19
RESEARCH ARTICLE Differences in tornado activities and key tornadic environments between China and the United States Ruilin Zhou | Zhiyong Meng | Lanqiang Bai Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China School of Atmospheric Sciences, Sun Yat- sen University, Zhuhai, China Correspondence Zhiyong Meng, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China. Email: [email protected] Funding information National Natural Science Foundation of China, Grant/Award Numbers: 41875051, 41905043, 42030604 Abstract The y early tornado occurrence in China is approximately 5 10% of that in the United States, and the peak month of torna do occurrence in China is July, while that in the United States is May. However, the two countries have nearly the same land a rea and similar latitudinal location. This study attempts to dis- close the differences in the key tornadic env ironme nts that a re mo st possibly responsible for the large discrepancy of tornado occurrences observed between the two co untrie s. The r egion with the highest torna do density in China (JS) is compared with three similarly sized r egions in the United States, including two tornado-prone regions (UC and USE1) and o ne region similar to JS (USE2). The results show that JS has a mu ch lower tornado frequency than UC and USE1, mainly due to JS's much lower likelihood of multiple tornadoes occurring in a short period during its tornado season. Compared with UC a nd USE1, JS features relatively low mean values of the significant tornado param- eter (STP) during their re spe ctive tornado se a sons. The STP, incorporating sev- eral tornado-related variables, was found to show a monotonic relationship with the total tornado count at a seasonal scale and perform well to explain monthly variations in tornado frequencies. Compared with the target regions in the U nited States, JS has a similar magnitude a nd decreasing trend of the 0 6-km vertical wind she a r from spr ing to summer, but a later increase in insta- bility. Resulting from a balance between the decreasing vertical shear and the increasing thermodynamic instability, JS features a delayed monthly peak of STP and thus a delayed tornado season, which makes JS having a wors e kine- matic environment for tornadogenesis with far lower low-level vertical wind shear during its tornado se a son than that of the United States. KEYWORDS China, difference, environmental features, significant tornado parameter, tornado, the United States 1 | INTRODUCTION Tornado o ccu rrence in the United States is significantly higher than that in other regions in the world (Brooks et al., 2003; Farney and Dixon, 2015). B ased on the tornado database from NOAA's Storm Prediction Centre, the average annual number of U.S. tornadoes in the last three decades was a pproximately 1, 200 and tornadoes were most active in the United States in May. Despite China's similar latitudinal location a nd la nd area, the Received: 6 October 2020 Revised: 3 June 2021 Accepted: 7 June 2021 DOI: 10.1002/joc.7248 Int J Climatol. 2021;1 18. wileyonlinelibrary.com/journal/joc © 2021 Royal Meteorological Society 1 Page 1 of 19 Differences in tornado activities and key tornadic environments between China and th... 2021/6/27 https://rmets.onlinelibrary.wiley.com/reader/content/17a26dba79f/10.1002/joc.7248/for...

Differences in tornado activities and key tornadic

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Differences in tornado activities and key tornadic

R E S E A R CH AR T I C L E

Differences in tornado activities and key tornadic

environments between China and the United States

Ruilin Zhou | Zhiyong Meng | Lanqiang Bai

Department of At mospheric and Oceanic

Sciences, S cho ol o f Physics, Peking

University, B eijing, China

S cho ol o f Atmospheric S ciences, S un Yat-

sen University, Z huhai, China

Correspondence

Zhiyo ng Meng, Depa rtment of

Atmospheric a nd Oceanic S ciences,

Schoo l of Physics , Peking University,

B eijing 1 00871, China.

Email: [email protected]

Funding information

National Nat ural S cience F ounda tion of

China, Grant /Award Numbers: 4187 5051,

419 05043, 42030 604

Abstract

The y early tornado oc currence i n C hin a is approx imately 5 1 0% o f that in the

United States , an d t he peak mon th o f torn a do occurren c e in C hi na i s Jul y ,

w h i l e t h a t i n t h e U n i te d St a t e s i s M a y . H o w e v e r , t h e t w o c o u n t r i e s ha v e n e a r l y

th e s ame land a rea an d s im ilar l at i tud in a l lo c at i o n . T h is st u dy a t te m pt s t o di s-

clos e t he dif ferenc e s in t he key t ornadic e n v ironm e nts th at a re m o st poss ib l y

responsi bl e for th e l arge di screpanc y o f t o r n a do o c c u r r e n c e s o b s e r v e d b e t w e e n

th e t w o c o untri e s. The r egi o n wi th t he hi ghest torn a do dens ity i n C hin a ( JS) i s

comp ared w it h th ree s im il arl y s iz e d r egio ns in t he U n it e d S tat e s, i ncl udi ng

t w o to r n ad o - p r o n e r e g i o n s (U C a n d U SE 1) and o ne regio n similar to J S

( U S E 2 ) . T h e r e s u l t s sh o w th a t JS h a s a mu c h l o w e r t o r n ad o fr e q u e n c y t h a n

U C a n d U S E 1 , m a inl y du e t o JS 's mu c h l o we r l i k e l i h o o d o f m u l t i p l e t o r n a d o e s

o c c u r r i n g i n a sh o r t p e r i o d d u r i n g i t s t o r n a d o s e a s o n. C o m pa r e d w i t h U C a n d

U SE 1 , J S fe a t u r e s r e l a ti ve ly lo w m e a n v a l u e s o f t h e s i g n i f i c a n t t o r n a d o p a r a m -

e t e r ( S T P ) d u r i n g th e i r r e s p e c t i ve t o r n a d o se a s o n s. T h e S T P , i n c o r po r a t i n g s e v -

e r a l to r n a d o - r e l a t e d v a r i a b l e s , w a s f o u n d t o s h o w a m o n o t o n i c r e l a ti o n s h i p

w i th t h e to t a l to r n ad o co u n t a t a se a s o n al sc a l e a n d p e r f o r m w e l l to e x p l ai n

m o n t h l y v a r i a t i o n s in t o r n a d o f r e q u e n c i e s . C o m pa r e d w i th t h e ta r g e t r e gi o n s

in the U ni ted S tat e s , JS has a si mi lar magni tude a nd de creasi n g trend o f the 0

6-k m v er tical wind s hear from sprin g to sum mer, but a later i ncrease in i nsta-

bil ity. Res ultin g from a b alanc e betwee n t h e de c r e a s i n g v e r ti c a l s h e a r a n d t h e

inc r e a sin g t h e r m o d y n a m ic in st ab il it y, JS f e a tu r e s a d e l a y e d mo n th l y p e a k o f

ST P a n d t h u s a d e l a y e d to r n a do s e a s o n , w h i c h m a k e s JS ha v i n g a wo r s e k i n e -

m a t i c e n v i r o n m e n t f o r t o r n a d o g e n e s is wi th fa r l o w e r l o w - l e ve l v e r ti c a l w i n d

s h e a r d u r i n g i t s t o r n a d o se a s o n th a n t h a t o f th e U n i t e d S t a t e s .

KEYWORD S

C h i n a , d i f f e re n c e , e n v i r on m e n t a l f e a t u re s , sign ific an t t o rn ado par amet e r, to rn a do , th e

U ni t e d S t a t e s

1 | INTRODUCTION

T o r na d o o ccu r r e n ce i n the U ni te d St a te s i s si gn ifi ca nt ly

h i g h e r t h an t h a t i n o t h e r r e g i o n s i n t h e w o r l d ( B r o o k s

et al., 2 003; Farne y and Dix on, 201 5). B ased on the

t o r n a d o d a ta b a s e fr o m NO A A ' s S t o r m P r e d i c t i o n C e n tr e ,

t h e a v e r ag e an n u a l n u m b e r o f U . S . t o r n a d o e s i n t h e l as t

t h r e e d e c a d e s w a s a p p r o x i m a t e l y 1, 2 0 0 an d t o r n a d o e s

w e r e m o s t a c t i v e i n t h e U n i t e d S ta t e s in M a y . D e s pi t e

Chi na's s im il ar latitudinal l ocati o n a nd l a nd area, the

Re c e iv ed : 6 O c to b e r 2 02 0 Re v is e d: 3 J un e 2 02 1 A cc e pt ed : 7 J u ne 20 2 1

D O I : 10 .1 0 02 / jo c .72 4 8

Int J Climatol. 2 0 21 ;1 1 8 . w ile y on lin el ibr a r y .c o m/ jo ur n a l/ j o c © 2 02 1 Ro ya l Me te or o lo gi ca l So c ie ty 1

Page 1 of 19Differences in tornado activities and key tornadic environments between China and th...

2021/6/27https://rmets.onlinelibrary.wiley.com/reader/content/17a26dba79f/10.1002/joc.7248/for...

Page 2: Differences in tornado activities and key tornadic

a nn ua l to r n ad o co u n t in Ch ina i s le s s th an o ne - te n th t ha t

i n the U n i te d St a t e s, a n d th e p e a k n u m b e r o f t o r n a d o e s

occ u rs 2 m onth s l ater in C hin a th an in t he U nit ed St ates

( Fa n a n d Y u , 2 0 1 5 ; C h e n . , 2 0 1 8 ) . T h e f a c t o r s th a tet al

caus e t orna do ac ti vities to be so di ffe rent betwe e n t he

t w o co u n tr i e s r e m a i n u n c l e a r . T h i s s t u dy a i m s t o d i s c l o s e

t h e d iff e r e n c e s in t h e ke y t o r n a d ic e n v i r o n m e nt s t h a t a r e

m o st p o ssi bl y r esp o n sib le for the large torn ad o occur-

r e n c e di sc r e pa n c y b e t we e n C h i n a a n d th e U n it e d S t a te s .

T o r n a do e s t e n d t o f o r m in e n v i r o nm e n ts wi t h s u b -

s t a n t i a l l o w -l e v e l sh e a r , in ad d it ion to m o is tu re, ins ta b il -

i ty an d v e r t i c a l m o ti o n , wh i c h a r e th e t h r e e i n g r e d i e nts

o f d e e p m o i s t co n v e c ti o n (B r o o k s . , 2 0 0 3 ; Gr a m set al

et al et al. , 2 0 1 2 ; A n d e r s o n - F r e y ., 2 0 1 8 ) . M a n y p r o x im it y

s o u n d i n g s tu d i e s ha v e i n di c a t e d th a t fa v o u r ab l e t o r n a d i c

e n v i r o n m e n t s t e n d to h a v e l o w v a l u e s o f th e l i f t e d c o n -

d e ns at i o n le v e l ( L CL ) , wh ich i s co r r e l a te d wi t h hig h e nv i -

r o nm e nt a l hu mi di t y a t lo w l e v e ls (G r a ms . , 2 0 1 2 ;et al

Thom pson ., 2012 ). I nstability, wh ich i s o f ten me a-et al

s u r e d by c o n v e c t i v e av a i l a b l e p o t e n t i a l e n e r g y ( C A P E )

a n d r e l e a s e d by l a r g e -s c a l e v e r ti c a l m o t i o n , i s e s s e n ti a l

f o r sp e e d i ng u p th e s ur f a c e a i r p a r c e l v e r t i c al l y du r i n g

d e e p c o n v e c t i o n ( E m a n u e l , 1994 ). Com pared with other

c o n v e c t i v e m o d e s , s u p e r c e l l t h u n d e r s to r m s a r e c h a r a c t e r -

ized by deep an d p ers istent r otatin g u pdrafts, w hic h seem

t o h a v e a st r o n g e r a b il it y t o p r o d u c e t o r n a d o e s (Du d a

and G allus , 201 0). In a dditio n t o t h e t h e r m o d y n a m i c

p a ramet e r o f m oist ure a nd in st abil it y, t he ki nem at ic

p a r a m e t e r o f th e 0 6 -km ve c to r s h e a r m a g n i t u d e (S HR 6 ) ,

w h ic h i s im p o r ta n t f o r th e d e v e lo p m e n t o f t h e m id l e v e l

r o t a t i o n o f t h e me s o cy c l o n e i n a su p e r c e l l t h r o u gh t h e

t il ti ng o f i ts a ss o cia t e d ho r iz o nt a l vo r t i cit y b y a s to r m -

s c a le u p d r a f t , i s o f t e n u s e d to a s s e s s th e p o te n t i a l o f su p -

erce lls (R as mu s s en a n d B la n c ha r d, 199 8; Th ompson

et al. , 2 0 0 3 ) . T h e c o m b i n a t i o n o f th e C A P E a n d S H R 6

parameters has b een sh own t o be e ffec tive in d is crimin at-

i n g be t w e e n s e v e r e a n d no n s e v e r e t h u n d e r s t o r m s

( Brook s . , 2003; Taszar ek ., 2017 ), and t heet al et al

C A P E S H R6 p a r a m e t e r s p ac e i s o f t e n in ve sti g a te d to

o f f e r v a l u a b l e in s i g h t i n t o t o r n a d i c e n v i r o n m e nt s

( e .g ., Brook s, 2 009; Grünwald an d Brook s, 20 11;

A nd e r s o n - F r e y . , 2 0 1 6 ) .et al

L o w -l e v e l e n v i r o n m e n t a l s t o r m - r e l at i v e h e l ic it y

( SR H ) al s o p r o v i d e s a g o o d r e f e r e n c e f o r t h e d e v e l o pm e n t

o f l o w - l e v e l r o t at i n g u p d r a f ts a n d th u s t h e p o te n ti a l f o r

t o r n a d o g e n e s i s ( K e r r a n d D a r k o w , 1 9 9 6 ; Da v i e s -

Jones, 2015; Coffer . , 2 019) . S RH is calculated by inte-et al

g r a ti ng the mu l ti p li ca ti o n o f t he st o r m- r e la t iv e v e lo ci t y

v e c t o r a n d t h e s tr e a m w is e v o r ti c i ty fr o m t h e g r o u n d to

som e s e lec ted heigh t (Davies -Jones ., 199 0). I n a net al

e n v i r o n m e n t w i t h a l a r g e l o w - l e v e l S R H v al u e , wh e r e

l o w e r - t r o p o s ph e r i c h o r i z o n ta l s t r e a m w i s e v o r t i c i t y is

m o r e do m in a n t t h a n l o w e r - t r o p o s p h e r i c h o r i z o n ta l

cro sswis e v ortic ity, t he horizon tal vorte x tube s a re more

i n c l i n e d t o b e t i l t e d a n d st r e t c he d i n t o s tr o n g n e a r -

s ur fa c e ve r t i c a l v o r t i c i t y ( No w o t a r s ki a n d J e n s e n , 2 0 1 3 ;

Markow ski an d R ic hardson, 2 014) .

