27
The XZZX surface code Benjamin J. Brown arXiv:2009.07851 Z X Z X Z X Z X Z X Z X Z (a) (b) (d) (c) (e) (f) (g) X Z Z X X X X Z Z Z Z Z Z Z Z Z Y Y Y X t { Δ (a) (b) (c) (d) Z M M M Z X With thanks to my coauthors: J. Pablo Bonilla Ataides, David K. Tuckett, Stephen D. Bartlett and Steven T. Flammia

The XZZX surface code - Indico

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The XZZX surface code - Indico

The XZZX surface code

Benjamin J. Brown

arXiv:2009.07851

Z X

Z

X

Z

X

Z

X

Z

X

Z

X

Z

(a)

(b)

(d)(c)

(e)

(f)

(g)

X Z

Z X

X

X

X

Z

Z

Z

Z

Z

Z

Z

Z

Z

Y

Y

Y

X

t{∆(a)

(b)

(c)

(d)

Z

MM

M

Z

X

With thanks to my coauthors:J. Pablo Bonilla Ataides,David K. Tuckett,Stephen D. Bartlettand Steven T. Flammia

Page 2: The XZZX surface code - Indico

Scaling quantum computersTo scale a quantum computer we must:

Control a large number of qubits below threshold as they performrepeated stabilizer measurements1,2.

Furthermore, there is a huge overhead cost to performfault-tolerant quantum logic operations.3

1M. Takita et al., Phys. Rev. Lett. 119, 180501 (2017)2C. Kraglund Andersen et al, Nat. Phys. 16, 875 (2020)3C. Gidney and A. Fowler, Quantum 3, 135 (2019)

Page 3: The XZZX surface code - Indico

Scaling quantum computersCat qubits 4, 5 (that experience highly biased noise) have beenproposed as high-quality qubits (with bias preserving gates 6, 7) forsurface code implementations8.

=

= DC flux-bias for the SNAIL

= out-of-plane interconnectthrough which all the microwave drives (such as the two-photon drives, coupling drives for CX gates and drives for single-qubit gates) are applied

= resonator for qubit readout

SNAIL

4 μm

d

a

2 cm

Time

c

b

e f

4A. Grimm et al. Nature 584, 205 (2020)5R. Lescanne et al., Nat. Phys. 16, 509 (2020)6J. Guillaud and M. Mirrahimi, Phys. Rev. X 9, 041053 (2019)7S. Puri et al. Sci. Adv. 6, eaay5901 (2020)8C. Chamberland et al. arXiv:2012.04108 (2020)

Page 4: The XZZX surface code - Indico

The XZZX surface code

The XZZX surface code9 is locally equivalent to the standardsurface code10

Z X

Z

X

XX

Z

Z

X Z

Z X

X X

X X

Z Z

Z Z

9X.-G. Wen, Phys. Rev. Lett. 90 16803 (2003)10A. Kitaev, Ann. Phys. 303, 2 (2003)

Page 5: The XZZX surface code - Indico

The XZZX surface code

. . . except every other qubit is rotated by a hadamard gate.(the green qubits are rotated)

Z X

Z

X

XX

Z

Z

X Z

Z X

X X

X X

Z Z

Z Z

Page 6: The XZZX surface code - Indico

The XZZX surface codeThe XZZX code demonstrates:

I Thresholds that match the hashing bound for all uniformsingle-qubit Pauli noise channels.

I Exceptionally high fault-tolerant thresholds for biased noisemodels

I Reduced overheads (by a factor O(1/ηd/4

)) at low error rates

and high bias η

I We also argue that we can maintain these advantages whileperforming computation

Z X

Z

X

XX

Z

Z

X Z

Z X

X X

X X

Z Z

Z Z

Page 7: The XZZX surface code - Indico

Error correction with the surface code

We use stabilizers to measure (Pauli) errors E .

SE |ψ〉 = (−1)E |ψ〉

On the surface code, errors appear as strings, and defects appearin pairs at their endpoints11.

