38
Anatomy of a population cycle: A case study using Canada lynx Dennis Murray Trent University

Anatomy of a population cycle: A c ase s tudy using Canada lynx

  • Upload
    miller

  • View
    17

  • Download
    0

Embed Size (px)

DESCRIPTION

Anatomy of a population cycle: A c ase s tudy using Canada lynx. Dennis Murray Trent University. Collaborators. S. Abele (TNC) A . Borlestean (Trent U. ) J. Bowman (OMNR) S. Boutin (U. Alberta) K. Chan (Trent U.) R. Gau (NWTG) C. Krebs (UBC) M. O’Donoghue (YTG ). - PowerPoint PPT Presentation

Citation preview

Page 1: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Anatomy of a population cycle: A case study using Canada lynx

Dennis MurrayTrent University

Page 2: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Collaborators

• S. Abele (TNC)• A. Borlestean (Trent U.)• J. Bowman (OMNR)• S. Boutin (U. Alberta)• K. Chan (Trent U.)• R. Gau (NWTG)• C. Krebs (UBC)• M. O’Donoghue (YTG)

• J. Roth (U. Manitoba)• J. Row (Trent U.)• T. Steury (Trent U.)• C. Szumski (U. Manitoba / Trent U.)• D. Thornton (Trent U.)• P. Wilson (Trent U.)• A. Wirsing (U. Washington)

Page 3: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

The lynx-hare population cycle

Page 4: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

More recent lynx harvest statistics

1919-20

1920-21

1921-22

1922-23

1923-24

1924-25

1925-26

1926-27

1927-28

1928-29

1929-30

1930-31

1931-32

1932-33

1933-34

1934-35

1935-36

1936-37

1937-38

1938-39

1939-40

1940-41

1941-42

1942-43

1943-44

1944-45

1945-46

1946-47

1947-48

1948-49

1949-50

1950-51

1951-52

1952-53

1953-54

1954-55

1955-56

1956-57

1957-58

1958-59

1959-60

1960-61

1961-62

1962-63

1963-64

1964-65

1965-66

1966-67

1967-68

1968-69

1969-70

1970-71

1971-72

1972-73

1973-74

1974-75

1975-76

1976-77

1977-78

1978-79

1979-80

1980-81

1981-82

1982-83

1983-84

1984-85

1985-86

1986-87

1987-88

1988-89

1989-90

1990-91

1991-92

1992-93

1993-94

1994-95

1995-96

1996-97

1997-98

1998-99

1999-2000

2000-01

0

2000

4000

6000

8000

10000

12000

14000

Years

Harvest statistics continue to be collected and reveal high spatio-temporal variability.

Differentiating between signal vs. noise remains challenging

Lynx

num

bers

Page 5: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Cyclic propensity in lynx harvest time series

• Most northern populations are cyclic, southern populations are less likely to cycle

• All cyclic populations exhibit 9-10 year periodicity• Population variability is higher in the southern range

Murray et al (2008)

Page 6: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

• Northern snowshoe hare populations are cyclic• Cyclic populations exhibit 9-13 year periodicity• Southern hare populations have dampened fluctuations

Cyclic propensity in hare harvest time series

Murray et al (2008)

Page 7: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

-3 -2 -1 0 1 2 3Ln(Hares/ha)

-1

0

1

2

3

4

Ln(L

ynx/

1 00

k m)

Lynx and hare densities are closely associated

Steury & Murray (2004)

Field studies reveal a close association between lynx and hare numbers

Page 8: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Lynx and hare distributions are closely matched

Snowshoe hare Canada lynx

M. M. Wehtje (unpubl) Peers et al (2012)

Page 9: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Trophic interactions in the boreal forest

Stenseth et al (1997)

Page 10: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Hare

Lynx

Do alternate prey stabilize predator-prey population cycles?

Page 11: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Lynx diet through a population cycleK

ills (

%)

• At increasing/high hare densities, lynx eat mainly hares• At low hare densities, almost 50% of lynx prey biomass is

red squirrel

O’Donoghue et al. (1998)B

iom

ass (

%)

Page 12: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Prey (mean & s.e.)