A l tho u gh t o r n a dog e n e si s i s u l tim ate ly d e p e n de nt o n

smaller-scale p roce sses, i t has long been know n t o be

closely r elated to large-to -mes os cale environmen ts. Such

l a rg e -t o - me so s c al e e n v i r on me n t s a r e o f t en d e p ic t ed b y t h e

f o ur e n v ir o nment a l p ar a m et er s de s cri b e d a b o v e , n a m e l y,

C A P E, SH R 6, L C L a n d S R H (e . g. , Ra s m u s se n an d

Blanc hard, 199 8; Rasm ussen, 2003; P otvi n . , 2 010;et al

A nderson -Frey ., 201 6). T hese en vironmental parame-et al

ters are a cc oun ted f o r in t he STP ( Thompson ., 2003 ),et al

w h ich w a s dev e l op ed t o d i s cr imi n at e si gni f i ca nt t o r n a di c

en vironm ents from non-tornadic environm ents and h as

b e e n w i d e l y u s e d f o r o p er a ti o na l t or n ado for e c asts

( T hompson . , 20 12). T he non di mension al energy-et al

h e lic i ty i nd e x (E HI ) , wh i ch c o mbin e s C A P E w it h l o w -

l e v el S RH , is a lso co mm o nly e m p loy e d a s a m e an s o f id e n -

t i fy i n g t o r na do p o t e n tia l ( H art a n d K o r o tk y , 19 91;

R a smusse n, 20 03). To date, it r em ai ns unclear h ow th es e

t o rn a do- f av ou r a bl e e n v ir o nme n ta l pa r amete r s d iffe r

b e tween C hina and t he United States.

Tornado f requenc y h as been dem o nstrated to be cor-

r e l a te d wi t h mo nt hl y t o se a so n al e nv ir o n me n ta l fe a tu r e s.

A n e m p i r i c a l in d e x b as e d o n mo n thl y a v e r a g e d co n v e c -

t i v e p r e c i p i ta t i o n a n d S R H h a s b e e n d e m o n s t r a te d a s

havi ng some s kil l i n a ccountin g f o r mon thl y torn ado

c o u n ts i n t h e U n i te d St a t e s ( T ip p e t t . , 2 0 1 2 ; T i pp e t tet al

et al., 201 4). T he obse rved sh ift in t he seas onali ty o f tor-

n a d o r e p o r t s o v e r t h e G r e a t P l a i n s h a s b e e n a c c o m p a n i e d

b y c o r r e s p o n d i n g t r e n d s i n a n e n v i r o n m e nt a l i n d e x t h a t

is a f unction o f C APE a n d SR H ( Lu ., 20 15). In a ddi-et al

t i o n , t h e s u m o f t h e d a i l y m a x i m u m o f t h e S T P s h o w s

co n si st e nt c ha ng e s i n it s sp a t ia l di st r ib u ti o n wi th th e to r -

n a d o f r e q u e n c y in th e U n i t e d S t a t e s a t m o n t h l y a n d s e a -

s o na l s ca le s , a nd th e sp a ti a l d e p e nd e nc e o f to r n ad o

f r e qu e n c y o n th e S T P wa s f o u n d to v a r y se a s o n a l ly

( Ge n s i n i a n d Br o o k s , 2 0 1 8 ; G e n s i n i a n d B r a v o d e

Guenn i, 2019 ). Th ese r e sults im ply t hat u nderstandin g

t he e nv ir o n me n ta l d if fe r e nc e s in to r n a d o -p r o n e m o nth s

m a y be a k e y pe r s p e c t i v e f o r u n d e r s ta n d i n g t h e di f f e r -

e n c e s in fr e q u e n c y o f t o r n a d o e s a n d t h e mo n t h l y v a r i a -

t ion s in t orna d o es be tw een C hin a a n d t he U ni te d S ta t e s.

In th e p resen t study, torna d o r e cords f r om 2007 to

2 0 1 6 w e r e c o l l e c t e d t o r e v e a l ke y e n v i r o n me n t a l fa c t o r s

t h a t m a y h av e m a de t o r n a d o e s i n Ch i n a co n s i d e r a b l y le s s

f r e qu e n t a n d o c c u r r i n g 2 mo n t h s l a te r t h a n tho s e in t h e

Un ited States . T o ac hieve the se g oals ef fectively a nd eff i-

ciently, s pec ial a tten tion was p rim a rily paid to high-

i nci dence torn ado regions a nd to th e p rim e m o nths of

t o r n a d o o c c u r r e n c e . T h e r e s t o f th e pa p e r i s o r g a n i z e d a s

f o l lo w s. S e c ti o n 2 int r o d u c e s t h e d a ta a n d m e th o d s. T h e

2 Z HO U .ET A L

Page 2 of 19Differences in tornado activities and key tornadic environments between China and th...

2021/6/27https://rmets.onlinelibrary.wiley.com/reader/content/17a26dba79f/10.1002/joc.7248/for...

Page 3: Differences in tornado activities and key tornadic

res ults a re presented i n Sec tion 3, followed by a d isc u s-

s i o n i n Se c ti o n 4 o n t yp i c a l sy n o pt i c si t u a t i o n s , t h e p o t e n -

t i a l i m p a c t o f to p o g r a p h y a n d so m e s tu d y l i m i t a ti o n s .

S e c t i o n 5 g i v e s a b r i e f s u m m ar y .

2 | DATA AND METHODS

2.1 Tornado databases|

The t ornado inf orm ation f or cont ig uous Ch ina f rom 200 7

to 20 16 w a s o b tain e d fr o m v a r iou s s o u rc es with cros s-

ch eckin g, inc luding the Y earboo k o f M eteorological

Di sasters i n C hi na ( C hin a Meteor ol ogical A dm ini strati on ,

2 0 0 5 2 01 7) , t h e t o r na d o d a t a se t c o ver i ng c o n t i gu o us

C h i na d ur i ng t h e p e r i od 1 94 8 2 0 1 2 c o m p il e d b y C h e n

et al. ( 2018 ), alm o st all t he published paper s o n t orna do es

i n C hi n a , th e d a m a g e s u r v ey s co n d u c te d b y l o c al m e te o r o-

l o gic a l ag e n c ie s a n d t h e r e p o r ts a r c h i v ed th ro u g h we b

s e arc h e s. Qu a li ty c o n t r ol o f t h e t o r n ad o r e c or ds w a s pe r -

f o r me d b y r e v i e wi ng t h e n a ti o na l a n d r e g io n a l r a dar

r e f le c ti vi ty m o s a i c i m a g e s ( a v ai l a bl e a t h t t p: / /d ata .c m a .cn/

e n ) , a nd t o r n a do r e c or d s th at w e r e no t a s s o c ia te d w i th a

c o n ve c tive s t or m we r e r e m o v ed .

W e d ef ine d t h e s t u dy pe r io d a s 2 0 0 7 2 01 6 f o r t w o

m ai n r e a s ons . F i r st , t h e to r n ado d a t a c o l le c te d in t h e s e

y e a rs h a ve mu c h l e s s u n c er t a inty tha n t h o se co l l e cte d

be fo re 2 007. B ecau s e the C hina New Ge ner ation W eath er

R ad ar (C I NR A D ) n e two r k b e g an t o ta k e s h a p e a f te r 20 0 6 ,

w e w e r e a b l e t o p e r fo r m q ua li ty c o n t r ol o n t o r n a d o

r e cor d s wi th t he av a il ab il ity o f r a d a r r e fle c tiv it y m o saic

i ma ge s du r in g t he ch o sen st u d y p e r io d . W it h th e wi de u se

o f s m a rt p h o n es si n c e 2 0 0 7, f ar fe w er t o rna d o r ep o r ts

sh o ul d h av e b e e n mi sse d. S e cond , t hi s st u dy a i ms t o d i s-

c u s s t h e e n v ir onm en tal pa r a m et e rs b e h ind t h e la r g e d i f fe r -

enc es i n t he total n umber o f torn ado es b e tween China

a n d t h e U n i te d S t a te s r a t h er t h a n t h e c l i m a to lo g ica l v a r i -

abi lity a ss oci at ed w it h th e t o rnado count s. The high -

i n cid e nce a r e a s a n d p rim e m o n t hs o f t o r n adoe s r e v e a le d

f r o m t h e se 1 0 - y e a r d a ta a r e co n s i st e nt w i th t h os e de t e r-

m ined i n p re v iou s st u die s w ith l o ng e r stu d y pe r i o ds i n

both China (Chen ., 2018 ) an d the U nite d S tate set al

( e .g . , A s hl e y , 2 0 0 7 ; T i p pe tt . , 2 0 1 2) . C on s e qu en tly ,et al

u s i ng th e 1 0-y e a r da t a fr o m 2 0 0 7 2 01 6 s h o ul d b e r e a s on-

a b l e f o r th i s st u d y.

A to t a l o f 9 8 3 t o r n a d o r e p or ts w e r e c a ta lo g u ed i n

C h i na fr o m 2 0 0 7 t o 2 0 1 6 . T h i s t o rna do d a t a s e t h a s bee n

m ad e a va i l ab le a t th e P e k in g U n i ve rs i t y O p e n R e s ea r ch

Data Platf orm at https://do i.or g/ 10.18170/DV N/QKQHTG

( Z ho u . , 20 20 ). T h e t o r nad o i nf or m at ion o v e r th e sa m eet al

p e rio d i n the co n t i gu o us U n i t e d St a t es w as d e r i v e d fr om

N OAA' s St o r m P redi cti o n C en tr e ( SP C ) sev ere w e a th er

d a tab as e ( a v a i la ble a t ht tps: / /ww w .s pc .n o a a. g ov/ w cm /

# d ata ) , wh ich h a s b e e n u s e d w i d el y i n t h e li t e r at ur e . D u r -

ing t he 10 studied ye ars , a total o f 11,79 5 t ornadoes w e re

c a tal ogu e d in t h e U n it e d S ta t e s, wh ich is a p p r o xim a te ly

12 time s t he n u mber recorded in Chi na.

2.2 Selection of target regions|

T o a c h i e v e o u r g o al s , w e f o c u s e d o n r e g i o n s w i t h h i g h

fre quency o f t ornadoes. F i g ure 1a,b sh o ws th at m o st tor-

n a d o e s o c c u r in e a s te r n Ch in a, w it h t h e hi g h e st to r n a d o

fre quency o ccurri ng in Ji angsu P rov i nce (the r ed box i n

F i g u r e 1 a ) , w h e r e th e t e r r a i n i s g e n e r al l y fl at . W e t h u s

s e lected a r egion o f i nterest con fin e d b y t he area within

31 3 5 N an d 1 18 122 E ( 4 × 4 ) and labe lle d t hi s r egion

a s J S . In t h e U n i t e d S t a t e s , t h e h i g h e s t to r n a do f r e q u e n c y

i s l o cated i n t he region to the e as t o f t he Roc ky M oun-

t a ins . W e c h o se th e 4 × 4 a r e a co nf in e d by 3 6 4 0 N

a n d 9 7 1 0 1 W a s t h e h i g h -i n c i d e n c e r e g i o n a n d la b e l l e d

i t U C ; th is r e g i o n is lo c at e d i n t h e c e n t r a l an d so u t h e r n

G r e a t P l a ins o f th e U n it e d S t a te s ( F ig u r e 1 c , e ).

I n a d di ti o n to t h e ce n t r a l a n d so u th e r n Gr e at P l a i n s ,

M i s s i s s i p p i a n d Al ab a m a , w h i c h a r e l o c a t e d i n th e s o u th -

e a s t e r n U n i t e d St a t e s , h a v e t h e s e c o n d - h i gh e s t t o r n a d o

f r e qu e n c i e s in t h e U n i te d S ta t e s a n d ha v e b e e n c o n f i r m e d

t o b e t h e tw o s ta t e s th a t h o l d t h e hi g h e s t to r n a do fa t a l i ty

rates o th er than Arkans as ( Ash ley, 200 7; Colem a n a n d

Dixon , 2014 ). Thus, w e ch o se th e 4 × 4 a r e a wi th in 31

35 N a nd 86 90 W ( Figure 1c ,f) a s a n o th er high-

i nci d e nce r e g io n in t he U nit e d S t at e s a nd l a be l le d t hi s

r e g i o n a s U SE 1 . W e f u r the r c h o s e t h e 4 × 4 a r e a wi th in

32 3 6 N a nd 78 82 W a s U SE 2 (Figure 1c, d) t o create a

t a r g e t r e g io n in t h e U n it e d S t at e s t h a t r o u g h ly m a t c h e s

J S i n C h i n a i n t e r m s o f a si m i l a r to r n a do co u n t , l a ti tu d e ,

t e r r a in e l e v a ti o n a n d l o ca ti o n r e l at iv e t o a c o a stl in e .

2.3 Environmental parameters|

T h e l o n g -t er m s p a ti al me a ns o f r e l e v an t e n v ir o nm en ta l

p a ram e te r s c a n b e u s e d t o r e pr e se n t t h e o v e ra l l e n v i r on -

m e n ta l f e a tu r es o f th e fo u r ta rg e t r e g io n s i n a sta t i st i ca l

s e n se . T h e e n vir o nm e n ta l p a r a m et e r s w e r e c a l cu l a te d

u s ing t h e N at i o n al C e n tr es fo r E nv i ro n m ent al P r e d i ct i o n

F i n al Op e r a ti on a l G l o b a l A n a ly s i s d a ta se t ( N C EP F N L ,

a v a il ab l e o n l i ne a t ht t p s : // rd a . uca r. ed u / da tas e ts / d s0 83 . 2/ )

with a 6 -hr inter val a nd 1 × 1 ho ri z o nt al r e s o l uti on . I n

t h e ca lcu l ations o f at m osp h er ic p a ra m e te rs, o n ly NC E P

F N L d a ta o ve r t h e g r i d p o i n ts l o c at ed o n l a n d o r n e a r t h e

c o ast we r e u s e d (F i gu r e 1 b ,d ) f o r t w o m a i n r e a s o ns . F i r st,

t h er e ar e a l m o st n o to r n a do r e p o r ts o ve r t h e o c e an i n t h e

nort heast c orner o f J S o r in t he south e ast corn e r o f U SE 2.

W a te r s po u ts o v e r o c e a ns ha v e l i t tle c h a n c e o f b e i n g

ZH OU .ET A L 3

Page 3 of 19Differences in tornado activities and key tornadic environments between China and th...

2021/6/27https://rmets.onlinelibrary.wiley.com/reader/content/17a26dba79f/10.1002/joc.7248/for...

Page 4: Differences in tornado activities and key tornadic

d e te c ted an d a r e di ffic u lt t o ve r i fy du e to i nsu ffi cie n t r a d a r

c o v er a ge a n d i m p r a ctic al d a m ag e s u r ve ys . A d d i t io n a ll y,

t h e bo u n da r y l a y e r co n d it i ons o v e r t h e o c e a n a r e s u b st a n-

t i a ll y d if f e re nt f r o m tho s e o v er l a n d , w h i c h w o u ld a ff e ct

t h e d e r i ve d c o n v e ct i ve p ar a me t e rs e xa m i ne d i n t h i s s t u d y.

