF16V 4, 7K

1 nF47K

10 nF

Vin = +8V t o +40V Vo = - 15V

47 µF63V

8201

0, 25AFIXEDLOAD

47K3, 3k

3K

MR851

20 µHat 1A

330 µF25V

330 µF25V

ESR150 m

ESR150 m

150 µHat 2A

SW

L1

C1 C2

1K

1K

30K

10K

7, 5K

1M

10 nF 47K

FOSC ≈1,2RTCT

∆VC ≈∆QCC

2

+ ∆I × ESRC( )2 ∆VC1 ≈ 0.218VPP ∆VC 2 ≈ 10,3mVPP

V L1

I L1

I L1 (ave) = I R/(1-D)

I D

I C

t

t

t

t

I SW

(FET)0A

1,45A

0,05A

+0,2A

+0,25A

-1,2A

-6,71 µC

1,45A

0,05A

1,45A

0,05A0,75Aave

+8V

-16V

13,05µs26,1µs

1,4A pp

1,4A pp

Switching Regulators

-12- 12

EXERCISE-3: BUCK-BOOST REGULATOR RdsON = 0.1Ω, VDF = 1V, Vin = 40V and load of 0,25A

LOAD

NI-1

INV-1

COMP

DEAD

CT

RT

GND

NI-2

INV-2

REF

Vcc

C

E

MC34060

HIGH-SPEEDMOSFETDRIVER

L2

10 µF16V 4, 7K

1 nF47K

10 nF

Vin = +8V t o +40V Vo = - 15V

47 µF63V

8201

0, 25AFIXEDLOAD

47K3, 3k

3K

MR851

20 µHat 1A

330 µF25V

330 µF25V

ESR150 m

ESR150 m

150 µHat 2A

SW

L1

C1 C2

1K

1K

30K

10K

7, 5K

1M

10 nF 47K

V L1

I L1

I L1 (ave) = I R/(1-D)

I D

I C

t

t

t

t

I SW

(FET)

-13- 13

FLYBACK-BUCK SWITCHING REGULATOR

NI

INV

F/B

DEAD

CT

RT

GND

C1

NI

INV

REF

O/C

Vcc

C2

E2

E1

TL594

LOAD

NI

INV

F/B

DEAD

CT

RT

GND

C1

NI

INV

REF

O/C

Vcc

C2

E2

E1

TL594

HIGH-SPEEDMOSFETDRIVER

HIGH-SPEEDMOSFETDRIVER

Vo

I L

110V AC60 Hz

HYDRO GROUND

Q1

C1C2

D1

D2

D3

C3

L3 L4

C4

Q2II 1 2I in

I C3

ESR3

ESR1

LINEFILTER

15V

20k

6, 8k

2k

0 ,1 µ F

0 ,1 µ F

ESR2

I C1

I C2

DESIGN SPECS: Vout = +15V at 5A constant load, ∆VC3 = 20 mVPP max, ∆Vout = 1 mVPP max, FSW = 100 kHz, current limit 8A, soft start of 0,3 second, ∆VC1 = 20 VPP max at 120 Hz. Assume ∆VC2= 100 mVPP max and 8 APP ripple in inductor L3. Assume mVDF = 1V for all diodes and RDS(ON) = 50 mΩ for Q2.

FLYBACK-BUCK SWITCHING REGULATOR WAVEFORMS

Switching Regulators page # 14

0V TYP.

VCON

V DEAD + 0,1

+3,1V TYP.

t

V CE1

V CE2 0V

Vcc

V DS1

V DS2

I1

I2

IL

IC3

IC2

IC1

287V AVE

0V

287 AVE

0V

2,5A ave9A

1A

9A

1A5A

+4A

-4A

5 µs 5 µs

Switching Regulators

-15-

EXAMPLE-5 Push-Pull Switching Power Supply

NI

INV

F/B

DEAD

CT

RT

GND

C1

NI

INV

REF

O/C

Vcc

C2

E2

E1

TL594

HIGH-SPEEDMOSFETDRIVER

HIGH-SPEEDMOSFETDRIVER

C4

I L

110V AC60 Hz

110V AC60 Hz

Q1

Q2

Np: Ns

Np: Ns

LINEFILTER

100 kHz

1 5 V

5 AL1 L2

C1 C2

C3

1 5 V1 W

Q3

C5

+ 1 5 V

ESR1 ESR2

ESR3

1 4 3 ,6 V ave

2 0 Vpp1 2 0 Hz r i ppl e

LOAD

Design the above power supply to meet the following specifications: Average duty cycle of Q1 and Q2: D1 = D2 = 12,5% V0 = +15V at 5A ∆Vo = 5 mVPP ∆VC1 = 0,3 VPP ∆VC2 = 5 mVPP ∆VC3 = 20 VPP ∆VC5 < 3 VPP ∆IL1 = 8 APP All transformers 100% efficiency (Pout = Pin) and DTR = 25% Soft start: 200 ms MOSFET's : Rds(on)≈ 0