This can be viewed as a defect parity conservation law12,13.11E. Dennis et al., J. Math. Phys. 43, 4452 (2002)12A. Kitaev, Ann. Phys. 303, 2 (2003)13BJB and D. J. Williamson, Phys. Rev. Research 2, 013303 (2020)

Page 8: The XZZX surface code - Indico

Symmetries and conservation lawsMWPM is possible because the surface code respects a defectconservation symmetry14,15

Mathematically, the symmetry is apparent in the stabilizer group∏v

Av = 1 ⇒∏v

av = 1

(av = ±1 eigenvalues of stabilizers Av . )

⇒ #v with av = −1 is even ≡ defect conservation (mod2)

14E. Dennis et al., J. Math. Phys. 43, 4452 (2002)15BJB and D. J. Williamson, Phys. Rev. Research 2, 013303 (2020)

Page 9: The XZZX surface code - Indico

A symmetry with respect to Pauli-Z errors16, 17

We find a richer space of symmetries if we restrict our error model.

(a)

(b)

(c)

X Z

Z X

Z

ZZ

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Pauli-Z errors commute with the product of stabilizers along thediagonal and therefore respect a 1D symmetry on the XZZX code.

Decoding Z errors is therefore equivalent to decoding therepetition code (50% threshold).

16BJB and D. J. Williamson, Phys. Rev. Research 2, 013303 (2020)17D. K. Tuckett, Phys. Rev. Lett. 124, 130501 (2020)

Page 10: The XZZX surface code - Indico

Symmetries for all Pauli errors18, 19

The XZZX code has many symmetries for other error models.

(a)

(b)

(c)

(d)

(e)

X Z

Z X

X

X

X

Z

ZZ

Z

Z

Z

Z

Y

Y

Y

The XZZX code has symmetries with respect to Pauli-X errorsalong perpendicular diagonals to those for Pauli-Z errors.

Pauli-Y errors have the same symmetry as the CSS surface code(we exploited these symmetries in earlier work)

18BJB and D. J. Williamson, Phys. Rev. Research 2, 013303 (2020)19D. K. Tuckett, Phys. Rev. Lett. 124, 130501 (2020)

Page 11: The XZZX surface code - Indico

High threshold error ratesThe XZZX code has a threshold that matches the zero-ratehashing bound for all uniform single-qubit Pauli channels.

X

Y

Z0.1

0.2

0.3

0.4

0.5

Threshold

errorrate:pc

X

Y

Z0.1

0.2

0.3

0.4

0.5

Threshold

errorrate:pc

0.1

0.2

0.3

0.4

0.5

pc

XZZX CSS

R ≡ k/n ≥ 1− H(~p), (1)

H(~p) - Shannon entropy.

~p = (pX , pY , pZ ) with pO the probability that Pauli error O occurs.

R - rate with R = 0 the zero-rate hashing bound.

Page 12: The XZZX surface code - Indico

Numerics exceeding hashing

At high bias, our numerics demonstrate a threshold above thezero-rate hashing bound

100 101 102 1030.1

0.2

0.3

0.4

0.5

Bias: η

Threshold

errorrate:pc

XZZX

CSS

Hashing

∞13,17,21,25

17,21,25,29

21,25,29,33

25,29,33,37

29,33,37,41

33,37,41,45

37,41,45,49

41,45,49,53

45,49,53,57

49,53,57,61

53,57,61,65

57,61,65,69

61,65,69,73

65,69,73,77

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Code distances used in pc estimationpc−

ph.b

.

η = 30

η = 100

η = 300

η = 1000

See also other work on exceeding hashing for instance20,21,22

20D. DiVincenzo et al., Phys. Rev. A 57, 830 (1998)21G. Smith and J. Smolin, Phys. Rev. Lett. 98, 030501 (2007)22J. Bausch and F. Leditzky, arXiv:1910.00471 (2019)

Page 13: The XZZX surface code - Indico

Exceeding hashing

A zero-rate code with a threshold above hashing implies we cansend information at non-zero rate with p above hashing.

We need the following:

I A finite rate code Rout = Kout/Nout > 0

I An inner code of constant size Nin with threshold pth. > ph.b.