S e v e r a l to r n a d o - r e l a t e d a t m o s ph e r i c pa r a me t e r s w e r e

c o m p o s i t e d o ve r t h e s t u d i e d s p a t i a l an d t e m p o r a l r a n g e s

f o r t h e f o u r t a r g e t r e g i o n s d u r i n g t h e t o r n ad o - p r o n e

m o n th s: 0 1 -k m S R H (S RH 1 ) , m i xe d - la ye r C A P E

( M LC A PE ), S HR 6, mi xe d - la y e r L C L ( M LL C L ), S T P a nd

E H I . M L C A P E w a s ca l c u l a t e d u s i n g a pa r c e l li f t e d f r o m a

m ix e d l ay e r i n t h e lo w e s t 1 0 0 h P a . I n c al c u l at i n g S R H 1 ,

t h e st o r m m o t io n wa s e st im a te d u si n g t h e m e t h o d o f

Bunke r s . (2 000) . T he STP w as c a lculated followinget al

t h e p r o c e s s o f T h o m p s o n . (2 00 3 ) u s i n g a m i x e d- l ay e ret al

m e th od ( a lso w it hi n th e l o wes t 10 0 hPa).

STP=M L CA P E

100 0 J kg 1

×

2 0 0 0 m M L L C L

1500 m

×S R H1

100 m2 s 2

×

S HR 6

20 m s 1

FIGURE 1 ( a ) S p a ti a l d i st ri b u ti o n o f to r n a d o o c cu rr e n ce s i n co n t i g uo u s C h i n a f ro m 20 0 7 to 2 0 1 6 d i s p l a y e d o n 1 × 1 l at i tu de

l o n g i tu d e g ri d s . Th e r e g i o n i n th e r e d b o x i s e n l a rg e d i n ( b ) . Th e r e d do ts i n ( b ) d e n o te t he l oc a t io n s w h e re t he NC E P F N L da t a w e r e us e d to

c a l cu l a t e e n v i ro n m e n t a l f e a t ur e s. ( c) A s i n ( a ) b u t f o r t h e t o r na do e s th a t o cc ur re d i n th e c on t ig uo u s U n i t e d S t a te s d u ri n g t h e s a m e pe ri o d .

( d ) ( f ) S a m e a s i n ( b ) b ut c or re s p o n d i n g t o th e s e l ec t e d t a r g e t re g io n s i n th e U n i t e d St a t e s, na me l y , U S E 2 , U C , an d U S E 1 (i n d i c a t e d b y t he

b l u e b o x es a n d b l a c k a rr ow s ) . N C E P F N L d a t a ov e r t h e b l ue gri d po i nt s i n (d ) ( f ) w e re u s e d t o ca l c ul a t e e n v i r on m e n t a l f e a t u re s . T he co l o ur

b a r i s e mp lo y ed fo r ( a ) ( f )

4 Z HO U .ET A L

Page 4 of 19Differences in tornado activities and key tornadic environments between China and th...

2021/6/27https://rmets.onlinelibrary.wiley.com/reader/content/17a26dba79f/10.1002/joc.7248/for...

Page 5: Differences in tornado activities and key tornadic

E HI w as calc ulated accordin g t o th e modif ied versi o n

outlined in R a smus sen (2 003) .

EH I=M LC A PE S R H 1×

1600 00

T h e s e at m o s p h e r i c p a r a m e t e r s w e r e f i r st ca l c u l a t e d

for e very 6-h r data time s e ries for th e grid poin ts located

o n l a n d o r n e a r t h e c o a s t i n e a c h o f t h e fo u r ta r g e t

r e g i o n s . T he v a l ue s o f t h e s e e n v i r o n m e n t al p a r a m e t e r s

o n g r i d s w i t h i n 1, 0 0 0 k m o f a tr o p i c a l cy c l o n e

( T C) c e n t r e d u r i n g t h e p e r i o d a f f e c t e d by T Cs w e r e

rem o ved t o e l im inate th e i nfl u ences o f T Cs on the e nvi-

ronm ental c h a r a c te r is tic s. T h e s e a tmo s ph er i c p a rameters

w e r e t h e n a v e r a g e d i n e a c h o f t h e f o u r r e g i o n s th r o u g h -

o u t th e i r r e s p e c t i ve t o r n a do -p r o n e m o n t h s t o o b t ai n

m e an va l u e s.

T h e t r o p i c a l cy c l o n e b e s t- t r ac k d a t a we r e o b t a i n e d

f r o m t h e HU R D A T 2 d a t ab a se ( L an d se a a n d

Franklin, 2 013, a v a ila b le o n l ine a t https:// ww w.nh c.

n o a a . g o v / d a ta / h u r d a t/) an d t h e d at a b a s e co mp i l e d b y

R e g i o n a l S p e c i a l i ze d M e te o r o l o g i c a l C e n t r e T o k yo

( R S M C , av a i l a b l e o n l i n e a t ht tp : / / w w w . j m a . g o . jp / j m a/

j m a - e n g / j m a - c e n t e r / r s m c -h p- p u b - e g /b e st tr a c k . h tm l) .

2.4 Tornado event and its tornado-|generating efficiency

Torna d o o u tb r ea ks of ten o cc u r i n t he U ni ted S t a tes bu t

a r e r a r e in C h i n a . A t o r n a d o o u t b r e a k e v e n t i s g e n e r a l l y

desc ribe d a s t he occurre nc e o f 1 0 o r m ore torn a do e s asso-

c i a te d w i t h t h e sa m e sy n o p t i c - s c a l e st o r m s ys te m

( Galway, 1 977; Glic kman, 20 00). I n o ur attem p ts to seek

t h e ca u s e s o f t h e d i f f e r e n t t o r n a d o n u m b e r s o b se r v e d

be tw een th e fou r ta r g e t r e gi o ns, i t is i mp ort an t to t ak e

i nto a cco u n t th e fr e q u e ncy wi th w hic h m u lt ip l e t o r na -

does occur in a s hort p eriod a nd m e as ure t he effec ts o f

t h is ty p e o f o c c u r r e n c e o n t h e to t a l t o r n a d o c o u n t s.

I n t h is w o r k , t o r n a do e s t h a t o c c u r a t cl o se ti m e s a n d

l o c a t i o n s a r e c o n si de r e d o n e t o r n a d o e v e n t . T h e t o r n a d o

event d ataset is b u ilt a s follows.

1. For e ach torn a do , a c o rresponding torna d o e vent is

d e t e r m i ne d t o i n c lu d e t h i s t o r n a d o a n d t h e t o r n a do e s

t ha t o cc ur in i ts p r o xi mi ty wi th in 6 h r a nd wi th in a

1 × 1 r egi o n r elat ive to th is t ornad o . T he in it ial se t

o f t h e n u m b e r (N t ) o f t o r n a d o e s t h a t o c c u r i n a t o r -

n a d o e v e n t is t h e n o b t a i n e d . T h i s da t a s e t i s la b e l l e d

t h e o l d t o r n a d o e ve n t d a ta s e t, a n d i t c o n ta i n s m a n y‘ ’

d u p li c a te t o r n a d o r e p o r ts .

2 . T h e t o r n a d o e v e n t wi t h t h e l a r g e s t N t in t h e o l d‘ ’

d a ta s e t i s se l e c t e d a n d m o v e d fr o m t h e o l d d a ta s e t t o‘ ’

t h e n e w da t a se t . T o r n ad o e v e n t s w it h th e s am e N t‘ ’

v a l u e s a r e p r o c e s s e d in ch r o n o l o g i c a l o r d e r . T h e t o r -

nado reports t hat o c cur in thi s torn ado e vent are iden-

t i f i e d a n d r e m o v e d f r o m t h e r e m a i n i n g t o r n a d o e v e n t s

in t h e o ld da t a se t . F o r t h e o ld d at a se t , t h e N t v a l u e s‘ ’ ‘ ’

f o r a l l t o r n a d o e v e n t s a r e t h e n u p d a te d , a n d t h e to r -

n a d o e v e n t s w i t h N t 0 ar e r e m o v e d .=

3 . T h e se c o nd st e p i s r e p e at e d u n ti l t h e o l d da t a s e t i s‘ ’

e m p t y .

4. Thes e t ornado even ts in the n ew da taset a re the n‘ ’

used for t he fol low ing a nalys is .

To a sses s th e pot ent ia l for mu l ti pl e torn a does to occ u r

i n a sh o r t p e r i o d i n a g i v e n r e g i o n , th e t o r n a do -

g e n e r at i n g e f f ic i e n c y o f t o r n a do e v e n t s is d e f i n e d a s t h e

n u m be r o f t o t al t o r n a d o r e p o r t s (N t o r ) d i v i d e d b y t h e

num ber of total tor nado events (Nte), wh ich r ef lects t he

a v e r a g e n u m b e r o f t o r n a d o e s th a t o c c u r p e r to r n a d o

event. It sh ould b e noted t hat th is d efi ni ti o n o f t he

t o r n a d o -g e n e r a ti n g e f f i c i e n c y o f to r n a do e v e n t s mo s t l y

con si ders th e to rna d o num ber a nd does not i ncl u de i nf o r-

m a ti on suc h as t he d urat ions , p at h le ngth s or int e ns it ie s

o f to r n a do e s . I n t h i s s tu d y , a n e f f i c i e n t to r n a d o e ve nt

d o e s n o t in di c a t e a l o n g -l i v e d , lo n g -t r a c k e d o r se v e r e t o r -

n a d o e v e n t .

3 | RESULTS

3.1 Tornado activity|

Th e c haract eris ti cs of t o rnad o a c ti v it ies i n JS a nd UC , th e

regi ons wi th t he h ighes t torn a do freque nci e s in C hin a

a n d t h e U n i t e d S t a t e s , r e s p e c ti v e l y , a r e e x a m in e d fi r s t . A s

s ho wn i n F i gu r e 2a , JS ha s a si mi la r t e m po r a l d i str i bu -

t i o n o f t o r n a d o e s t o th at o f a l l o f Ch i n a , w h i c h i s po s s i b l y

d u e to t h e m u c h h i gh e r f r e q u e n cy o f to r n ad o e s i n J S t h a n

i n oth e r r e g ion s, i ncl udi ng in the southern p art o f C hi na.

T h e sa m e i s al so tr u e fo r U C r e la t iv e to th e co n ti g u o u s

U n i t e d S t a t e s ( F i gu r e 2a ) . C o ns id e r in g t h a t t h e i r h ig h e s t

t o r n a d o d e n s i ti e s a n d mo n th l y va r i a ti o n s i n t o r n a d o

num ber are s imilar to th ose o f t he wh ole country, U C

a n d J S c an b e u s e d a s r e p r e s e n t a t i v e a r e a s o f t h e U n i t e d

S ta t e s a n d C h i n a , r e s p e c t i v e l y . F i g ur e 2 a s h o w s th a t th e r e

a r e a l s o so m e t o r n a d o e s t h a t o c c u r i n A pr i l a n d M ay i n

C h i n a , m o s t o f w h i c h a r e l o c a t e d i n t h e s o u t h e r n p a r t o f

China (Chen ., 2 018) . S outhern C hina is not t he fo cuset al

o f th i s s t u d y d u e t o i t s m o u n t a i n o u s te r r ai n a n d i ts r e l a -

t iv e l y l o w t o r na d o de nsi ty (F i gu r e S 1 ) .

T o a n a l y s e th e m o s t r e p r e s e n t a t i v e e n v i r o n me n t a l

ch aracteristic s o f d iff e rent re gi ons a t t he s am e time sc ale,

w e de f i n e d t h e t o r n a d o se a s o n o f e a c h r e g i o n a s t h e t h r e e

c o n se c u t i v e m o n t h s fr o m th e m o n t h b e f o r e to t h e m o n t h

ZH OU .ET A L 5

Page 5 of 19Differences in tornado activities and key tornadic environments between China and th...

2021/6/27https://rmets.onlinelibrary.wiley.com/reader/content/17a26dba79f/10.1002/joc.7248/for...

Page 6: Differences in tornado activities and key tornadic

a f t e r t h e m o n t h o f p e a k to r n a d o o c c u r r e n ce . J S h a s a

p e a k t o r n a d o o c c u r r e n c e i n J u l y (F i g u r e 2 a ) wi t h a t o r -

n a d o s e a s o n f r o m Ju n e t o A u g u s t . In th e U C a r e a o f t h e

U n i t e d S t a t e s , t h e t o r n a d o s e a s o n l as t s f r o m A pr i l to

J u n e , wi t h t h e m o s t a c ti v e m o n th in M a y ( F i g u r e 2 a) .

M e a n w h i l e , b o t h U S E 1 a n d U SE 2 ha v e a to r n a do s e a s o n

f r o m M a r c h t o M a y ( F i gu r e 2a ) .

A lt ho u g h s o m e t o r n a d oe s a r e k no w n t o o c c u r i n a s s o -

c i a ti o n w i t h T C s , t h is w o r k f o c u s e s o n l y o n t o r na d o es t h a t

a r e no t a ss o c ia t e d w i t h T Cs . T C t o r n a d oe s a r e i d e nt i fi e d

w ithin 1, 000 km of the c entr e o f t heir parent TCs

( M cCaul, 199 1). A s show n in Figure 2b, T C t ornado es

h a v e l i tt l e e f f e c t o n t h e ti m i ng o f tor n a do s e a so n s o r o n

t h e t o r n ad o n u m be rs in t h e f o u r t a r ge t r e gio n s. T h e r e su lt s

s h o w t h a t T C t o r n a do e s t e n d to p r e v a il i n

t h e so u thea ste r n U n it e d S tate s f r o m Ju l y t o S e p te m b er .

Du rin g t he t o r na d o se a s ons t hr o u gh ou t t he 10 s tu die d

y e a rs , n o T C t o r n a do was o b s e r ved i n U C o r U SE 1 , a n d

o n l y o n e T C t o r n a do w a s id e nt i fi e d i n U S E2 i n M a y 2 0 1 2 .

I n J S du r in g i t s t o r n ado s e a s o ns , T C t o r na doe s a cco un t f o r

o n l y 1 0 % o f t h e t o t a l t o r n ad o e s, i n c l ud i ng fo u r N t > 1 T C

t o r na do e v e n t s , a l tho u gh JS c on s t itu te s a s pa ti a l p ea k o f

TC-ass oc iate d t ornadoes in Ch ina ( Bai . , 2020) . F or aet al

con siste nt com p arison, th e TC tornadoes were r emov ed

f r o m t h e f o l l ow in g d i s c u ss i on, if no t o t h e rw ise s t a t e d.