Assume capacitor ESR ≈25mΩ ×1000 µF

C

Formulas

FOSC ≈ 1,1RTCT

∆VC ≈∆QCC

2

+ ∆I × ESRC( )2

VL = L ∆I∆t

∆VC = ∆QC

NpriNsec

=VpriVsec

= IsecIpri

push-pull regulator VoVin

= NsecNpri

× 2 DTR1,5 − 0, 5ηreg( )

Switching Regulators

-16-

V L1

IL1

8 AppIL(ave)

IR(ave)

ID1

IC1

0A

VL ave=0

IC ave=0

t

t

t

ID2

+∆Q

−∆Q

IQ1

IQ2

t

t

V DS1

t

15V

-5V

5 A ave

9A

1A

9A

1A

9A

1A

+4A

-4A

7,5µs

2,5µs

t

t

V DS2

t

t

ICT prim

0,21A

1,88A

0,21A

1,88A

0,21A

1,88A

0V

191,4V ave287,2V ave

95,7V ave

191,4V ave

287,2V ave

95,7V ave

0V

0,261A ave

Switching Regulators

Switching Regulators page # 17

BUCK REGULATOR FREQUENCY COMPENSATION

Main Circuit Diagram

LOAD

NI-1

INV-1

COMP

DEAD

CT

RT

GND

NI-2

INV-2

REF

Vcc

C

E

MC34060

1AFIXEDLOAD

47

75

TIP32

MR850

10 nF

ESR50 m

0, 1

3, 3K

100

1 µF

1 µF16V

47k

100 µF10V

ESR500 m

300 µHat 2A

1000 µF10V

60 µHat 2A

ESR50 m

0, 5

ESR10 m

100 µF63V

0 ,5

6 0 µ H0, 3

Rsour ce

1 0 m

DAMPINGRESISTOR

560K

47K

1nF

6200

6200

62K

62K

1µF

Vin+8Vto+40V

Vo = +5V

SOFT

START

FREQUENCYCOMPENSATION

Block Diagram of Voltage Loop

+ Vr ef

-13

+ 1 Vi nD(s)

Vcon(s)

Vin(s)

Vo(s)

SL

RL

RC

Ro

1SC

PWMODULATOR

RFF

RE1

RE2RF2

RF1

REE

CF1

LOAD

Io

FEEDBACK

LOOP

LOOP

VCON

DT T

D = 1 - Vc3

t

MC34060 PWM WAVEFORM

+3V

0V

CFF

Error Amp AC Gain

Switching Regulators

Switching Regulators page # 18

∆Vcon (s)∆VO(s)

=REE

REE + RFF×

11+ SCFF REE RFF( )× 1 +

RF2

RE

×

1 + SCF1

RE RF1 + RF2( )+ RF1RF2( )RE + RF2( )

1+ SCF1 RF1 + RF2( )

where RE = RE1 RE2 . In most designs, RF2 >> RE and RF2 >> RF1 , therefore the above expression simplifies to

∆Vcon (s)∆VO(s)

=REE

REE + RFF×

11+ SCFF REE RFF( )× 1 +

RF2

RE

×

1 + SCF1 RF1 + RE( )1+ SCF1RF2

LC Filter Transfer Function

F(s) =Ro

Ro + RC1

×1 + SC1(RC1 + RDAMP )( )× 1 L1 C1( )

S2 + S 1C RC1 + Ro( ) +

RL1 + (RC1 + RDAMP ) Ro( )L1

+

RL1 + RoL1 C1 RC1 + Ro( )

The above expression assumes that the second RLC output filter does not load the first one for frequencies of to Fn1 which can be true if we make Fn2 > 10 Fn1.