Concatenating gives a family of codes with rate:

R ′ = Rout/Nin > 0. (2)

using qubits with ph.b. < p < pth. for some constant Nin.

Page 14: The XZZX surface code - Indico

Numerics exceeding hashing

We also exceed hashing with a suboptimal matching decoder

100 101 102 1030.1

0.2

0.3

0.4

0.5

Bias: η

Thresholderrorrate:pc

XZZX

CSS

Hashing

X

Z

Z

X ZZXdX

dZ

X X

Z

X

Z

X

(a)

(b)

(c)

We achieved this using XZZX codes with different boundaryconditions.

The high-speed matching decoder allows us to probe very largesystem sizes

Page 15: The XZZX surface code - Indico

Fault-tolerant thresholds with biased noise

Matching decoders generalise readily to the fault-tolerantsetting.23, 24, 25

X

t{∆(a)

(b)

(c)

(d)

Z

MM

M

Z

X

100 101 102 1030.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Bias: ηThresholderrorrate:pc

XZZX

CSS

Standard decoder

We find exceptional fault-tolerant thresholds for the XZZX codeunder phenomenological biased noise.

23E. Dennis et al., J. Math. Phys. 43, 4452 (2002)24BJB and D. J. Williamson, Phys. Rev. Research 2, 013303 (2020)25D. K. Tuckett, Phys. Rev. Lett. 124, 130501 (2020)

Page 16: The XZZX surface code - Indico

Logical failure rates below thresholdWe need a low logical failure rate Pwith a small number of qubits n.

At low error rate p we can generically achieve

P ∼ pd/2 (3)

To leading order, this is the probability of d/2 errors occurring.

Z ZZ

ZZ Z

Z

ZX

XXX

Z Z Z

The surface code uses n = O(d2) qubits.

Page 17: The XZZX surface code - Indico

Logical failure rates below threshold

We can choose an XZZX code with a weight n Pauli-Z logical.

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

At infinite bias26, we can expect a logical failure rate like

P ∼ pn/2. (4)

. . . but what happens at finite bias?

26D. Tuckett et al. Phys. Rev. X 9, 041031 (2019)

Page 18: The XZZX surface code - Indico

Logical failure rates below threshold

In practice we find errors ofd/4 low rate errorsand d/4 high rate errors.

X

X

X

XZ

Z

Z

P ∼ pd/4︸︷︷︸d/4 highrate errors

×(p

η

)d/4

︸ ︷︷ ︸d/4 low

rate errors

=

(1

η

)d/4

︸ ︷︷ ︸factorof

improvement

pd/2. (5)

Page 19: The XZZX surface code - Indico

Logical failure rates below thresholdWe test the ansatz at low p using the splitting method27,28

10−4 10−310−27

10−22

10−17

10−12

10−7

Physical error rate: p

Logicalerrorrate:P

d = 5

d = 7

d = 9

d = 11

d = 13

d = 15

P ∼ pd/4︸︷︷︸d/4 highrate errors

×(p

η

)d/4

︸ ︷︷ ︸d/4 low

rate errors

=

(1

η

)d/4

︸ ︷︷ ︸factorof

improvement

pd/2. (6)

27C. Bennett, J. Comput. Phys. 22, 245 (1976)28Bravyi and Vargo, Phys. Rev. A 88,062308 (2013)

Page 20: The XZZX surface code - Indico

Logical failure rates below thresholdFor small n and high bias we identify signatures of pd

2logical

failure rate scaling

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

7 9 11 13 15

10−3

10−2

Code distance: d

Logicalfailure

rate:P

−1.4 −1.3 −1.2

−0.3

−0.25

−0.2

log(p/(1− p))

LineGradients

We observe this when

pd2 �

(1

η

)d/4

pd/2 (7)

(in other words, at moderate p and small-ish n)

Page 21: The XZZX surface code - Indico

Logical failure rates below thresholdIt is favourable to find codes with open boundary conditions.

Changing the lattice geometry means we have logical failure rateslike

PX ∼(p

η

)dX /2

and PZ ∼ pdZ/2, (8)

at low p.

