Cellular respiration ppt

  • Published on
    28-Aug-2014

  • View
    1.871

  • Download
    1

Embed Size (px)

DESCRIPTION

 

Transcript

<ul><li> Cellular Respiration copyright cmassengale </li> <li> Cellular Respiration <ul><li>A catabolic, exergonic, oxygen (O 2 ) requiring process that uses energy extracted from macromolecules (glucose) to produce energy (ATP) and water (H 2 O). </li></ul><ul><li>C 6 H 12 O 6 + 6O 2 6CO2 + 6H 2 O + energy </li></ul>copyright cmassengale glucose ATP </li> <li> Question: <ul><li>In what kinds organisms does cellular respiration take place? </li></ul>copyright cmassengale </li> <li> Plants and Animals <ul><li>Plants - Autotrophs : self-producers. </li></ul><ul><li>Animals - Heterotrophs : consumers. </li></ul>copyright cmassengale </li> <li> Mitochondria <ul><li>Organelle where cellular respiration takes place. </li></ul>copyright cmassengale Inner membrane Outer membrane Inner membrane space Matrix Cristae </li> <li> Redox Reaction <ul><li>Transfer of one or more electrons from one reactant to another . </li></ul><ul><li>Two types: </li></ul><ul><li>1. Oxidation </li></ul><ul><li>2. Reduction </li></ul>copyright cmassengale </li> <li> Oxidation Reaction <ul><li>The loss of electrons from a substance . </li></ul><ul><li>Or the gain of oxygen . </li></ul><ul><li>C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + energy </li></ul>copyright cmassengale glucose ATP Oxidation </li> <li> Reduction Reaction <ul><li>The gain of electrons to a substance . </li></ul><ul><li>Or the loss of oxygen . </li></ul>copyright cmassengale glucose ATP C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + energy Reduction </li> <li> Breakdown of Cellular Respiration <ul><li>Four main parts (reactions). </li></ul><ul><li>1. Glycolysis (splitting of sugar) </li></ul><ul><li>a. cytosol, just outside of mitochondria. </li></ul><ul><li>2. Grooming Phase </li></ul><ul><li>a. migration from cytosol to matrix. </li></ul>copyright cmassengale </li> <li> Breakdown of Cellular Respiration <ul><li>3. Krebs Cycle (Citric Acid Cycle) </li></ul><ul><li>a. mitochondrial matrix </li></ul><ul><li>4. Electron Transport Chain (ETC) and </li></ul><ul><li>Oxidative Phosphorylation </li></ul><ul><li>a. Also called Chemiosmosis </li></ul><ul><li>b. inner mitochondrial membrane. </li></ul>copyright cmassengale </li> <li> 1. Glycolysis <ul><li>Occurs in the cytosol just outside of mitochondria. </li></ul><ul><li>Two phases (10 steps): </li></ul><ul><li>A. Energy investment phase </li></ul><ul><li>a. Preparatory phase (first 5 steps) . </li></ul><ul><li>B. Energy yielding phase </li></ul><ul><li>a. Energy payoff phase (second 5 steps) . </li></ul>copyright cmassengale </li> <li> 1. Glycolysis <ul><li>A. Energy Investment Phase: </li></ul>copyright cmassengale Glucose (6C) Glyceraldehyde phosphate (2 - 3C) (G3P or GAP) 2 ATP - used 0 ATP - produced 0 NADH - produced 2ATP 2ADP + P C-C-C-C-C-C C-C-C C-C-C </li> <li> 1. Glycolysis <ul><li>B. Energy Yielding Phase </li></ul>copyright cmassengale Glyceraldehyde phosphate (2 - 3C) (G3P or GAP) Pyruvate (2 - 3C) (PYR) 0 ATP - used 4 ATP - produced 2 NADH - produced 4ATP 4ADP + P C-C-C C-C-C C-C-C C-C-C GAP GAP (PYR) (PYR) </li> <li> 1. Glycolysis <ul><li>Total Net Yield </li></ul><ul><li>2 - 3C-Pyruvate (PYR) </li></ul><ul><li>2 - ATP (Substrate-level Phosphorylation) </li></ul><ul><li>2 - NADH </li></ul>copyright cmassengale </li> <li> Substrate-Level Phosphorylation <ul><li>ATP is formed when an enzyme transfers a phosphate group from a substrate to ADP . </li></ul>Example: PEP to PYR copyright cmassengale Enzyme Substrate O - C=O C-O- CH 2 P P P Adenosine ADP (PEP) P P P ATP O - C=O C=O CH 2 Product (Pyruvate) Adenosine </li> <li> Fermentation <ul><li>Occurs in cytosol when NO Oxygen is present (called anaerobic). </li></ul><ul><li>Remember: glycolysis is part of fermentation . </li></ul><ul><li>Two Types: </li></ul><ul><li>1. Alcohol Fermentation </li></ul><ul><li>2. Lactic Acid Fermentation </li></ul>copyright cmassengale </li> <li> Alcohol Fermentation <ul><li>Plants and Fungi beer and wine </li></ul>copyright cmassengale glucose Glycolysis C C C C C C C C C 2 Pyruvic acid 2ATP 2ADP + 2 2NADH P 2 NAD + C C 2 Ethanol 2CO 2 released 2NADH 2 NAD + </li> <li> Alcohol Fermentation <ul><li>End Products: Alcohol fermentation </li></ul><ul><li>2 - ATP ( substrate-level phosphorylation) </li></ul><ul><li>2 - CO 2 </li></ul><ul><li>2 - Ethanols </li></ul>copyright cmassengale </li> <li> Lactic Acid Fermentation <ul><li>Animals (pain in muscle after a workout). </li></ul>copyright cmassengale 2 Lactic acid 2NADH 2 NAD + C C C Glucose Glycolysis C C C 2 Pyruvic acid 2ATP 2ADP + 2 2NADH P 2 NAD + C C C C C C </li> <li> Lactic Acid Fermentation <ul><li>End Products: Lactic acid fermentation </li></ul><ul><li>2 - ATP ( substrate-level phosphorylation) </li></ul><ul><li>2 - Lactic Acids </li></ul>copyright cmassengale </li> <li> 2. Grooming Phase <ul><li>Occurs when Oxygen is present (aerobic). </li></ul><ul><li>2 Pyruvate (3C) molecules are transported through the mitochondria membrane to the matrix and is converted to 2 Acetyl CoA (2C) molecules. </li></ul>copyright cmassengale Cytosol C C C 2 Pyruvate 2 CO 2 2 Acetyl CoA C-C 2NADH 2 NAD + Matrix </li> <li> 2. Grooming Phase <ul><li>End Products: grooming phase </li></ul><ul><li>2 - NADH </li></ul><ul><li>2 - CO 2 </li></ul><ul><li>2- Acetyl CoA (2C) </li></ul>copyright cmassengale </li> <li> 3. Krebs Cycle (Citric Acid Cycle) <ul><li>Location: mitochondrial matrix . </li></ul><ul><li>Acetyl CoA (2C) bonds to Oxalacetic acid (4C - OAA) to make Citrate (6C) . </li></ul><ul><li>It takes 2 turns of the krebs cycle to oxidize 1 glucose molecule. </li></ul>copyright cmassengale Mitochondrial Matrix </li> <li> 3. Krebs Cycle (Citric Acid Cycle) copyright cmassengale Krebs Cycle 1 Acetyl CoA (2C) 3 NAD + 3 NADH FAD FADH 2 ATP ADP + P (one turn) OAA (4C) Citrate (6C) 2 CO 2 </li> <li> 3. Krebs Cycle (Citric Acid Cycle) copyright cmassengale Krebs Cycle 2 Acetyl CoA (2C) 6 NAD + 6 NADH 2 FAD 2 FADH 2 2 ATP 2 ADP + P (two turns) OAA (4C) Citrate (6C) 4 CO 2 </li> <li> 3. Krebs Cycle (Citric Acid Cycle) <ul><li>Total net yield ( 2 turns of krebs cycle) </li></ul><ul><li>1. 2 - ATP (substrate-level phosphorylation) </li></ul><ul><li>2. 6 - NADH </li></ul><ul><li>3. 2 - FADH 2 </li></ul><ul><li>4. 