D uri ng the t ornado s e ason in JS, a total o f 135 non-

T C t o r n a d o e s w e r e r e c o r d e d f r o m 20 07 t o 2 0 1 6 , a c c o u n t -

i ng f or 23 % o f a l l reported non-T C torn adoes i n C hi na

from Ju ne to August in th is period. In c omparison, there

a r e 72 3 n o n -T C t o r n a d o e s r e c o r d e d i n U C d u r ing it s t o r -

nado s e asons from 200 7 t o 20 16, ac countin g for 10.7% of

a ll r e p o r te d no n - T C to r n a do e s in t h e U n i te d St a t e s in t h e

s a m e p e r i o d ; t h i s v a l u e e x c e e d s t h e n u m b e r o f t o r n a d o e s

t h a t w e r e r e c o r de d i n J S d u r i n g i t s to r n ad o s e a s o n s b y

fi ve ti mes .

Th e r esul ts show that a l arge di fferenc e i n t he poten-

t ia l f o r mu l t i p le t o r n a d o e s to o c c u r w it h in a sh o r t p e r i o d

ex is ts b e tween JS and U C i n th e ir respec tive tornado sea-

s o ns. T he num ber of Nt 1 torn a do even ts i n JS is m u ch>

s ma ll e r th an t ha t in U C , w hil e the n u mbe r o f N t 1 t o r -=

n a d o e v e n t s i n J S i s c l o s e t o th a t i n U C (F i gu r e 3 a ) . A

t o ta l o f 100 no n -T C to r n a d o e v e n ts w e r e i de n ti fi e d i n J S

d u r i n g i t s to r n a d o s e a s o n s (J u n e A u g u s t ) t h r o u g h o u t th e

s tu d y p e r i o d , i n c lu d i n g 78 t o r n a d o e v e n t s o f N t 1 a n d=

22 t o r na d o e ve nts o f N t 1 ( Fi g u r e 3 a) . M e a n whi le ,>

1 6 9 t o r n a d o e ve n t s w e r e i d e n t i f i e d i n U C , w i t h 72 t o r -

nado events of N t 1 a nd 97 tornado e ve nts o f N t 1= >

r e c o r de d d ur in g i t s to r n a do s e a s o n s (A pr i l J u n e )

t h r o u g h o u t t h e s tu d y p e r i o d ( Fi g u r e 3 a ) . I n U C , the

m o nthly di strib uti o n o f a ll tornado e vents is si mi lar to

t h a t o f N t 1 t o r n a d o e v e n t s , w i t h th e pe a k m o n t h do m ->

i n a te d b y N t 1 to r n ad o e ve nts ( F i g u r e 4a , c ) . In co n tr a s t ,>

t h e N t 1 t o r n a d o e ve n ts d o m in at e in J S (F ig u r e 4 b , c ).=

T h e di f f e r e n c e in th e n u m be r o f t o r n a d o e v e n t s o f

N t 1 d e t e r m i n e s t h e d i f f e r e n c e i n t h e to t a l t o r n a d o>

c o u n t be t w e e n J S a n d U C . F i g u r e 3 b s h o w s th a t 9 0 % o f

t o r n a d o e s i n U C a r e c h a r a c t e r i ze d b y N t 1 t o r n a d o>

events, while the m ajority ( 57.8%) o f t ornadoes in JS cor-

res pon d t o N t 1 torn ad o e vents. Th e d ifferen ce in t he=

t o t a l t o r n a d o c o u n t b e t w e e n J S a n d U C i s mo r e o b v i o u s

f o r hi g h - N t t o r n a d o e ve n ts . A t o ta l o f 5 1 t o r n a d o e v e n ts

o f N t 4 co n t r i b u t e to ne a r l y t h r e e - q u a r t e r s o f t h e to r ->

n a d o r e p o r t s in U C , w h i l e th e r e i s o n l y o n e ca s e o f

N t 4 r e c o r de d i n JS (no t sh o wn) .>

Si mi lar to U C , out st a nd in g con tri but ions of t o rnad o

e v e n t s o f Nt 1 t o t h e to t a l to r n ad o c o u n t s w e r e a lso>

ob served in USE 1 and U SE2 (Figure 3b). Durin g th e tor-

n a d o s e a s o n s ( M a r c h M a y ) , mo r e th a n 8 0 % o f the t o ta l

t o r n a d o c o u n t s we r e a t t r i b u t e d t o t o r n a d o e v e n t s o f

N t 1 in U S E 1 a n d U S E 2 . F i g u r e 3 a , b sh o w s th at t h e>

m a in dif ferenc e in the t otal tornado count between USE1

a n d J S co m e s f r o m t o r n a d o e v e n t s o f N t 1. E ve n>

t h o u g h U S E 2 h as fa r f e w e r t o r n a d o e v e n t s o f N t = 1 a nd

a sl i g h t l y gr e at e r n u m b e r o f N t 1 to r n ad o e v e n t s t h an>

FIGURE 2 M o n th l y d is tr i b ut i on s o f a l l to rn a d o es ( a ) a n d n o n -T C to r na d o e s (b ) f r o m 20 07 to 2 016 i n th e f o ur ta rg e t r eg i on s ( s ho w n b y

th e l e f t ax i s ) , c o n ti g u o us C h in a ( CH N ; sh o w n b y t h e l e f t ax i s) a n d th e U n i t ed S t a t es ( U S A ; s ho w n b y t h e ri g ht a x i s )

6 Z HO U .ET A L

Page 6 of 19Differences in tornado activities and key tornadic environments between China and th...

2021/6/27https://rmets.onlinelibrary.wiley.com/reader/content/17a26dba79f/10.1002/joc.7248/for...

Page 7: Differences in tornado activities and key tornadic

JS, t he higher li kel iho od of high -N t torn a do events i n

USE2 (1 0 N t 4 cas e s in U SE2) h e lps it to e xc eed JS i n>

t e r m s o f t h e i r t o t a l t o r n a d o n u m b e r s .

I n agree men t w ith th e n um b er s a n d pr o po rtion s of

N t 1 to r n a do e v e n t s ( F i g u r e 3a ) , t h e t o r n a d o ->

g e n e r at i n g e f f i c i e nc y o f t o r n a d o e v e n t s ( N t o r / N te )

d e c r e a s e s mo n o to n i c a l l y f r o m U C ( 4 . 2 8 ) t o U SE 1 ( 3 . 8 9 ) ,

U S E 2 ( 2. 7 1 ) a n d J S ( 1 . 3 5 ) d u r i n g t h e i r co r r e s po n d i n g t o r -

nado season s, in di cating th e d ecreasing likelihood of

m u lt ip le t o rnad oes o c currin g d u ri ng a sin gle e vent in

FIGURE 3 ( a ) N u m be r s o f N t 1 ( re d ) a n d N t 1 ( b lu e ) n o n - T C t o r na do e v e n t s i n t he f o ur t a rg e t r e g i o ns d ur i ng th e i r re s p e ct i v e> =

to r n a d o s e a s on s ( U C, A p ri l to Ju n e ; U SE 1, Ma rc h to M a y ; U S E2 , Ma r ch t o M a y ; J S , J u n e to A ug us t) . ( b ) A s i n ( a ) , b ut fo r th e n u mb e r s o f

t o r n a d o r e p o rt s f ro m N t 1 n o n - T C t or n a d o e v en t s (r e d ) an d Nt 1 n on - T C to rn a d o e v e n t s ( b l ue )> =

FIGURE 4 M o nt h ly di s t r ib u t i o n s o f N t 1 n on - T C to rn a d o e v e n t s ( a ) , N t 1 n o n -T C t o rn a d o e v e nt s (b ) , a l l n o n -TC to r na d o e v e n ts> =

( c ) , a n d t o r n a d o - g e n er a t in g e f f i c i en c y o f t o r n a do e v e n t s ( d ) f r o m 2 00 7 t o 2 0 1 6 i n t h e fo u r ta r g e t re g io n s

ZH OU .ET A L 7

Page 7 of 19Differences in tornado activities and key tornadic environments between China and th...

2021/6/27https://rmets.onlinelibrary.wiley.com/reader/content/17a26dba79f/10.1002/joc.7248/for...

Page 8: Differences in tornado activities and key tornadic

t h e s e r e gi o n s . H o w e v e r , th i s f e at u r e f a i l s t o be

m ai n t a i n e d o u t s i d e o f t h e to r n a do s e a s o n . In t h e t h r e e

t a r ge t r e g i o n s o f t h e U n it e d S t a te s , t h e to r n a do -

generatin g ef fic ien cy of torna d o e v e n t s d e c l i n e s o b v i o u s l y

i n s u m m e r a n d b e c o m e s s i m i l a r to t h a t o f J S i n J u l y a n d

A ug u s t ( F i g u r e 4 d) , wi t h fe w e r o c c u r r e n c e s o f N t 1 to r ->

n a d o e v e n t s i n s u m m e r t h a n i n s p r i n g ( F i g u r e 4a ) . Nt 1=

t o r n a d o e v e n ts be c o me mo r e co m m o n in s um m e r t h a n

N t 1 t o r na d o e ve nts (F ig u r e 4a ,b ).>

3.2 Environmental features related to|total tornado counts

T o a c c u r a t e ly d e s c r ib e t h e to r n a do d e n s i t y wi t h r e s p e c t

t o ar e a, we d iv i de d t h e to t a l t o r n a d o co u n t i n e a c h r e g i o n

b y the a rea o f t he region. A s s hown in Figure 1b ,d, b oth

t h e no r t h e a s t c o r n e r o f J S a n d t h e s o u t h e a s t co r n e r o f

U S E 2 c o v e r so m e o c e a n a r e a s , w he r e a l mo s t no t o r n a -

d o e s w e r e r e c o r de d . L at i t u d i n a l d i f f e r e n ce s a l s o c o n tr i b -

ute t o t he diff erences i n the lan d area. T he actual land

areas o f U C, USE1 , U SE2 a nd JS are 155, 78 5, 165, 819,

13 0,62 0 a n d 116, 195 km , r e s p e c ti v e l y . T h e to t a l t o r n a d o

c o u n t in e a c h o f th e f o u r t ar g e t r e gi o n s i s s c a l e d by i ts

l a n d a r e a a n d co n v e r te d t o a n a m o u n t p e r 4 0 0 4 0 0 k m×

h e r e a f te r , i f n o t o th e r w i s e s ta t e d . F i g u r e 5a , b sh o w s t h a t

t h e ar e a- sc a le d t o t al t o r n a d o c o u n ts d e c r e a s e f r o m U C

( 743) to USE1 (3 98), JS (18 6) and U SE 2 (18 3) durin g their

cor r espondin g t ornado season s.

T o e x a m i n e t h e m ai n e n vi r o n m e n t al fa c t o r s t h a t

a f f e c t t h e a r e a - s c a l e d t o ta l t o r n a d o c o un ts , t h e a v e r a ge

v a l u e s o f se ve r a l to r n a do - r e l at e d p a r a m e t e r s w e r e

FIGURE 5 ( a) T h e ar ea -s ca le d to ta l to rn a do co u n ts ( sh o w n b y th e l e ft ax i s) a n d th e a ve ra ge S RH1 , SH R6, ML L C L a nd ML C AP E val u e s

( s ho w n b y t h e ri g ht a x i s ) i n th e f ou r t a r g e t re g io n s du ri n g th e i r r e s p e ct iv e to rn a do s ea so n s . ( b ) Th e ar e a-s c al e d t ot al t or n ado c o un ts ( s h ow n

by the left axis ) and t he aver age c o mpos ite i ndic es EH I and STP ( s h ow n b y th e r i g h t a x i s) i n t he fo ur t a rg e t r e g i o ns d ur i ng t h e i r re s p e c t i v e

to r n ado s eas on s

8 Z HO U .ET A L

Page 8 of 19Differences in tornado activities and key tornadic environments between China and th...

2021/6/27https://rmets.onlinelibrary.wiley.com/reader/content/17a26dba79f/10.1002/joc.7248/for...

Page 9: Differences in tornado activities and key tornadic

c a l c u l a t e d f o r e a c h o f th e f ou r r e g i o n s t h r o u g h o u t t h e i r

res pec ti v e torna d o sea s o ns u si ng th e m e th od d e s crib e d i n

S e c t io n 2 .3 .

T h e t a r g e t r e g i o n s i n t h e tw o c o u n t r i e s a r e n o ti c e a b l y

dif ferentiated by th eir e n v ironm e ntal features durin g

t h e i r r e s pe c t i v e t o r n a d o s e a s o n s . I n t h e J S r e g i o n o f

C h i n a , the ki n e m a t i c e n v i r o n m e nt is u n f av o u r a b l e fo r

t o r n a d o e s a n d s u p e r c e l l s , w i t h l o w me a n v a l u e s o f S R H 1

a n d S H R 6 , w h il e t h e t h e r m o d yn a m ic c o n d it io n s se e m to

b e c o n du c i v e to th e o c c u r r e n c e s o f s e v e r e s t o r m s , w i t h

r e l a ti v e l y h i g h M LC A P E a n d lo w M L LC L v a l u e s

( Fi g u r e 5a ) . C o m p a r e d w i t h J S , U C i s c h ar a c te r i ze d by a

m o re f a vourab le ki nematic e n v ironm e nt w i th hi gher

S R H 1 an d S HR 6 v a l ue s b u t i s a l s o c h a r a c te r i ze d by a

d r ier e nvi r onmen t wi th a h igher M LL C L val ue

( Fi g u r e 5a ) . U S E 1 a n d U S E 2 h a v e s i m i l a r e n v i r o n m e n t s

w i t h h i g h S HR 6 b u t lo w C A PE v a l u e s ( F i g u r e 5 a ) . T h e

p h e n o m e n o n i n w h i c h m a n y t o r n a d o e s o c c u r in hi gh -

s h e a r bu t l o w - C A P E e n v i r o n m e nt s i n t h e so u t h e a s t e r n

U ni t e d S ta t e s ha s g r a d u a ll y r e ce i v e d m o r e sig ni fi ca nt

atten tion r ec en tly ( e.g ., S h er b u r n a n d P a r ker , 201 4; Lon g

et al., 2018 ; B rown an d N owotarski, 202 0).