X

Z

Z

X ZZXdX

dZ

X X

Z

X

Z

X

(a)

(b)

(c)

We can therefore save resources by choosing small dXwithout compromising PZ .

Page 22: The XZZX surface code - Indico

Fault-tolerant quantum computation

We can perform computations using code deformations29,30, e.g.,

Braiding twists31,32

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Z Z

Lattice surgery33

29R. Raussendorf et al. Phys. Rev. Lett. 98, 190504 (2007)30H. Bombin and M. A. Martin-Delgado, J. Phys. A 42, 095302 (2009)31H. Bombin, Phys. Rev. Lett. 105, 030403 (2010)32BJB et al., Phys. Rev. X 7, 021029 (2017)33C. Horsman et al., New J. Phys. 14, 123011 (2012)

Page 23: The XZZX surface code - Indico

Fault-tolerant quantum computation

We can maintain these advantages undergoing fault-tolerantquantum computation34.

Z

XX

Z

Y

Z

XX

Z

X

Z

Z

X

X

Z

Z

X

X

Z Z Z Z Z

X

Z Z

XdX

dZ

(c)

(d)

(f)

(e)

(a)

(b)

(top left)

(bottom left)

(right)

The one-dimensional symmetries we need for high thresholds aremaintained under initialisation and XZZX codes with twists.

34D. Litinski, Quantum 3, 128 (2019)

Page 24: The XZZX surface code - Indico

Forthcoming work:XZZX thresholds with cat qubit circuits

1.61.41.21.00.8 10-4

4.03.53.02.52.0 10-44.5

1-photon cat

6.25-photon cat

10-1

10-2

10-3

10-4

10-1

10-2

10-3

10-4

10-5

Log

ical

err

or r

ate

Log

ical

err

or r

ate

(a)

(b)

10-4

10-3

10-2

10-1

10-2

10-1

0.007 0.008 0.009 0.010 0.011

0.007 0.008 0.009 0.010 0.011

Log

ical er

ror

pro

bab

ility

0.016 0.0220.018 0.020

0.016 0.0220.018 0.020

Total CX error probability

(a)

(b)

Biased noise CX

Total CX error probability

Logic

al er

ror

pro

bab

ility

Ordinary CX

work with A. Darmawan, A. Grimsmo, S. Puri and D. Tuckett.

Page 25: The XZZX surface code - Indico

Outlook

We have shown the XZZX code:

I has threshold error rates that match hashing

I has exceptionally high fault-tolerant thresholds

I significantly reduced resource costs below threshold

I can maintain its performance during computational operations

Z X

Z

X

XX

Z

Z

X Z

Z X

X X

X X

Z Z

Z Z

Page 26: The XZZX surface code - Indico

Outlook

Our work raises questions in several areas, such as:

I Have we really exceeded the hashing bound?

I How do we specialise codes for a given noise model in general?

I What is the potential for non-CSS codes?

Z X

Z

X

Z

X

Z

X

Z

X

Z

X

Z

(a)

(b)

(d)(c)

(e)

(f)

(g)

X Z

Z X

X

X

X

Z

Z

Z

Z

Z

Z

Z

Z

Z

Y

Y

Y

X

t{∆(a)

(b)

(c)

(d)

Z

MM

M

Z

X

Page 27: The XZZX surface code - Indico

Backup slide: Different geometriesPrevious work35 has shown negligible difference in logical errorrates against bit-flip noise for modest p as a function of number ofqubits n.

Z ZZ

ZZ Z

Z

ZX

XXX

Z Z Z

y

x

x

y

p

√n

pth

50

Monte Carlo

B.V. method

Low

est-order

approxim

ation

Generalised path-counting model

0.05 0.06 0.07 0.08 0.09 0.10p

-4

-3

-2

-1

log10P

5 6 7 8 9 10

0.9951.0001.0051.0101.0151.0201.025

p/%P

◆/P

35M. Beverland et al. J. Stat. Mech.:Theo. Exp. 2019, 073404 (2019)