0

2

4

6

8

10

12

14

-27 -26 -25 -24 -23 -22 -21 -20

C13

N15

Snow shoe hare

Columbian ground sq

Microtus sp

Muskrat

Pocket gopherRuffed grouse Redbacked vole

Shorttail shrew

Sorex sp

Blue grouse

Deer mouse

Eutamius sp

Flying squirrel

Red squirrel

Lynx prey have distinct isotopic signatures

Roth et al. (2007)

Page 13: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

C13 is higher in southwestern range, indicating a generalized diet

N15

C13

Lynx have distinct isotopic signatures across portions of their range

Roth et al. (2007)

Page 14: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Lynx diet influences cyclic amplitude

Roth et al. (2007)

Lynx populations have a higher cyclic propensity when they rely heavily on snowshoe hares

Page 15: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.40

0.1

0.2

0.3

1998

1999

2000

2001

Mean δ15N (‰)

P1-tailed = 0.04

R2 = 0.86

4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.40

0.1

0.2

0.3

1998

1999

2000

2001

Snowshoe hare in dietdrives higher lynx recruitment

P1-tailed = 0.04

R2 = 0.86

Diet specialization

C. Szumski (unpubl)

Prop

. juv

enile

s in

harv

est

Page 16: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

dN1/dt = r1 N1 (1 – N1 / k1) – P f1 (N1) – δ1 N1 (Hare)

dN2/dt = r2 N2 (1 – N2 / k2) – P f2 (N2) - δ2 N2 (Squirrel)

dP/dt = P (Χ1 f1 (N1) + Χ2 f2 (N2) - δp ) (Lynx)

where,

N : prey numbers (1 = hare; 2 = squirrel)P : lynx numbersr : rate of increasek : carrying capacityf : functional responseδ : death rate Χ : conversion efficiency

LV model including alternate prey

Page 17: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Lynx-Hare functional response

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 200000

100

200

300

400

500

600

87-88

88-89

89-9090-9191-92

92-93

93-94

94-95

95-96

96-97

Hares per 100 km2

Rate

of P

reda

tion

(har

es/

year

)

K. Chan (unpubl.)

Page 18: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Lynx-Squirrel functional response

15000 16000 17000 18000 19000 20000 21000 22000 23000 240000

50

100

150

200

250

300

350

400

450

500

87-88

88-89 89-9090-91

91-92

92-93

93-94

94-95

95-96

96-97

Red squirrels per 100 km

Rate

of P

reda

tion

(squ

irrel

s / y

ear)

K. Chan (unpubl.)

Page 19: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Revised Lynx-Squirrel functional response

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 200000

50

100

150

200

250

300

350

400

450

500

87-88

88-8989-90

90-9191-92

92-93

93-94

94-95

95-96

96-97

Hares per 100 km2

Rate

of P

reda

tion

(squ

irrel

s / y

ear)

K. Chan (unpubl.)

Page 20: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

1985 1990 1995 2000 2005 2010 20150

5000

10000

15000

20000

25000

30000

35000

40000

45000

0

500

1000

1500

2000

2500

Year

red

squi

rels

per

10

0km

2

cone

s per

tree

S. Boutin (unpubl.)

Correlation between squirrel numbers and mast crop

Squirrels Cones

time lag =1 year

Page 21: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

dN1/dt = r1 N1 (1 – N1 / k1) – P f1 (N1) – δ1 N1 (Hare)

dN2/dt = r2 N2 (1 – N2 / k2) – P f2 (N1) - δ2 N2 + ε (Squirrel)

dP/dt = P (Χ1 f1 (N1) + Χ2 f2 (N1) - δp ) (Lynx)

Revised model

• The revised model forces the lynx-squirrel functional response to reflect change in hare rather than change in squirrel densities.

• Because squirrels are influenced by annual cone crop, stochasticity was included.

Page 22: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Rosenzweig-Macarthur model

As the prey isocline shifts to the left, the system becomes increasingly unstable.

Prey

Predator

Page 23: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

-3000 2000 7000 12000 17000 220000

2

4

6

8

10

12

14

16

18

Lynx

per

100

km

2

Squirrel No Squirrel

Increased instability when squirrels are included

Hares per 100 km2K. Chan (unpubl.)

Alternate prey consistently destabilize predator-prey cycles by moving the prey isocline to the left, not right

Page 24: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Simulations using case studiesParameter Hanski and

Korpimaki 1995Messier et al.

(2004) Fryxell et al.

