18
CELLULAR RESPIRATION I. GENERAL A. HOW GET FOOD – AUTOTROPH or HETEROTROPH B. COUPLE REACTIONS 1. Metabolic Pathway – couple reactions where exergonic drive endergonic C6H12O6 + 6 O2 6 CO2 + 6 H2O 36 ADP 36ATP ENDERGONIC 2. Enzymes – increase the rate of a reaction

2. cellular respiration

Embed Size (px)

Citation preview

Page 1: 2. cellular respiration

CELLULAR RESPIRATIONI. GENERAL

A. HOW GET FOOD – AUTOTROPH or HETEROTROPH

B. COUPLE REACTIONS

1. Metabolic Pathway – couple reactions where

exergonic drive endergonic

C6H12O6 + 6 O2 6 CO2 + 6 H2O 36 ADP 36ATP

ENDERGONIC

2. Enzymes – increase the rate of a reaction

Page 2: 2. cellular respiration

Fig. 6-02

Sunlight energyenters ecosystem

Photosynthesis

Cellular respiration

C6H12O6

Glucose

O2

Oxygen

CO2

Carbon dioxide

H2O

Water

drives cellular work

Heat energy exits ecosystem

ATP

Page 3: 2. cellular respiration

C. TYPES OF CELLULAR RESPIRATION

C1. AEROBIC – USES O2

C6H12O6 + 6 O2 6 CO2 + 6 H2Oget 36 ATP

C2. ANEROBIC – DOES NOT USE O2

C6H12O6 OTHER COMPOUNDS

Page 4: 2. cellular respiration

II. OVERVIEW OF GLUCOSE METABOLISM

A. MITOCHONDRIUM

OUTER MEMBRANE

INNER MEMBRANE

CRISTAE

INTERMEMBRANE SPACE

MATRIX

Page 5: 2. cellular respiration

Fig. 4-20

Outermembrane

Innermembrane

Cristae

Matrix

Space betweenmembranes

TE

M

Page 6: 2. cellular respiration

B. GENERAL REACTIONS – overall pathway is exergonic

GLYCOLYSIS

Where:cytoplasm

General:Does not use O2

Energy from substrateMost ancient of pathways

Overall pathway:

Glucose 2 pyruvatenet 2 ATP2 NADH

CITRIC ACID CYCLE & e- TRANSPORT CHAINWhere:

mitochondrium

GeneralUses O2

Overall pathway:

Pyruvate 6CO2 + 6H2O

36 ATP

Page 7: 2. cellular respiration

III. SPECIFICSA. GLYCOLYSIS – glucose activation and energy harvestREACTION # CARBONS/ REACTION COMPOUND NAME MOLECULE NAME & EXPLAIN

GLUCOSE ACTIVATION

ENERGY HARVEST

2 ATP

2 ADP + P

6 carbons (1 molecule)

6 carbons (1 molecule)

P P

GLUCOSE

FRUCTOSE BIPHOSPHATE

Page 8: 2. cellular respiration

III. SPECIFICSA. GLYCOLYSIS – glucose activation and energy harvestREACTION # CARBONS/ REACTION COMPOUND NAME MOLECULE NAME & EXPLAIN

GLUCOSE ACTIVATION

ENERGY HARVEST

2 ATP

2 ADP + P

6 carbons (1 molecule)

6 carbons (1 molecule)

P P

GLUCOSE

FRUCTOSE BIPHOSPHATE

G3P3 carbons (2 molecules)

3 carbons (2 molecules)

2 ATP

2 ADP + 2P

2 ATP

2 ADP + 2P

PYRUVATE

NAD + H

NADH

NAD + H

NADH

Page 9: 2. cellular respiration

END PRODUCTS OF GLYCOLYSIS

• 2 PYRUVATE MOLECULES – moves into mitochondrium matrix

• 2 NET ATP – Usually stays in cytoplasm to be used by the cell

2 used as activation energy (GLUCOSE ACTIVATION)

4 made when producing pyruvate (ENERGY HARVEST)

• 2 NADH – High energy compound that moves to e- transport chain.

Page 10: 2. cellular respiration

B. Citric acid cycle – Produces large amounts of ATP with O2 acting as e- acceptor. Occurs in the Mtiochondrium

1. Acetyl CoEnzyme A

EACH PYRUVATE GENERATES:

1 NADH

1 CO2 (RELEASED)

Coenzyme

NAD+ +H

NADHCO2

ACETYL CoA

PYRUVATE

CoA

Page 11: 2. cellular respiration

CoA

2 CO2

ATP

ADP + P

2. KREBS CYCLE

3 NAD+

3 NADH

FAD

FADH2

EACH PYRUVATE GENERATES:

3 NADH 1 FADH2

1 ATP 2 CO2

OXALOACETATECITRATE

Page 12: 2. cellular respiration

3. ALL COMPOUNDS AT THE END OF THE KREBS CYCLE – THIS IS FOR TWO PYRUVATES

CO2 ATP NADH FADH2

GLYCOLYSIS 0 2made directly

2 0

ACETYL Co-A

ACTIVATION2 0 2 0

KREB CYCLE 4 2Made directly

6 2

Page 13: 2. cellular respiration

C. ELECTRON TRANSPORT CHAIN C1. General

1. e-s from the high energy compounds go into the e- transport chain.

2. The e-s move “down” the chain and energy is released during this “fall”.

3. The energy is used to pump H+ from the matrix into the intermembrane space.

Page 14: 2. cellular respiration

4. The e- s reach the end of the chain where they are accepted by oxygen and hydrogen to form water.

5. ATP actually forms from the energy released when H+ moves from the intermembrane space, through ATP Synthase, and into the matrix to combine with oxygen.

Page 15: 2. cellular respiration

12

Fig. 6-11a

Spacebetweenmembranes

Innermitochondrialmembrane

Electroncarrier

Proteincomplex

Electronflow

Matrix Electron transport chain ATP synthase

NADHNAD

FADH2 FAD

ATPADP

H2OO2

HHHH

H

H

H

H

H

H

H

HH

HH

HH

HH

H 2

P

Page 16: 2. cellular respiration

C2. SPECIFICS

GENERATED CONVERT TO ATP

per Glucose (= 2 pyruvate)

1. GLYCOLYSIS 2 NADH 6 ATP

2. ACETYL CoA 2 NADH 6 ATP

3. KREBS 6 NADH 18 ATP

2 FADH2 4 ATP

3 ATP per NADH

2 ATP per FADH2

Page 17: 2. cellular respiration

IV. ANEROBIC

A. GENERAL

1. Animals – glycolysis & lactate fermentation

2. Plants – glycolysis & alcoholic fermentation

B. GLYCOLYSIS – make the same as aerobic

2 pyruvate

2 net ATP

2 NADH

Page 18: 2. cellular respiration

LACTATE FERMENTATION ALCOHOLIC FERMENTATION

NADH

NAD+ + H

2 PYRUVATE

2 LACTATE

NADH

NAD+ + H

2 PYRUVATE

2 ETHANOL

+

2 CARBON DIOXIDE