R e la t iv e t o t h e a b s e n c e o f c o n si st e n t va r i a ti o n

o b s e r v e d b e t w e e n a p ar t i c u l a r k i n e m a t i c o r t h e r m o d y -

n a m i c p a r a m e t e r a l o n e an d t h e to t a l to r n ad o co u n t , th e

co m p o sit e in d e x ST P sh o ws a co n sis te n t ch a ng e wi th

t h e mo n o t o n i c d e c r e as e i n t he a r e a -s c a l e d to t a l to r n a do

c o u n t fr o m U C t o U S E 1 , J S a n d U SE 2 ( F ig u r e 5 b ). U C

h a s a m u c h h i g h e r S T P va l u e w it h a mu c h h i g h e r to ta l

t o r n a d o c o u n t th an t h e o th e r t a r g e t r e g i o n s, f o l lo w e d b y

U S E 1 w i t h t h e se c o n d- h i g h e s t to t a l to r n a do co u n t . J S

a n d U S E 2 h av e si m i l a r S T P a ve r ag e s , w h i c h is c o n s i s t e n t

w i t h t h e i r co m p ar a b l e t o t a l t o r n a d o co u n t s . A l t h o u g h t h e

E H I i s a l s o a c o m p o s i t e pa r a m e t e r o f b o t h k i n e m a t i c a n d

t he r m o dy na m ic fa ct o r s si mil a r t o t he ST P , it p e r f o r ms

w o rse th an t he ST P i n a s sess ing the t otal tornado count

o f a g i v e n r e g i o n ( F i g u r e 5b ) .

T o v e r i f y t h e e f f e c t o f t h e S T P o n t h e t o t al t o r n a d o

c o u n t , w e c al c u l at e d S p e a r m a n ' s r a n k c o r r e l a t i o n c o e f f i -

cient ( Spearm an's ; K endall an d G ibb o ns, 1 990) , whichρ

ass e sses h ow w ell th e r ela tio n s h ip b etw een tw o s ets o f

data can b e d es crib ed us ing a m o n o t o n i c f u n c t i o n . T h e -p

v a l u e w a s o b t a i n e d fo r t e s t i n g t h e h y p o th e s i s th a t t h e r e is

n o c o r r e la t io n b e t we e n t h e t wo d a ta se ts a g ai n s t th e a lt e r -

n a t iv e h y p o t h e si s o f a no n ze r o c o r r e la t io n . T h e S T P a v e r -

a g e s a n d t h e to t a l to r n a d o c o u n ts we r e o b ta i n e d fo r e a c h

t a r ge t r e g i o n d u r i n g t h e co r r e s p o n d i n g t o r n ad o s e a s o n i n

e a c h y e a r o f t h e 1 0 - y e a r s t u d y p e r i o d, p r o v i di n g a s a m p l e

c o n ta i n i n g 4 0 S T P a v e r a g e s a n d 4 0 c o r r e s p o n d i n g to t a l

t o r n a d o co u n t v a l u e s . A s s h o w n in F i g u r e 6, hi gh t o ta l

t o r n a d o co u n t v al u e s te n d to b e a c c o m pa n i e d b y hi gh

S T P a v e r a g e s . T h e S p e a r m a n ' s b e tw e e n t h e 40 ST Pρ

a v e r a g e s a n d 4 0 t o t al t o r n a d o c o u n t v a l u e s is

a p p r o x i m a t e l y 0. 8 3 , a n d th e c o r r e s p o n d i n g - v a l u e i sp

m u ch low e r t han th e si gni fic an ce level o f . 05. T his fur-

t h e r c o n f i r m s t h a t t h e t o t a l t o r n a d o c o u n t i n a gi v e n

r e g i o n c o r r e l a te s st r o n g l y w it h t h e S T P , i n d ic a ti n g t h a t a

r e g i o n w i th a hi g h m e a n S T P v a l u e m a y ha v e m o r e t o r -

n a d o o c c ur r e n c e s .

3.3 Environmental features related to|monthly variation of tornado activity

A s disc ussed in Sec tion 3.1, the t hree target regi ons o f the

U n i t e d S ta t e s h a v e m an y m o r e t o r n a d o e s a n d r e l a t i v e l y

hi gher torn ado-generating e ffi ci enci es of tornado e ven ts

i n sp r in g th a n i n su m me r , wh il e t he JS r e g io n o f C hin a

h a s t h e m o s t ac t i v e t o r n a d o o c cu r r e n c e i n s u m m e r . T o

e x p l o r e th e m a i n e nv i r o n m e n t a l fa c to r s t h a t c o n t r i b u te

to m o nthly vari a tions i n t ornado ac ti vi ty, t he monthl y

a v e r a g e s o f th e s e t o r n a d o - r e l a t e d p a r a m e t e r s w e r e ca l c u -

l a te d a s d e scr i be d in S e ct i o n 2. 3 .

O n e in te r e s t i n g f e a t ur e o f S H R 6 i s th a t it s m e a n

v a l u e s in t h e th r e e ta r g e t r e g i o n s o f the U n i t e d St a t e s a r e

a l l su b s t a n ti a l l y l a r g e r t h a n i t s m e an v a l u e i n J S

( Fi g u r e 5a ) , s u g g e s t i n g th a t th e U n i te d St a te s m a y ha v e

m o re f a vourab le ki nem a ti c e nviron men ts for th e g en esis

of s u per cells (Markow ski an d R ic hardso n , 2010 ). Our

a n a l y s e s s h o w tha t thi s i s n o t be c a u s e t h e U n i te d S ta t e s

h a s a ge n e r a l l y la r g e r SH R 6 t h a n C h i n a a t a n y ti m e o f

t h e y e a r , a s w e s pe c u la t e d b e f o r e . T h e f o u r t a r g e t r e g i o n s

a c t u a l l y h a v e s i m i l a r S HR 6 val ues in t he s a me m o nths,

w i t h s i m i l a r d e c r e a s i n g t r e n d s fr o m M a r c h t o A u g u s t

FIGURE 6 A s cat te r pl o t b e t we e n t h e ST P ave r age s an d th e

ar e a- sc al e d t ot al t or n ado c o un t s i n t h e fo u r t a r g e t r e g i o n s d ur i n g

t he i r 1 0 s t u d i e d t or n a d o s e a s o ns

ZH OU .ET A L 9

Page 9 of 19Differences in tornado activities and key tornadic environments between China and th...

2021/6/27https://rmets.onlinelibrary.wiley.com/reader/content/17a26dba79f/10.1002/joc.7248/for...

Page 10: Differences in tornado activities and key tornadic

( Fi g ure 7a) . T he mon thl y vari a ti ons in S HR6 in t he f o ur

t a r ge t r e g i o n s p r o b a b l y de pe n d o n c h a n g e s i n t h e ma g n i -

t u de o f th e w in d a t a n a l ti tu d e o f 6 k m a bo v e g r o u nd

l e v e l (A GL ) r a t h e r th an t h e su r f a c e wi n d . T h e w in d

s p e e d s a t a n al t i t u de o f 6 k m A GL a r e u s u a l l y st r o n g e r

t h a n the w i n d sp e e d s a t t h e s u r f a c e , a n d th e a v e r a g e d

s u r f a c e w i n d ma g n i tu d e d o e s no t c h a n g e o bv i o u s l y fr o m

m o nth t o m ont h (F ig u r e 7b) . I n co ntra s t, a s t he m id - t o

h i g h - l e v e l w e s t e r l i e s w e a k e n a n d t h e j e t s t r e a m s m o v e

pole ward fro m s p ring to summ er, th e wind speed at an

a lt i tu d e o f 6 km A G L i n e a c h t a r g e t r e gi o n sh o ws a si m i -

l ar d e cr e a si ng t r e nd a nd s imi l a r m a g n i tu d e o f v a r i at i o n

a s th o s e o f S H R 6 fr o m M a r c h t o A ug u s t. In a dd i ti o n to

t h e me a n v al u e s , t h e bo x - a n d - w h i s k e r pl o t o f S H R 6

sh o ws a r o u g h ly sy m m e t r ic d is tr i b u t io n w it h si m il a r

m e di a n a n d me a n v a l ue s (F i g u r e 8 a) , d e m o n st r a t i ng th at

a hi gh e r mean value i s main ly cont ri bute d b y a larger fre-

q u e n c y o f h i gh e r va l u e s .

T h e e a r l i e r t o r n a d o s e a s o n s o b s e r v e d i n th e thr e e

r e g i o n s o f t h e U n i te d St a t e s c o m pa r e d to t h a t o b s e r v e d i n

JS are p oss ib ly d ue to th e d if ferent m o nthl y variations

i n i n s ta b i l i t y a m o n g th e s e ta r g e t r e g i o n s . T h e m e a n v a l u e

o f M L C A P E s h o w s a r a p i d i n c r e a s e in U C , U SE 1 a n d

U S E 2 b u t ma i n t a i n s a m u c h lo w e r v al u e in J S f r o m

M a r c h t o M a y ( F i g u r e 7a ) . Di f f e r e n t f r o m SH R 6 , th e b o x -

a n d - w h i s k e r p l o t s o f M LC A P E h av e m e a n v a l u e s mu c h

l a r ge r th an th e ir m e d ia n va l u e s, whi ch a r e qu i t e clo s e t o

z e r o i n s p r i n g ( F i g u r e 8b ). A h i g h e r m o n t h ly a ve r a g e o f

M L C A P E i n d i c a te s a h i g h e r f r e q u e n c y o f st r o n g l y un s t a -

b le e nvi r onmen ts i n t hat m onth . I n th e s p ringtim e , warm

a n d h u m i d a i r i s tr a n s p o r te d f r o m th e G u l f o f M e x i c o to

U C , U SE 1 a n d U SE 2 t h r o u g h th e p r e v a i l i n g so u t h e r l y

fl ow s i n the low e r troposp here an d t he s tron g low - level

s o u t h e r l y j e t a t 9 2 5 hP a o v e r t h e so u t h e r n G r e a t P l a i n s

( Fen g . , 20 19; Molina and A llen, 2019 ). In c o ntrast,et al

J S s t a r ts to h a ve a l ar g e M LC A P E m e a n v a l ue o n l y f r o m

J u n e ( F i g u r e 7a ) . T h e d e l a y e d hi g h M L CA P E va l u e s

o b se r v e d i n J S c o m pa r e d w it h t h o s e in th e U . S . lo c a ti o n s

a r e p o s s i b l y d u e t o t h e t r a n s i t i o n o f ba r o c l i n i c z o n e s f r o m

S o u th C hi na i n M a r ch an d Ap r i l to th e m id - la ti t u de J S

r e g i o n i n J u n e a n d J u l y ; th i s tr a n s i t i o n i s a s s o c i at e d w i th

t h e no r t h w a r d p r o pa g a t i o n o f th e s u m m e r m o n s o o n

( T ang . , 2020) . R esulting from th ese season al trans i-et al

t i o n s o f ba r o c l i n ic i t y a n d mo i s t u r e , h i gh M L C A P E va l u e s

a p p e a r i n J S i n s u m m e r ( Fi g u r e 7a ) . C o n s e q u e n t l y , t h e

t h r e e ta r g e t r e g i o n s o f t h e U n it e d St a t e s r e a c h a g o o d

m a tch be t w e e n S H R 6 a n d M LC A P E e a r l i e r th a n J S , a n d

t h u s h av e h i g h e r S H R 6 v a l u e s th a n JS i n th e i r

cor r espondin g t ornado season s.

In a d di ti on to S HR 6, m onth ly a ve r ag es of S R H1 a l so

s h o w a n o b vi o u s d e c r e a s i n g tr e n d f r o m s p r i n g t o s u m m e r

i n t h e t ar g e t r e gi o n s o f th e U n i t e d S ta t e s , a n d t h e a v e r -

a g e s in U C a r e c l e a r l y la r g e r th an t h o s e o f U SE 1 a n d

U S E 2 i n M a y a n d Ju n e (F i gu r e 9 a ) . T h e JS r e g i o n o f

C h i n a , h o w e v e r , h a s a r e l at i v e l y f l a t m o n t h l y v a r i at i o n in

S RH 1 wi th a s mal l p e ak in J u ly ( F igure 9 a). T h e S RH 1

a v e r a g e s o b s e r v e d in J S in s pr i n g a r e m u c h s m al l e r t h a n

t hose i n t he U.S . loc at i ons but b e come sl ight ly larger in

J u ly . S imi la r t o S H R6, th e S R H1 h a s a r o u g h l y s y m m e tr i c

d i s t r i b u t i o n as s h o w n in it s b o x -a n d - wh is k e r pl o t

( Fi g ure 8c) w hic h a lso s hows that th e d ec reasin g t rend of

m o nthly a veraged SR H1 from s pring to sum mer in th e

U.S. l o cations m ain ly r esul ts from m u ch l e ss o ccurrenc es

o f h i g h S R H 1 v al u e s g r e a te r t h a n 1 0 0 m s . SR H1 m e a -

s ur e s th e p o t e n t i a l fo r c y c l o n i c u pd r a f t r o t a t i o n , a n d

e n vi r o n m e n t s w i t h l a r g e S R H1 v a l u e s ma y h av e m o r e

s tr e a m w i s e v o r t e x l i n e s t i l te d u pw a r d a t l o w e r l e v e l s t o

f o r m s t e a d y l o w - l e v e l me s o c y c l o n e s t h a t st r e n g t h e n l o w -

l e v e l u p dr a f ts t o p o s s ib ly t r i gg e r t o r n a d o ge ne s i s t h a n

e n vi r o nm e nt s wi th sm al le r S RH 1 v a lu e s . T he t ar g e t

r e g i o n s i n t h e U n i t e d S ta t e s h a v e a r e l a t i v e l y hi g h e r

t o r n a d o -g e n e r a ti n g e f f i c i e n c y o f t o r n a d o e v e n t s th a n J S

d o e s , p o s s ib l y d u e i n p a r t t o t h e i r hi g h e r SR H 1 va l u e s

o b s e r v e d d u r i n g t h e i r e ar l i e r t o r n a d o s e a s o n s ; t h i s is

FIGURE 7 ( a ) M o nt h ly v a ri a t i on s i n S H R 6 ( so l i d l i n e ; sh o w n

b y t h e l e f t ax i s ) a n d ML CA P E ( d a s h e d l i n e ; s h o wn b y t he ri g h t

a x i s ) i n U C, U S E 1, U SE 2 an d J S . ( b ) M o n th l y v a r i a ti o n s i n wi n d

s p e e d a t t he su rf ace (d a s he d l i ne ) a nd at an a lt i t u d e o f 6 k m A GL

( s ol i d l i n e ) i n U C , U S E 1 , U SE 2 a n d J S

10 Z HO U .ET A L

Page 10 of 19Differences in tornado activities and key tornadic environments between China and ...

2021/6/27https://rmets.onlinelibrary.wiley.com/reader/content/17a26dba79f/10.1002/joc.7248/for...

Page 11: Differences in tornado activities and key tornadic

con siste nt w ith th e r e sults of Anders on-Frey . (2 018) ,et al

w h o fo u n d tha t t h e SR H 1 v a l u e s ar e h i g h e r f o r o u t b r e a k

t o r n a d o e s th an fo r i s o l a t e d t o r n a d o e s . S R H1 v a l u e s a r e

se nsi ti v e t o t he ma g ni tu d e a n d o r ie nta t io n o f lo w -l e v e l

w i n d s h e a r , a s w e l l a s to th e e s ti m a t e d s t o r m mo t i o n s .