2007

r1 5.4 y-1 0.2 y-1 0.10512 y-1

k1 100 N1 2 N1 49.6 N1

c 600 N-1·P-1·y-1 12.3 N ·P-1·y-1 250.3 N-1·P-1·y-1

h 10 N1 0.47 N1 0.3 N1

a 1400 N2·N1-1·P-1·y-1 25 N2·N1

-1·P-1·y-1 1199 N2·N1-1·P-1·y-1

b -2 N2 -1 N2 -8 N2

χ1 0.0047 N1-1 0.0141N1

-1 0.0141N1-1

χ2 0.002 N2-1 0.0134 N2

-1 0.0134 N2-1

δ1 0 y-1 0.0856 y-1 0 y-1

δp 7.49 y-1 7.49 y-1 24.28 y-1

K. Chan (unpubl.)

Page 25: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Functional responses from case studies

0 20 40 60 80 100 1200

5

10

15

20

25

30moosebeaver

0 20 40 60 80 100 1200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Wildebeest

Gazelle

0 20 40 60 80 100 1200

100

200

300

400

500

600

700vole1vole 2

K. Chan (unpubl.)

Case studies also reveal increased instability with alternate prey

beavermoose

Page 26: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

• Lowered capture efficiency of lynx on hare- Maybe the case in southern populations

• Increased lynx mortality rate - Likely the case in southern populations

• Increased in hare mortality rate- Likely the case in southern populations

• Reduced carrying capacity of hares- Likely the case in southern populations

Increased numerical stability of lynx is driven by

Page 27: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Southern snowshoe hares occupy variegated landscapes

Page 28: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Evidence of density-dependent predation in southern hares

0.0 0.5 1.0 1.5 2.0Hares / ha

0.0

0.2

0.4

0.6

0.8

1.0

Ann

ual p

reda

tion

rate

A. Wirsing (unpubl)

Page 29: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Density-dependent predation in southern hare populations

Page 30: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Cyclic attenuation in natural populations

Page 31: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Cycle attenuation in Fenoscandian voles

Population cycles are becoming attenuated

Statistical detection of cyclic attenuation is challenging given data quality

Ims et al (2006)

Page 32: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Are lynx cycles attenuating?

1919-20

1920-21

1921-22

1922-23

1923-24

1924-25

1925-26

1926-27

1927-28

1928-29

1929-30

1930-31

1931-32

1932-33

1933-34

1934-35

1935-36

1936-37

1937-38

1938-39

1939-40

1940-41

1941-42

1942-43

1943-44

1944-45

1945-46

1946-47

1947-48

1948-49

1949-50

1950-51

1951-52

1952-53

1953-54

1954-55

1955-56

1956-57

1957-58

1958-59

1959-60

1960-61

1961-62

1962-63

1963-64

1964-65

1965-66

1966-67

1967-68

1968-69

1969-70

1970-71

1971-72

1972-73

1973-74

1974-75

1975-76

1976-77

1977-78

1978-79

1979-80

1980-81

1981-82

1982-83

1983-84

1984-85

1985-86

1986-87

1987-88

1988-89

1989-90

1990-91

1991-92

1992-93

1993-94

1994-95

1995-96

1996-97

1997-98

1998-99

1999-2000

2000-01

0

2000

4000

6000

8000

10000

12000

14000

Years

Robust statistical methods for detecting cyclic attenuation are lacking

Lynx

num

bers

Attenuation?

Page 33: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Modeling cyclic attenuation in lynx

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 1010

500

1000

1500

2000

2500

• Climate change

• Competition

• Harvest regime

M. Hornseth (unpubl)

Page 34: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Krebs (2011)

The snowshoe hare is the keystone of the boreal forest ecosystem

Page 35: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Robust field data are essential for detecting attenuation

... ....

.

.

Are snowshoe hare population Are hare cycles collapsing?

Are hare populations becoming increasingly asynchronous?

Page 36: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Model systems for understanding cyclic attenuation

Model systems serve to develop a mechanistic understanding of density dependence and cyclic attenuation

A. Borlestean (unpubl)

20010020TID

0 5 10 15 20Days

0

100

200

300

400

500

600

700

800

Num

ber o

f cel

ls (m

illio

ns)

A. Borlestean (unpubl)

Page 37: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Conclusion

• Alternate prey destabilize predator-prey cycles

• Southern lynx have lower cyclic propensity likely due to latitudinal changes in the lynx-hare relationship itself

• Lynx population cycles may be attenuating due to factors like climate change, increased competition, and overharvest

Page 38: Anatomy of a population cycle:  A  c ase  s tudy using Canada lynx

Current needs & challenges in understanding population cycles

• Good long-term empirical data (experimental and observational)

• Clarity between statistical methods

• Mechanistic & modeling studies

• Methodology for detecting occurrence and underlying causes of cyclic attenuation