In most cases, Ro >> RC1 and Ro >> RL1 which simplifies the expression to:

F(s) ≈1 + SC1(RC1 + RDAMP )( )× 1 L1 C1( )

S2 + S 1C1Ro

+ RL1 + RC1 + RDAMPL1

+

1L1 C1

Loop Gain

L(S) ≈ −VinREE 1 + RF2

RE

3 × REE + RFF( ) ×1

1 + SCFF REE RFF( )×1 + SCF1 RF1 + RE( )

1 + SCF1RF2×

1 + SC1(RC1 + RDAMP)( )× 1 L1C1( )S2 + S 1

C1Ro+ RL1 + RC1 + RDAMP

L1

+

1L1 C1

×1 + SC2RC2( )× 1 L2 C2( )

S2 + S 1C2Ro

+ RL2 + RC2

L2

+

1L2 C2

The error amp DC gain should not be equal to the op amp gain because frequency compensation of the voltage loop would be difficult. A DC gain of 40 dB is recommended in a typical design.

Let RF2 = 100RE where RE = RE1 RE 2

1RE1

+1RE2

+1RF 2

≈1RE1

+1RE2

=1REE

+1RFF

Since Vo = VREF = +5V, we must set RE2

RE1

= REERFF

because Vo (DC) = VREF × RE2

RE1 + RE2

× REE+ RFFREE

therefore let RE2 = REE = 6,2k and RE1 = RFF = 62K. RF2 = 100*RE = 100*5,64K =564K, use 560K std

Switching Regulators

Switching Regulators page # 19

-24,1 to -120,5 V/V

27,64 dB min

41,62 dB max

VARIABLE

0 dB

(2π CEEREE RFF)-1

-20 dB/dec

(2π CF1RF2 )-1

0 dB -20 dB/dec

(2π CF1(RE+RF1) )-1

+20 dB/dec0 dB

282 Hz 0

(2π C1(RC1+RDAMP))-1

+20 dB/dec0 dB

(2π L1C1)-1

-40 dB/dec

0 dB

290 Hz

VARIABLE

(2π CF1RF2 )-1

290Hz

29 Hz

0,24 Hz

2050Hz

-40 dB/dec

-60 dB/dec

-20 dB/dec G X F = 29 Hz

0 dB

Fo max

Fo min

0 dB

NOT ENOUGH DAMPINGGAIN MARGIN IS

VERY SMALL27,64 dB min

41,62 dB max

WITHDAMPINGRESISTOR

14,8 dB

3,6 dB

5,8 Hz

(2π L2C2)-1

-40 dB/dec

0 dB

(2π C2RC2)-1

+20 dB/dec3,18 KHz

L(S) ≈ −VinREE 1 + RF 2

RE

3 × REE + RFF( ) × 11 + SCFF REE RFF( )×

1 + SCF1 RF 1 + RE( )1 + SCF 1RF 2

×1 + SC1(RC1 + RDAMP )( )× 1 L1 C1( )

S 2 + S 1C1Ro

+ RL1 + RC1 + RDAMPL1

+

1L1 C1

×1 + SC2RC2( )× 1 L2 C2( )

S 2 + S 1C2Ro

+ RL2 + RC2

L2

+

1L2 C2

2,05 KHz

289 Hz

282 Hz 0,24 Hz theo

Switching Regulators

Switching Regulators page # 20

For stability, the first rolldown frequency should be 0,24 Hz or less, therefore CF1 = 2π RF2 × 0.24( )−1 = 1,18 µF,use 1 µF std For cancellation of the rollup and rolldown terms of L(s) shown at the top, for RF1 = 0 we have:

CF1 RE + RF1( )= CF1RE = CF1 RE1 RE2( )= CFF REE RFF( ) therefore let RE1 = RFF and RE2 = REE and CFF = CF1 Possible instability: if the first L1C1 filter Q is too high, its resonant peak will rise above 0 dB where the loop phaseshift is -180° (plus inversion is -360°) which would cause the loop to oscillate at about 290 Hz. One solution consists in lowering the Q by inserting a series resistor to the LC filter capacitor but this will increase the ripple voltage across the load, therefore a second L2C2 filter has been added to attenuate this high ripple voltage. This second LC filter should have an Fn2 value at least 10 times Fn1 of the first LC filter to keep its resonant peak well below the -20 level for a good gain margin. To eliminate the resonant peak in the first LC circuit gain response its Q must be 0,707 or less, therefore Rdamp + RC = XL / Q = 2*π*290*300µ / 1= 0.547Ω. RC ≈ 50 mΩ is approximate, let Rdamp = 0.5Ω With this value of Rdamp, the ripple voltage at the output of the first LC filter will be: ∆Vo (pp) = ∆I * (RC+Rdamp) = (0,46 App to 1,33 App) * 0.55 = 0.25 to 0.73 Vpp which is way too much for most loads, therefore a second LC filter has to be added to reduce the ripple down to a few mV.The loop speed will be