M o n t h l y v a r i a t i o n s i n SR H1 a r e c l o s e ly r e l a te d to th e

m ag n i t u de o f th e a v e r a g e w i n d s p e e d a t a n a l t i t u d e o f

1 km AG L , wh ic h s h o w s a s i m il a r t r e n d f r o m s p r i n g t o

su m m e r t o tha t o f S RH 1 (F ig u r e 9a ,c ).

T h e M L L C L i s g r e a t l y d e t e r m i n e d b y t h e l o w - l e v e l

m o ist u re. R elat ive to U S E1 a nd US E2 near th e G u l f o f

M e x i c o a n d A tl a n t i c Oc e a n , t h e U C r e g i o n h as l e s s

m o ist u re tra n sp orted from t he G u lf of M e xic o an d i s th u s

general ly c haracte r iz ed by l o w e r r elat ive h umid i ty a t the

s u r f a c e a n d h i g h e r M L L CL th an t h e U SE 1 a n d U SE 2

r e g i o n s (F i g u r e 9 b , d) . T h e in c r e a s e in M L L CL o b s e r v e d

i n UC in sum mer poss ibl y resul ts f rom in creased surface

t e mp e r a t u r e s. I n c o nt r as t wi t h U C , J S ha s a n a p p a r e nt

i ncrea s e in re la ti v e hu mi d i ty a t th e s u r fa ce a nd a

d e c r e a s e in M L L CL fr o m s p r ing t o s u m m e r (F ig u r e 9 b , d ),

b e n e f i t i n g f r o m a l ar g e a m o u n t o f m o i s t a i r t r a n s po r t e d

f r o m t h e So u t h C h i n a Se a a n d In di a n Oce a n, in flu e n ce d

b y t h e su m m e r mo n s o o n . T h e t o r n a d o se a s o n s i n U C a n d

JS c o rrespond to t he mon th s wh en th eir M LLCL mon thly

m e a n v a l u e s a r e r e l a t i v e l y l o w (F i g u r e s 2b a n d 9 b ) . A s

w it h S H R 6 a n d SR H1 , t h e M L L C L h a s a r o u g h l y s y m -

m e tri c d ist rib u ti on a s show n in i ts box -a n d- w his ker p l o t

( Fi g u r e 8d ).

The mon thl y di st rib u ti ons o f t hes e kinem a ti c a nd

therm o dy n am ic p ara m eters d if fer from e ach o th er in a

gi ven r egi o n; thus, t he mon ths i n whi ch t he para meters

b e s t m a t c h sh o u l d be th e m o s t f a v o u r a b l e m o n th s f o r

FIGURE 8 B o x -a nd -w h is ke r s pl o ts o f S HR6 ( a) , ML CA PE (b ) , SR H1 (c ) , M L L CL (d ), E HI ( e ) an d ST P (f ) i n th e f ou r ta rge t re g io n s fr o m

M a rc h to A ug us t dur i n g t he 1 0 st ud i ed ye a r s . Th e s h a d e d bo x e s s p a n t h e 2 5 t h 7 5 t h pe rc e n t i l e s, an d t h e w h i ske r s e x t e n d d ow n w a r d to t h e–

1 0 t h a n d u p w a rd to t h e 9 0 t h p e r ce n t i l e s . Me a n v a l u e s are m a rke d b y d ow n w a rd - p o i n t i n g t ri a n g le s a n d me d i a n v a l u e s are m a rke d b y c i rc l es

ZH OU .ET A L 11

Page 11 of 19Differences in tornado activities and key tornadic environments between China and ...

2021/6/27https://rmets.onlinelibrary.wiley.com/reader/content/17a26dba79f/10.1002/joc.7248/for...

Page 12: Differences in tornado activities and key tornadic

t o r n a d o e s to o c c u r . T h e co n f i g u r a t i o n o f t h e s e p a r a m e -

t e r s wa s e xa m in e d th r o u gh t h e ca lc u l a ti o n s o f EH I a n d

S T P i n th i s st u dy . T h e r e su lt s sh o w th at m o n t h l y a v e r -

aged E HI shows a n i ncon sisten t tre nd with th e m onthly

variation s in t ornado frequen cies in U C a nd USE 2, w hil e

t h e mo n thl y a ve r a g e d S T P r e f l e c ts t h e mo n th l y v ar ia ti o n s

i n th e a r e a - s c a l e d n u m b e r s o f to r n a do e s i n t h e fo u r t ar g e t

r e g i o n s we l l (F i g u r e 1 0 ) . Fo r a g i v e n r e g i o n , t h e p e a k

m o nth o f t he m o nthly a ve raged STP corres po nd s to the

p e a k m o n t h o f t h e a r e a - s c a l e d nu m b e r o f t o r n a d o e s

( Fi g u r e 1 0b) . Co mp a r ed wi th th e mon thl y a v e ra ge d EH I,

w hi ch o nly com bi nes S RH1 a nd CA PE, th e m o nthl y

a v e r a g e d S T P i s a be t te r in d i c a t o r o f t h e ki n e m a ti c an d

t he r m o dy n am ic e n vi r o nm e nt a l c o n f i g u r a ti o n s a s s o c i a t e d

w i t h t o r n a do o c c ur r e n c e s . As w i t h M L C A P E , b u t u n l i k e

S H R6, S RH 1 a nd MLL C L , EH I a n d S T P h ave m ean

v a l u e s m u c h la r g e r t h a n t h e i r m e d i a n v a l u e s , w h i c h a r e

cl o se t o z e r o i n e v e r y m o nth ( Fi g u r e 8 e ,f) . T he mo nth ly

FIGURE 9 M o nt hly va riat ions i n S RH1 ( a), M LLCL ( b) , w in d sp eed at an a lt i tu de of 1 km A GL (c ), and relat iv e hum i dity at the s ur fac e

( d) i n th e f ou r ta rge t r eg i on s

FIGURE 10 ( a ) Mo n th l y v a r i a ti o n s i n th e E H I (s h o wn by th e l e f t ax i s ) a n d th e a r e a -s c a l e d n u mb e r o f n o n -T C to r na d o e s (s h o wn by th e

r ig h t a x is ) i n th e f o ur ta rg e t r eg i on s . ( b ) M o n th l y v a r ia ti o n s in th e S T P ( sh o w n b y t he l ef t a x i s) a nd th e ar e a - sc a l e d n u mb e r o f n o n -T C

t o r n a d o e s ( s h o w n b y t h e r i g h t ax i s ) in t h e fo u r t a r g e t re g i o n s

12 Z HO U .ET A L

Page 12 of 19Differences in tornado activities and key tornadic environments between China and ...

2021/6/27https://rmets.onlinelibrary.wiley.com/reader/content/17a26dba79f/10.1002/joc.7248/for...

Page 13: Differences in tornado activities and key tornadic

a v e r a g e s o f E HI a n d ST P a r e g r e a tl y a f f e c t e d b y e x t r e m e

v a l u e s t h a t r e p r e s e n t f a v o u r a b l e k i n e m a t i c a n d the r m o -

d y n a m i c e n v i r o n m e n ts f o r t o r n a d o g e n e s i s ( F i g u r e 8e , f ) .

4 | DISCUSSION

In the p revious section , th is w ork r evealed th a t t he di ff er-

e nt li k e l iho o d s o f mu l ti pl e to r n a do e s o ccu r r i ng i n a sho r t

p e r i o d b e t w e e n t h e s e t a r ge t r e g i o n s a r e m o s t p o s s i b l y

r e s po n s i b l e fo r t h e i r la r g e d i s c r e p an cy i n to r n a do o c c u r -

renc es. T he n u mb er o f to r n a do e v en ts th a t o c cur at the

sam e tim e is also of interest from th e v iewpoin t of

t h e sy n o p t i c c o n t r o l o f t o r n a d i c e n vi r o n m e nt s . W e e x a m -

i n e d t h e nu m b e r o f to r n ad o d a y s ( Nt d ) i n t h e f o u r ta r g e t

regions a nd th e r a tio o f th e nu m b er o f t o r n a do even ts

( N t e ) t o t h e N td , w h ic h ca n b e u s e d t o imp l y t h e a p p r o x i -

m at e a v e r a ge n u m b e r o f t o r n a d o e ve n ts co n t r o ll e d b y t h e

sam e s y nopti c sit u ati o n (Tab le 1). The r esul ts sh ow th at

t h e r a t io s o f Nt e in JS , U C , U S E 1 a n d U S E 2 t o t h e i r

r e s pe c t i v e N t d a r e 1 . 2 8 , 1 . 4 6 , 1 .6 6 a n d 1. 4 1 , r e s p e c t i v e l y ,

s u g g e s ti n g th a t th e U . S . r e g i o n s h a ve l a r g e r s y n o p ti c co n -

t r o ls o n t h e ir t o r n a d ic e n v i r o n m e n t s th an t h e JS r e g io n ,

w i t h m o r e t o r n a d o e v e n t s o c c u r r i n g pe r t o r n a d o da y .

S y n o p t i c s i t u a t i o n s h a v e a n i m p o r t an t in f l u e n c e o n

the o ccurr e nce of severe storms. T he c o mmon ly us e d

t o r n a d o -r e l a te d p a r a m e t e r s e x a m i n e d in t h i s st u dy d o n o t

m e as u r e fo r c ing fo r a sce n t, w hic h is an i mp o r t a nt fa c to r

i n t h e fo r m a t i o n o f s e v e r e s t o r m s . La r g e - s c a l e u p w ar d

m o ti on forc ing i s o ften ass o ci ated w ith apparen t

sy n o pt i c-s ca le w e a th e r s y st em s. Ri sin g m o ti o n is ty p i ca ll y

com mon ahead o f a trough or n e ar fron tal s yste ms th at

a c c o m p a n y e x t r a tr o p i c a l c y c l o n e s .

T o o b t ai n a g e n e r a l i de a o f t h e s y n o p t i c fe a t u r e s t h a t

are favourab le for t ornadoes , w e e xami ned t he synoptic

si tuation s duri ng al l 22 Nt 1 torn ado e vents in J S a nd>

c o m p a r e d t h e ty p i c a l s y n o p ti c s i tu a t i o n i n J S w i t h th o s e

i n t h e ta r g e t r e g i o n s in t h e U n i t e d S t a te s . F o r e a c h t o r -

n a d o e v e n t , t h e cl o s e s t N C E P F N L d a t a b e f o r e t h e m e a n

t i m e o f o c c u r r e n c e s o f a l l t o r n a d o e s w e r e u s e d . T h e

r e s ul t s s h o w th a t mo s t N t 1 t o r n a d o e v e n t s in JS>

o c c u r r e d in f r o n t o f a so u t h w e s t n o r t h e a s t - o r i e n t e d–

t r o u g h a t 5 0 0 hP a , wi th t h e s u b t r o p i c a l h i g h lo c at e d i n

t h e e a s t o r so u t h e a s t ( F i g u r e S3 a k ) . S o m e t o r n a d o–

e v e n t s w e r e m a i n l y c o n tr o l l e d b y a sh o r t ( F i g u r e S 3 l q )–

o r a d e e p t r o u g h ( F i g u r e S 3 r t ) a l o n e , w i t h t h e s u b t r o pi -–

cal hi g h located farther to th e south. The r em aini ng tw o

t o r n a d o e v e n ts we r e ma i n l y co n tr o l l e d b y t h e s u b tr o p i c a l

h i g h al o n e (F i g u r e S3 u v ) . T h e up p e r - l e v e l j e t s t r e a m s–

m o v e p o l e w a r d a n d be co m e we ak e r fr o m sp r i n g t o su m -

m e r ( Man ney ., 2 014) an d a re thus loc a ted more toe t a l

t h e no r t h o f t h e t a r g e t a r e a i n Ch in a th an t h o se in t h e

U n i t e d S t a te s d u r i n g th e to r n a d o se as o n . O v e r E a s t

C h i n a , t h e r e g i o n wh e r e t o r n a d o e s a r e m o s t f r e q u e n t i n

C h i n a , e x t r a tr o p i c a l cy c l o n e s a r e w e a k e r a n d l e s s fr e -

q ue nt in sum mer th a n i n spring (Lee . , 2 019) . F ewe t a l

N t 1 to r n a do e v e n t s w e r e f o u n d to be a s s o c ia t e d w i t h>

e v i de nt su r f a c e c y c l o n e s a c c o m pa n i e d by th e u p p e r - l e v e l

j e t ( F i g u r e S3 n q ) . R e l a ti v e to J S, e v e n t h o u g h t h e t yp i c a l–

p a t te r n s f a v o ur a b l e f o r mu l ti p l e to r n a do e s i n

U . S . l o c a t io n s we r e a lso m o st l y l o c a t e d i n f r o n t o f a d e e p

t r o u g h o r s o m e t i m e s in fr o n t o f a s h o r t t r o u g h , t h e y w e r e ,

h o w e v e r , a c c o m p a n i e d by m u c h st r o n g e r a n d w i d e r

u p p e r - l e v e l j e t s t r e a m s a n d m o r e i n t e n s e a n d l a r g e r s u r -

f a c e c y c lo n e s (F ig u r e s S 4 , S 5 a n d S 6 ). E x t r at r o p ic al

c y c lo n e s w i t h s t r o n g u p p e r - l e v e l j e t s t r e a m s e n a b le th e

p r o d u c t io n o f e n v ir o n m e nt s t h a t a r e r i c h in v e r t ic a l wi n d

s hear in t he warm s e ctor, t hus e nhan cin g t he pote nti a l o f

t o r n a d o o u t b r e a k s ( M e r c e r . , 2 0 1 2 ; T o c h i m o t o a n de t a l

N i i n o , 2 0 1 6 ) . In a d d i t i o n , e x t r a t r o p i c a l c y c l o n e s o v e r t h e

U n i t e d S t a t e s i n s u m m e r a r e ma i n ly c o n f i n e d t o r e l a -

t iv e l y hi g he r l a ti t ud e s t ha n th o se i n sp r in g (W e r n li a nd

Schw ie rz, 2006 ). A s a r esult, the frequen cy of

e x tr a t r o p i c a l c y c l o n e s d e cr e a s e s i n U C , U S E 1 a n d U S E 2 ,

w h i c h ma y b e p a r t l y r e s p o n s ib l e fo r t h e d e c r e a s e in t h e i r

m e a n v al u e s o f S R H 1 a n d SH R 6 fr o m sp r i n g to s um m e r .