4 - CO 2 </li></ul>copyright cmassengale </li> <li> 4. Electron Transport Chain (ETC) and Oxidative Phosphorylation ( Chemiosmosis ) <ul><li>Location: inner mitochondrial membrane. </li></ul><ul><li>Uses ETC (cytochrome proteins) and ATP Synthase (enzyme) to make ATP . </li></ul><ul><li>ETC pumps H + (protons) across innermembrane ( lowers pH in innermembrane space ). </li></ul>copyright cmassengale Inner Mitochondrial Membrane </li> <li> 4. Electron Transport Chain (ETC) and Oxidative Phosphorylation ( Chemiosmosis ) <ul><li>The H+ then move via diffusion (Proton Motive Force) through ATP Synthase to make ATP . </li></ul><ul><li>All NADH and FADH 2 converted to ATP during this stage of cellular respiration . </li></ul><ul><li>Each NADH converts to 3 ATP . </li></ul><ul><li>Each FADH 2 converts to 2 ATP (enters the ETC at a lower level than NADH ). </li></ul>copyright cmassengale </li> <li> 4. Electron Transport Chain (ETC) and Oxidative Phosphorylation ( Chemiosmosis ) copyright cmassengale Inner membrane Outer membrane Inner membrane space Matrix Cristae </li> <li> 4. ETC and Oxidative Phosphorylation ( Chemiosmosis for NADH ) copyright cmassengale NADH + H + ATP Synthase 1H + 2H + 3H + higher H + concentration H + ADP + ATP lower H + concentration H + (Proton Pumping) P E T C NAD+ 2H + + 1/2 O 2 H 2 O Intermembrane Space Matrix Inner Mitochondrial Membrane </li> <li> 4. ETC and Oxidative Phosphorylation (Chemiosmosis for FADH 2 ) copyright cmassengale FADH 2 + H + ATP Synthase 1H + 2H + higher H + concentration H + ADP + ATP lower H + concentration H + (Proton Pumping) P E T C FAD+ 2H + + 1/2 O 2 H 2 O Intermembrane Space Matrix Inner Mitochondrial Membrane </li> <li> TOTAL ATP YIELD <ul><li>1. 04 ATP - substrate-level phosphorylation </li></ul><ul><li>2. 34 ATP - ETC &amp; oxidative phosphorylation </li></ul><ul><li>38 ATP - TOTAL YIELD </li></ul>copyright cmassengale ATP </li> <li> Eukaryotes (Have Membranes) <ul><li>Total ATP Yield </li></ul><ul><li>02 ATP - glycolysis (substrate-level phosphorylation) </li></ul><ul><li>04 ATP - converted from 2 NADH - glycolysis </li></ul><ul><li>06 ATP - converted from 2 NADH - grooming phase </li></ul><ul><li>02 ATP - Krebs cycle (substrate-level phosphorylation) </li></ul><ul><li>18 ATP - converted from 6 NADH - Krebs cycle </li></ul><ul><li>04 ATP - converted from 2 FADH 2 - Krebs cycle </li></ul><ul><li>36 ATP - TOTAL </li></ul>copyright cmassengale </li> <li> Maximum ATP Yield for Cellular Respiration (Eukaryotes) 36 ATP (maximum per glucose) copyright cmassengale Glucose Glycolysis 2ATP 4ATP 6ATP 18ATP 4ATP 2ATP 2 ATP (substrate-level phosphorylation) 2NADH 2NADH 6NADH Krebs Cycle 2FADH 2 2 ATP (substrate-level phosphorylation) 2 Pyruvate 2 Acetyl CoA ETC and Oxidative Phosphorylation Cytosol Mitochondria </li> <li> Prokaryotes (Lack Membranes) <ul><li>Total ATP Yield </li></ul><ul><li>02 ATP - glycolysis (substrate-level phosphorylation) </li></ul><ul><li>06 ATP - converted from 2 NADH - glycolysis </li></ul><ul><li>06 ATP - converted from 2 NADH - grooming phase </li></ul><ul><li>02 ATP - Krebs cycle (substrate-level phosphorylation) </li></ul><ul><li>18 ATP - converted from 6 NADH - Krebs cycle </li></ul><ul><li>04 ATP - converted from 2 FADH 2 - Krebs cycle </li></ul><ul><li>38 ATP - TOTAL </li></ul>copyright cmassengale </li> <li> Question: <ul><li>In addition to glucose, what other various food molecules are use in Cellular Respiration? </li></ul>copyright cmassengale </li> <li> Catabolism of Various Food Molecules <ul><li>Other organic molecules used for fuel. </li></ul><ul><li>1. Carbohydrates: polysaccharides </li></ul><ul><li>2. Fats: glycerols and fatty acids </li></ul><ul><li>3. Proteins: amino acids </li></ul>copyright cmassengale </li> <li> copyright cmassengale </li> </ul>