determined by the loop GBW: τloop = (2π GBW)-1 = (2π 29 Hz )-1 = 5,5 ms

Switching Regulators

Switching Regulators page # 21

Overcompensation - no damping resistor

LOAD

NI-1

INV-1

COMP

DEAD

CT

RT

GND

NI-2

INV-2

REF

Vcc

C

E

MC34060

Vo = 5V

1AFIXEDLOAD

47

75

TIP32

MR850

10 nF

ESR50 m

0, 1

3, 3K

100

1 µF16V

47k

100 µF10V

ESR500 m

300 µHat 2A

1000 µF10V

60 µHat 2A

ESR50 m

ESR10 m

100 µF63V

0 ,5

Vi n+ 8 V

to+ 4 0 V

6 0 µ H0, 3

Rsour ce

1 0 m

47K

1nF

1, 2M

4, 7 µF

4, 7µF

130K

13K

130K

13K

SOFTSTART

FREQUENCYCOMPENSATION

To stabilise the voltage feedback loop without the damping resistor, one has to roll down the loop gain at a lower frequency to ensure that the resonant peak of the first output L1C1 filter does not reach over -20 dB to obtain at least 20 dB of gain margin. The magnitude of the resonat peak is not known for sure because RC abd RL are not known accurately therefore one should insert a small damping resistor in series with C1 if the resonant peak has any chance of being too high. One disadvantage of not using the damping resistor is a lower GBW of L(S) which slow it down:

τloop = (2π GBW)-1= (2π 2,955 ms)-1 = 55 ms compared to 5,5 ms for the first compensation method where GBW = 29 Hz.

Switching Regulators

Switching Regulators page # 22

Overcompensation - no damping resistor

-24,1 to -120,5 V/V

27,64 dB min

41,62 dB max

VARIABLE

0 dB

(2π CEEREE RFF)-1

-20 dB/dec

(2π CF1RF2 )-1

0 dB -20 dB/dec

(2π CF1(RE+RF1) )-1

+20 dB/dec0 dB

282 Hz 0

(2π C1(RC1+RDAMP))-1

+20 dB/dec0 dB

(2π L1C1)-1

290 Hz

-40 dB/dec

0 dB

VARIABLE

(2π CF1RF2 )-1

290Hz

2,9 Hz

0,024 Hz

2050Hz

-40 dB/dec

-60 dB/dec

-20 dB/dec G X F = 2,9 Hz0 dB

Fo maxFo min

0 dB27,64 dB min

41,62 dB max

14,8 dB

3,6 dB

0,58 Hz

25,2 dB

This gain margin is not

accurate because RC and

RL are not known

accurately

(2π L2C2)-1

-40 dB/dec

0 dB

(2π C2RC2)-1+20 dB/dec

3,18 KHz

2,05 KHz

289 Hz

282 Hz 0,024 Hz theo

L(S) ≈ −VinREE 1 + RF2

RE

3 × REE + RFF( ) ×1

1 + SCFF REE RFF( )×1 + SCF1 RF1 + RE( )

1 + SCF1RF2×

1+ SC1RC1( )× 1 L1 C1( )S2 + S 1

C1Ro+ RL1 + RC1

L1

+

1L1 C1

×1 + SC2RC2( )× 1 L2 C2( )

S 2 + S 1C2Ro

+ RL2 + RC2

L2

+

1L2 C2

Switching Regulators

Switching Regulators page # 23

Frequency Compensation with Notch Filter

LOAD

NI-1

INV-1

COMP

DEAD

CT

RT

GND

NI-2

INV-2

REF

Vcc

C

E

MC34060

1AFIXEDLOAD

1 nF 47K

47

75

TIP32

MR850

0, 1

3, 3K

100

1 µF

1 µF16V

ESR500 m

100 µF10V

0, 82 µF

1000 µF10V

ESR50 m

ESR10 m

300 µHat 2A

100 µF63V

0 ,5

10mH

5, 3

100k

330

6 0 µ H0, 3

Rsour ce

ESR50 m

1 0 m

560K

30 µHat 2A

6200

62K

5, 6K

1 µF

33

Vo= +5V

Vin+8Vto

+40V

SOFTSTART

30

µF

NOTCHFILTER

L1 L2

C1 C2

RL1 RL2

RC2RC1

RFF

REE

RE1

RE2

RF2

CF1

RSER

RNI

CNI

Instead of using a damping resistor in the first output LC filter to eliminate its resonant peak, a notch filter can be inserted in the feedback loop. This results in a much lower ripple voltage across the 1000 µF capacitor thus allowing for a higher Fn2 value for the second L2C2 filter and more stability. The resulting loop gain is given by the equation below:

−VinREE 1+ RF2

RE

3 × REE + RFF( ) ×1

1+ SCNIRNI×

1+ SCF1RE1+ SCF1RF2

×S2 +S

RSERLN

+

1LNCN

S2 + SRSER+ REE RFF

LN

+1LNCN

×1 +SC1RC1( )× 1 L1 C1( )

S 2 + S 1C1Ro

+ RL1 + RC1

L1

+

1L1C1

×1 +SC2RC2( )× 1 L2 C2( )

S2 +S 1C2Ro

+ RL2 + RC2

L2

+

1L2C2

For cancellation of the two second-order terms, RSER must be calculated accordingly and the RSER+(REEIIRFF) combination should yield a Q value between 0,707 and 1 in order to not get a resonant peak from the notch filter.

Switching Regulators

Switching Regulators page # 24

INPUT FILTER DESIGN In a lot of cases, a simple LC filter will be sufficient at the input of the regulator to reduce the large peak to peak regulator input current down to a very small ripple current going through the input inductor. For more current ripple reduction a double LC filter can be used. If care is not taken in designing the input filter, the regulator could become unstable and oscillate at the input filter resonant frequency. The main reason for possible instability is the switching regulator negative dynamic (or AC) input resistance.

Rin ( AC) =dVindIin

=d Pin Iin( )dIin

=Pin × d 1 Iin( )

dIin= −

PinIin

2 = −Vin IinIin

2 = −VinIin

In this derivation of Rin(AC), Pin is assumed constant as Iin or Vin varies because the efficiency is relatively constant as Vin varies which is not the case for a linear voltage regulator.

Rin ( AC) = −VinIin

= −VoAV

×VinPin

= −VoAV

×VinPo η

= −VoAV

×ηVinIoVo

= −VoAV

×ηIoAV

= −ηAV

2 ×VoIo

= −ηAV

2 × RLOAD Rin ( AC) = −ηAV

2 × RLOAD

+

-

Rs RL

RC

Rin

1/(SC)

S L

Vs I in(S)

SWITCHING REGULATORINPUT

Vin (S)

I L Ic IR

AC GROUND

Vin (S) = − Iin( S) × ZTOT

Vin (S) = − Iin( S) × Rin RC + 1 SC( ) RS + RL + SL( )( )

Vin (S) = − Iin( S) ×

RS + RL + SL( )× 1 + SCRC( )LC × Rin

S2 + S RC+ RL + RS( )L

+ 1CRin

+1LC

The exact expression for Vin(S) is given beside. It can be simplified to the above right result by assuming

Rin ⟩⟩ RC or RL or RS

Vin (S) = − Iin( S) ×

RS + RL + SL( )× 1 + SCRC( )LC × Rin + RC( )

S2 + S RC Rin+ RL + RS( )+ Rin RL + RS( )L Rin + RC( ) + 1

C Rin + RC( )

+Rin + RL + RSRin + RC

× 1LC

2ζωn =RC + RL + RS( )

L+

1CRin

ζ = 0,5 × CL RC + RL + RS( )+ L

C× 1Rin

The S coefficient 2ζωn must be positive otherwise the input filter will self oscillate with the -ve input resistance of the regulator. For a stable input filter make ζ > 0.4

Rin ( AC) = −ηAV

2 × RLOAD = − 0.855

8→ 40

2 × 5V1A = −10,88 → −272Ω ζ = 0, 5 × 100µ

60 µ0.5+0.01+ 0.3( ) + 60 µ

100µ× 1

−10,88→ −272

= 0. 487 → 0.521 OK !!!

Switching Regulators

Switching Regulators page # 25

Design criteria for input filter 1. Make Fn (in) > 7 * Fn (out) of the first output LC filter to avoid interaction between the two filters 2. Select Lin formaximum ripple current in source:

∆Iin (PP) = 1L VL (AC ) dt

0

DT

∫ = 1L VL (AC ) dtDT

T

∫ = RCL IC dt

0

DT

∫ ⟨ ∆Iin max in DC source

3. Select appropriate L/C ratio to make input filter damping high enough or add a damping resistor where appropriate.

ζ = 0,5 × CLRC + RL + RS( )+ L

1Rin

⟩ 0,4 for a stable input filter where Rin ( AC) = −

ηAV

2 × RLOAD