E x am p l e s o f t h e m o s t co m m o n p a t t e r n s o b s e r v e d i n

J S ( F i g u r e S 3 a ) , U C ( F i gu r e S 4 a ) , U SE 1 ( Fi g u r e S 5 a ) a n d

USE2 (Figure S6 a ) w ere s elec ted t o furth er investi gate

their d etailed d if ferenc es in en vironm ental features a t d if -

fe rent lev e ls (F ig ures 11 and S7) . J S w as inf luen ced by a

d eep trou g h t o th e w est a nd a s u btrop i ca l hi g h to t he e a st

i n th e mid d l e t rop o sp here, wi th s y nop ti c- sca l e s ou th wes t-

erl y f low s in t he low e r t roposphere. T he values o f S HR 6

w e re genera l ly sm a ll i n JS. T he strong southwes ter ly

f l o w s e n h a n c e d t h e no r t h e a s t w a r d t r a n s po r t o f mo i s t u r e

fro m the south to JS as w e ll as en hanci ng t he low -l e vel

w i n d s p e e d , w h i c h w as fa v o u r ab l e f o r t h e d e v e l o p m e n t o f

i nst a bi li ty a n d la r g e S R H1 v a lu e s (F i gu r e S 7 i, e ). H o w -

ever, t he re gi on with a g ood configu r ation o f kin ematic

a n d th e r m o d y n a m i c c o n d i t i o n s w i t h a hi gh S T P v a l ue

w a s li mi te d to o nly a sma l l a r e a ne a r J S ( F ig u r e S7 m). I n

con tras t, i n t he cases o f th e US loc ati ons, intens e surfac e

c y c l o n e s w i th s tr o n g u p p e r - l e v e l j e t s p r o du c e d l a r g e a r e a s

w i t h s t r o n g v e r t i c a l w i n d s he a r a n d l o w - l e v e l st o r m r e l a -

t iv e he l ici t y (F ig u r e S 7 ). In a dd i ti o n, t he U C r e g io n w a s

TABLE 1 N u mb e rs o f to rn a d o da y s ( N td ), to r na d o e v e n ts ( N te )

a n d th e r a t i o s o f N t e to N t d in t h e fo u r t a r g e t re g i o n s d u ri n g t he i r

r e spec tive to rn ad o seas o n s

UC USE1 USE2 JS

N td 1 16 6 4 39 78

N te 1 69 1 06 55 10 0

Nte/Nt d 1.4 6 1.6 6 1.4 1 1.28

ZH OU .ET A L 13

Page 13 of 19Differences in tornado activities and key tornadic environments between China and ...

2021/6/27https://rmets.onlinelibrary.wiley.com/reader/content/17a26dba79f/10.1002/joc.7248/for...

Page 14: Differences in tornado activities and key tornadic

con trolled b y a lo n g d r y lin e a n d ac co mpa n ied b y a s outh-

e r l y je t a t 9 2 5 h P a ( F i g u r e S 7 j ) . Dr y a i r f r o m t h e w e s t e r n

h i g h l an ds w a s a dv e c te d o ve r w ar m h u m i d a i r fr o m th e

G u l f o f M e x i c o , p r o d u c i n g a la r g e a r e a w i t h h i g h po t e n -

tial ins tab il i t y a nd convergenc e f or convec ti on ini ti a ti on.

T h e be t t e r m a tc h o f t h e k i n e m a ti c an d t h e r m o d y n a m i c

p a r a m e t e r s i n U C a n d t h e m o r e f a v o u r a b l e k i n e m a t i c

con di t ions in US E1 and U SE 2, hel p ed p r od uce w id er

areas wi th hi g her S TP values t han t hose in JS

( Fi g u r e S 7 ) . T h e s e h i g h -S T P a r e a s w e r e fa v o u r a b l e f o r

t r i g g e r i n g w i de s p r e a d t o r n a d o o ut b r e ak s.

Th e tornado-generating e ff ici e ncy o f t ornado eve nts is

als o greatly inf luenc e d by the con vec tive m o de s o f t he

parent stor ms. Relative to a ll other n on-supercell con ve c-

t i v e m o d e s , s u p e r c e l l sy s t e m s w e r e f o u n d t o be mo r e p r o -

d u c t iv e o f t o r n a d o e s ( D u d a an d G a ll u s , 20 1 0 ) . S m i th

e t a l . ( 2012 ) show e d that th e ratio o f non -s upe r cell torn a -

d o e s t o s u p e r c e ll t o r n a d o e s c o u ld d i f f e r a m o n g d if f e r e n t

r e g i o n s , a n d t h e e s t i m a te d p e r c e n t a g e o f r i gh t- m o v i n g

s up e r c e l l to r n a d o e s w a s gr e at e r t h a n 8 0 % i n U C an d

g r e a t e r t h a n 70 % i n U S E 1 a n d U S E 2 . C o m p a r e d w i th the

t a r g e t r e g io n s in t h e U n it e d S t at e s, JS fe a t u r e s m u c h we a -

ker a mb ient environ men t she ar during its torn a do s e a-

s o n , w h i c h i s un f a v o u r a b l e f o r t h e d e v e l o p m e n t o f

s up e r c e l l s . T h e p r o p o r t i o n o f s u p e r c e l l to r n a do e s i n J S i s

probab ly low e r th an t hose i n UC, U SE1 a nd USE 2. T he

detail ed stati stic a l characteris ti cs of convecti ve m o des

t h a t a r e c o n d u c i v e t o t o r n a d o e s i n C h i n a r e m a i n u n c l e a r

a n d a r e w o r t h e x p l o r i n g i n f u t u r e r e s e a r c h .

I n a d d it io n , t h i s st u d y o n ly f o c u s e s o n t o r n a d o - pr o n e

r e g i o n s a n d o n t h e p r i m e m o n t h s o f t o r n a d o o c c u r r e n c e

i n the t wo studied countries ; t he en vironm en tal

FIGURE 11 E x a mp l es o f

th e s yn o ptic s it u atio n s of ty pica l

h i g h - N t t o rn a d o e v e nt s i n JS ( a ),

U C (b ) , U SE 1 ( c) , a n d U S E 2 ( d ) ,

i n cl u d i ng th e g e op ot e n t i a l

h e ig h ts ( b lu e c o nt o ur s; 1 0 g p m)

a t 5 0 0 h P a , se a l e v e l p r e ss u re

( re d c o n to u rs ; h P a ) a nd th e

w in d sp e ed s g re a t e r th a n 3 5 m

s a t 20 0 h P a ( s h a d i n g , m s ) .

T h e l o ca ti o ns o f to rn a d oe s a re

denoted b y b lack dots a n d the

tar ge t re g io n s ar e i n di ca te d b y

b l a ck b o x e s. Th e ti m e o f N C EP

F N L da ta , d e t e r m i n e d a s t h e

cl o s e st ti m e b e f o re t h e m e a n

ti m e o f o cc u rr e nc e s o f al l

to r na do e s o f th e c o rr es po n di n g

t o r na do e v e n t , h a s b e e n l a b e l l ed

a t th e t op o f t he co rr e sp on d i n g

p a n e l

14 Z HO U .ET A L

Page 14 of 19Differences in tornado activities and key tornadic environments between China and ...

2021/6/27https://rmets.onlinelibrary.wiley.com/reader/content/17a26dba79f/10.1002/joc.7248/for...

Page 15: Differences in tornado activities and key tornadic

d i f fe r e n c e s o b t a i n e d he r e i n ca n n o t be e x tr a p o l a t e d t o a l l

a r e a s in e i t h e r co u n t r y . T o r n a do a c t i v i t i e s a n d t o r n a do -

r e l a te d e n v i r o n m e n t a l p a r am e t e r s h a v e o b v i o u s r e g i o n a l

d i f f e r e n c e s a n d s e as o n a l v a r iat ion s. F o r e xamp l e , th e

t o r n a d o - p r o n e r e g i o n i n th e s o u t h e r n p a r t o f C h i n a ,

w h i c h is l o c a t e d i n G ua n g d o n g P r o v i n c e a n d l ab e l l e d GD

( a 4 × 4 a r e a wi t hin 2 1 25– N a nd 1 11 115– E , a s sho w n

i n F i gu r e S 1 a ) , ha s a sp r i n g t i m e t o r n a d o p e a k

( Fi g u r e S1 b,c ). T h e e v o lu t i o n s o f SH R 6 , SR H 1 , M L C AP E

a n d S T P i n G D ar e q u it e c lo s e t o th o se o b se r ve d i n U S E 1

r a t h e r t h a n in J S (F i g u r e S 2 ). M LC A P E i n c r e as e s m u c h

e a r l i e r i n G D t h a n i n JS . A g o o d m a t c h be t w e e n

M L C A P E an d S H R 6 o c c u r s d u r i n g t h e s t a g e w h e n S R H 6

i s s ti ll q u it e l ar g e . In ad d i ti o n, GD i s c ha r a cte r iz e d by

l o w e r M L LC L v a l ue s t h a n a l l f o u r o t h e r t a r g e t r e g i o n s

( Fi g ure S 2). T hese envi ronme ntal f eatures sh o uld h ave

p r o d u c e d a hi g h f r e q u e n c y o f t o r n a do e s a n d a h i g h

t o r n a d o - g e n e r a t i n g e f f i c i e n c y o f t o r n ad o e v e n t s in GD , as

t h o se o b se r v e d in U S E 1 . H o we v e r , G D e v e n h a s f a r f e we r

t o r n a d o e s th an J S , p o s sib ly b e c a us e o f i ts m o u n ta i n o u s

t o p o gr a p h y . In co n t r a s t , m o s t a r e a s i n t h e J S r e g i o n a r e

plai ns (F igure S1 a ), and t he good mat ch bet wee n S H R6

a n d M L C A P E o c c u r s d u r i n g a s ta g e i n w h i c h th e

S HR 6 v al u e s h a v e a l r e a dy la r g e l y d e c r e a s e d d u e t o t h e

h i g h e r la t it u d e o f JS th a n th at o f G D .

A s o b s e r v e d i n G D , te r r a i n m a y ha v e a n i m p o r t a n t

i mp a ct o n t he d i ffe r e n ce s in t o r na d o a ct iv i ti e s be t we e n

t h e U n i te d S ta t e s a n d C h in a . P r e v io u s st a ti st ic a l a n a l y se s

o v e r th e G r e a t P l a i n s a n d Ar k an s a s h a ve s h o w n t h a t t e r -

r a i n r o ug h ne s s h a s a n e g at i ve e f fe c t o n th e t o r n a d o pr o b -

a b i l i ty a t a f i x e d p o p u l at i o n d e n s i t y ( Ja g g e r ., 20 1 5 ;e t a l

E l s n e r . , 2 0 1 6 ; H u a a n d C h a v a s , 2 0 1 9 ) . Ch i n a h a se t a l

fai r ly m o unt a inou s r egi o ns in t he s outh, from G uang-

d o n g t o Z h e j i an g P r o v inc e s. S im il a r to t h e U n it e d S t at e s ,

m o s t t o r n a d o e s i n Ch i n a a l s o o c c u r i n pl a i n s (F i g ur e S 1 ) .

C o n s e q u e n t l y , fa r f e w e r t o r n a d o e s a r e p o s s i b ly t o o c c u r

i n C h i n a t h a n in t h e U nit e d S t at e s be c au s e t h e r e a r e

m an y few e r p l a ins i n C hi na, a nd the o nly large-extent

plai n a rea i s l ocated farther to t he north a nd is ch aracter-

i ze d b y a n u n f a vo u r a b l e k i n e m a ti c e n v i r o n m e n t f o r t o r -

n a d o o c c u r r e n ce s d u r i n g t h e t o r n a d o s e a s o n .

Fi nall y, it shoul d b e m e ntion e d t hat t here i s stil l som e

room f o r i mprovem e nt i n th is s tudy, but u nfortunate ly, it

i s d i f f i c u l t to i m p r o v e t h i s s t u d y d u e to the l i m i t a ti o n s o f

t o r n a d o d a ta in C h i n a . R e l a t i v e t o th e c u r r e n tl y u s e d

1 0 - y e a r t o r n a d o r e c o r d s , a l o n g e r s t u d y p e r i o d s h o u l d

y i e ld r e s u l ts t h a t a r e cl o s e r t o th e n a t u r e o f t h e r e l a t i o n -

sh ip b e tween th e t ornado num bers a nd en vironm e n tal

p a r a m e t e r s . S i n c e a 1 0 - y e a r pe r i o d i s n o t su f f ic i e n t l y lo n g

t o e li min a te t he e ffe c ts o f s ta t is ti ca l no i se , i t i s d iff icu l t t o

d e f i n e a p r e c i s e 9 0 -d a y p e a k s e a s o n. If a l o n g e r - te r m t o r -

n a d o d at a b a s e w e r e a v a i l a b l e i n C h i n a , de f i n i n g th e

t o r n a d o se a s o n a s a c o n se c u t i v e 9 0 - d a y p e r i o d r a t h e r

t h a n a s t h r e e ca l e nd a r m o n t h s , a s w a s d o n e in t h i s st u d y,

m ig h t m o r e p r e c i s e l y r e p r e s e n t t h e p e a k t o r n a do o c c u r -

r e n ce s . In ad d i t i o n , it i s in e v i t a b l e th at so m e to r n a do e s

a r e no t de t e ct e d an d r e c o r de d, e s p e cia l l y we a k

t o r n a d o e s o c c u r r i n g i n r u r a l ar e a s w i t h l o w p o p u l a t i o n

d e ns it ies . H o wever, b as e d o n v ersi on 4 o f t he Col u mb ia

U n i v e r s i ty G r i d d e d P o p u l a t i o n o f th e W o r l d d a ta s e t

( Ce nt e r f o r I n t e r n a t i o n a l E a r t h Sc ie n c e I n f o r m a t i o n

N e tw o r k CI ES IN Co lu mb ia Un i v e r s i t y , 2 0 1 6 ) , e a s te r n— —

a n d so u t h e r n Ch i n a a r e m u c h mo r e d e n s e l y p o p u l a t e d

t h a n th e c e n t r al a n d so u t h e a st e r n U n i te d St a te s. C o n s e -

q ue ntl y, the mi ssi ng rec o rds in J S a nd GD c o uld t hus be

at leas t c lose to t hos e i n U C , USE 1 and U S E2. T his li mi -

tati on sho ul d not a ff ect t he m ai n fi ndin gs in thi s study.

5 | SUMMARY

T h i s s t u d y wa s a i m e d a t u n d e r s ta n d i n g t h e su b s ta n ti a l

d i f fe r e n c e s in th e t o r n a d o fr e q u e n c y a n d t o r n a do s e a s o n

t im in g b e t we e n C h i n a a n d the U n it e d St a te s by co m p a r -

i ng th e k e y t o r n a d o - a s s o c i a t e d e n v i r o n m e n ta l f e a t u r e s i n

t he hi g h-i nc id e nce r e g i o ns.

The r esu l ts sh ow th at the mu c h h ig her p oten ti a l in

t h e o c cu r r e n c e o f mu l t i pl e to r n a d o e s o v e r a s h o r t p e r i o d

i s pr o ba b l y r e s po n s i b l e fo r th e la r g e r to r n a do n u m b e r s

r e c o r de d in th e U n it e d S t at e s t h a n in C h i n a . D u r ing th e

e a r l i e r to r n ad o s e a s o n , th e t ar g e t r e gi o n s i n t h e U n i t e d

S ta t e s h a v e a p pa r e n tl y h i g h e r t o r n a d o -g e n e r at i n g e f f i -

c i e n c i e s o f t o r n a d o e v e n t s th an th e J S r e g i o n o f C h i n a . I n

t h e ta r g e t r e gi o n s o f t h e U n it e d St a te s , th e d e c r e a s e

i n t o r n a d o - g e n e r a t i n g e f f i c i e n c y f r o m s p r i n g t o s um me r

i s po s si bly d u e in p a r t t o the d e cr e a s e s in t he SR H1 a nd

S H R 6 v a l u e s .

The r esu l ts a ls o s how th at th e S TP h as a bet ter c o rre-

l a ti o n wi th t o r na d o a ct iv i ty t ha n d o ind i v id u a l ki ne m a ti c

o r t h e r m o d y n a m i c p a r a m e t e r s . T h e S T P a v e r a g e s s h o w a

m o notonic d ecreas e w ith t he dec r ease in the a rea-sc aled

t o ta l to r n a d o c o u n t fr o m U C to U S E 1 , J S, a n d U S E 2 d u r -

i ng t he i r r e s p e ct iv e to r n ad o se a so n s. F o r a g i v e n r e g i o n,

t h e mo n t h w i th t h e ma x i m u m m e a n S T P v a l ue i s a l s o

t h e mo n t h w it h p e a k t o r n a d o o c c u r r e nc e s . C o m p a r e d

w it h the t ar g e t r e g i o n s in t h e U n it e d S ta t e s, t h e J S i n

China r eac hes th e p eak STP in a l ater mon th a nd thus

h a s a d e l ay e d t o r n a d o s e a s o n .

C o m p a r e d w it h t h e J S r e g i o n in C h i n a , t h e t a r g e t

r e g i o n s in t h e U n i t e d St a te s h a ve m o r e f a v o u r a b l e k in e -

m a ti c e nviron me nts for sup e rcel ls, wi th m uc h high e r

S H R6 v al u e s. One int e r e s ti ng f ind i ng i s th at t hi s is no t

b e ca u se SH R6 is g ene r al ly la rg er i n the U ni ted St a tes

t h a n th a t i n C h i n a a t a n y ti m e o f t h e y e a r . T h e t ar g e t

r e g i o n s in t h e U n i t e d S t a te s a c t u a l l y ha v e m e a n v al u e s

a n d de cr e a s i n g t r e n d s o f SH R 6 fr o m s p r i n g to su m m e r

ZH OU .ET A L 15

Page 15 of 19Differences in tornado activities and key tornadic environments between China and ...

2021/6/27https://rmets.onlinelibrary.wiley.com/reader/content/17a26dba79f/10.1002/joc.7248/for...

Page 16: Differences in tornado activities and key tornadic

t h a t a r e si m i l a r t o t h o s e in t h e J S r e g i o n o f C h i n a . H o w -

e v e r , th e U ni te d S t a t e s r e g i o n s ha v e m u c h e a r l i e r

i ncrease s i n ins tab i lity than t he JS regi on of Chi na,

r e s ul t i n g in a n e a r l i e r g o o d m a t c h be t w e e n S H R 6 an d

M L C A P E a n d t h u s a h i g h e r S H R 6 v a l u e du r i n g th e i r e a r -

l i e r t o r n ad o se a s o n s. T h e s e e n v i r o n me n t a l fe a t u r e s m a y

have resulted f r om th e w eaker, less f r equent, a nd more

n o r t h e r n u pp e r - l e v e l j e t s t r e a m s a n d e x t r a t r o p i c al

cyc lones in th e torn a do season s o f J S t han t heir counter-

parts in t he Un ited Sta tes .

ACKNOWLEDGEMENTS

T h i s w o r k w a s s up p o r t e d b y t h e N a ti o n a l N a tu r a l S c i e n c e

Foundation of Chin a ( Grant 4187 5051, 4 19050 43 and

42 03060 4). W e t h a n k Y ipen g H u a n g (X ia m en Meteoro-

l o gi c a l B u r e a u , Ch i n a ) f o r h i s c o n s tr u c ti v e c o m m e n ts .

W e a l s o t h a n k t h e a n o n y m o u s revie wers f o r t hei r ins ight -

f u l co m m e n t s in i m p r o v i n g o u r w o r k .

AUTHOR CONTRIBUTIONS

Ruilin Zhou: Da ta cu ra ti on; f orma l a na ly s is; inv e s ti g a-

t i o n ; me t h o d o l o g y; so f t w ar e ; v a l i d at i o n ; v i s u a l i za t i o n ;

w r it in g- ori gi nal draf t; w r it ing- review & e di ti ng. Zhiyong

Meng: C o n c e pt u a l i za t i o n ; f or m a l a n a l y s i s ; fu n d i n g

a cq u isi ti o n; inv e s ti g at io n; m e tho d o l o g y ; p r o je c t a d mi nis -

t r a ti o n ; r e s o u r c e s ; s u p e r v i s i o n ; v i s u a l i za t i o n ; w r i t i n g -

r e v i e w & e d i t i n g . Fo r m a l a n a l y s is ;Lanqiang Bai:

fu n di ng a c qu is i ti o n; in v e st ig a t i o n ; so f t w a r e ; w r i ti n g -

r e v i e w & e d i t i n g .

ORCID

R u i l i n Z h o u https://o rcid.org/00 00-0003 -12 57-9980

Z h i y o n g M e n g https:// orcid.org/0 000-0002 -25 27-1056

L a n q i a n g B a i h t t p s :/ /o r c i d .o r g / 0 0 0 0 - 0 0 0 2 - 0 3 0 4 - 5 6 5 6

REFERENCES

A n d e r so n - F r e y , A . K . , Ri c h a r d s o n, Y . P . , D e a n , A . R . , Th o m p s o n , R .

L . a nd S m it h , B . T . ( 2 0 1 6 ) I n v e s t i g a ti o n o f ne a r-s t o r m e n v i r o n-

m e n ts f or to rn a d o e v en t s an d w a r n in g s. W e a t h e r and F o r e c a s t -

i n g, 31 (6 ) , 1 77 1 179 0. h ttps : // do i.o rg/ 10 .11 75 /w af -d- 16- 00 46. 1.–

A n d e r so n - F r e y , A . K . , Ri c h a r d s o n, Y . P . , D e a n , A . R . , Th o m p s o n , R .

L. an d S m it h , B .T. (2 01 8) N e ar -s to rm en vir on m ent s o f o u tbrea k

a nd i so l at ed t or n ado e s . , 33( 5 ), 13 97W e a t h e r an d F o r e c a s t in g –

1 41 2. h t tps :/ /d oi.o r g/ 10. 117 5/ w af- d-1 8-0 05 7.1 .

As hley, W .S . ( 20 07) S patia l a nd t e mpor al analys is of tor na do fata l i-

t i es i n t he U ni t e d S tat es : 1 88 0 20 05. ,– Wea t her an d For ecasti n g

2 2( 6) , 121 4 1 22 8. h t tps :/ / do i.o r g/ 10 .11 75/ 20 07 wa f20 07 00 4.1.–

B a i , L . , M e ng , Z ., Su e k i , K . , C h e n , G. an d Z h o u , R . (2 0 2 0 ) C l im a t ol -

o gy o f t ro pica l cy clo n e t or n ado e s i n Ch i n a fro m 20 06 t o 20 18.

S c ie n c e C h i na E a r t h Sc i e n c e s , 63 (1 ) , 37 51 . h t tps :/ / do i. or g/ 10 .–

1 00 7/ s1 14 30- 01 9-9 39 1-1 .

B ro o ks , H.E . ( 20 09 ) Pr o ximity so u n din gs fo r s e ver e c o nv ect io n fo r

E u ro p e a n d th e U ni t e d S t a t e s f ro m re a na l y si s d a t a . A t m o s p h e r i c

R e se ar c h, 93 ( 1 3) , 54 6 55 3. ht tps :/ / do i .o rg/ 10 .10 16 /j .atm o sr e s.– –

2 00 8.1 0.00 5.

B ro o k s , H . E . , L e e , J.W . a n d C r a v e n, J . P . (2 0 0 3 ) T h e sp at i a l d i s t r i b u -

ti o n o f se v e r e t h un d e r st o rm a n d to rn a d o e n v i ro n m e nt s f r om

global r e analys is dat a. A tmo spher ic Res earch , 67– –68 , 7 3 94 .

h ttp s: // do i.o rg/ 10 .10 16 /s 01 69 -80 95 (0 3) 00 04 5- 0.

B ro w n , M .C. an d N o w ot ars ki, C. J. (2 02 0) S o ut h ea st e rn U.S . t o rn ado

o ut b re a k l i k e l i h o od u s i ng d ai l y cl i m a t e i n d i ce s . Jo ur na l of C l i-

m a t e , 33 (8 ) , 3 229 3 25 2. ht tps :/ / do i .or g/ 10 .11 75 /j cli-d- 19 -06 84 .1.–

B u nk e rs , M . J . , K l i m o w s k i , B. A . , Ze i t l e r , J . W . , T ho m p s on , R. L . an d

W e i sm a n , M .L . (2 0 0 0 ) P re d i c t i n g s up e r ce l l m o t io n u si n g a n e w

h od og ra p h te c h ni q u e . , 1 5( 1) , 61 7 9.W e at h e r an d F or e c ast i n g –

h ttp s: // do i.o rg/ 10 .11 75 /1 52 0-0 43 4( 20 00 )0 15 0 06 1:P s mu an 2.0 .< >

Co ; 2.

C e nt e r f o r In t e rn a t i o na l E a r t h S c ie n c e I n f o r m a t i on Ne t wo r k—

C I E S I N C ol u m bi a U n i v e r si t y . ( 2 0 1 6 )— G r i d d e d P o p u l a t i o n o f

the Wo rl d, V er si on 4 (GPW v4 ) : P opu l atio n D en sity . P a l i sa d e s,

N Y : NA SA So c io e c on o m i c Dat a a n d A p p l i ca ti o ns C e n t e r

( SE D A C) . ht tps :/ / d o i . or g/ 10 . 79 27/ H 4 N P2 2D Q.

C h en , J ., Ca i, X., W a n g, H., Kang, L ., Z ha n g, H., Song , Y ., Zhu, H.,

Z h e n g , W . a n d L i , F . (2 0 1 8 ) T or n a d o cl i m a to l o g y of C h in a .

Inter na t ion al J our n al of Cl im atol og y , 38( 5 ), 247 8 24 89 . h t tps :/ /–

do i .o rg/ 10 .10 02 /j oc .5 369 .

C h in a M e t e o ro l o g i ca l Ad mi n i st ra t i on . ( 2 0 0 5 2 0 1 7 )– Y e ar boo k of

Meteor olo gi c al Di sas t ers i n C hi na (i n C hi n e se) . B e i ji n g : C hi n a

M e te o r ol o g i c a l P re s s.

C o ffe r, B .E ., P ark e r, M. D., Th o m ps on , R .L., Sm i th , B. T. a n d

J ew e l l , R .E . (2 0 1 9 ) U si n g n e a r - g r o un d st or m r e l a t i v e h e l i ci t y i n

su per cell to rn ado fo rec as tin g. , 34 ( 5) ,W e ather an d For ecasti ng

14 17 1 435 . h tt ps :/ /d oi.o r g/ 10.1 17 5/ w af-d -19 -0 115 .1.–

C o le m a n , T . A . a n d Di x o n , P . G . ( 201 4) A n o bj e ct i v e an a l y s i s o f to r -

n a d o ri s k i n t he U n i te d S tat e s. W e a t h e r an d Fo r e c a s t in g, 2 9( 2 ),

36 6 37 6. h t tps :/ /d o i.o r g/ 10 .117 5/ Waf -D -13 -0 00 57.1 .–

D a v i e s - J o n e s, R . ( 2 0 1 5 ) A re v i e w o f s up e r ce l l a n d t or n a d o d y n a m -

i cs . , 15 8 1 59 , 2 74 2 91. h ttp s: // do i .o rg/ 1 0.A t m o s p h e r i c R e s e a r c h – –

10 16/ j .atm o sr es.2 01 4.0 4.0 07.

D a v i e s -J o n e s, R. P. , B u rge s s , D.W . a n d F o s te r, M .P . ( 19 90 ) T e s t o f

h e li c i ty as a t o rn ado fo re c as t par am et e r. P re p r in t s, 16 t h C on f .

on Sev e re Loca l Stor m s , 588 592 .–

D u d a , J. D. an d G a l lu s , W .A . ( 2 0 1 0 ) S p ri n g an d s um m e r m i d w e st e rn

se v e re w e a t h er re p o r t s i n s up e rc e ll s c o m p a re d t o ot h er m o r-

ph o lo g ies . , 25( 1 ), 1 90 2 06 . ht tps :/ / do i .W e a t h e r an d F o r e c a s t in g –

o rg/ 10 .11 75 /2 00 9w af2 22 233 8.1 .

E l s ne r , J . B . , F r i c k e r , T . , W i d e n , H . M . , C as t i l lo , C . M .,

H u mph r e y s , J . , J un g , J . , R a h ma n , S., Ri ch a r d , A . , Ja g g e r , T . H . ,

Bh a t ra sa tap o n k u l , T . , G re d ze n s , C. an d D i x o n, P.G . (2 01 6) T h e

re l a t i on s h i p be t we e n e l e v a t io n ro u g h n e ss a n d to r na d o a ct i v i t y :

a spa tial s ta tis tica l m od el fit to d ata fr o m the c e ntra l Gr e at

Pl a in s . , 55 ( 4) ,J ou rn a l o f Ap p l i e d M e t e o rol og y a n d C l i m a t ol og y

84 9 85 9. h t tps :/ /d o i.o r g/ 10 .117 5/ ja mc -d- 15 -02 25 .1.–

E m a n ue l , K . A . ( 19 94 ) . N e w Y or k : O x f o r dA t m os ph e ri c C on ve c t i on

U n iv e rs i t y Pr e ss .

F a n, W . a nd Y u , X . ( 2 0 1 5) C ha racte ri s t ic s o f s p a ti a l-te m p or al d is t ri -

b ut io n o f to rna d oes i n C h i na ( i n Ch ine s e w i th E n g lis h a b str act) .

Meteo rol ogi ca l Mo nthl y, 41 (7 ), 79 3–8 05 .

F a rn e y , T. J. a nd D i x o n , P.G . (2 0 1 5 ) Va ri a b i l i t y o f to r n a d o cl i m a t o l -

o g y ac ro s s th e co n ti n e n ta l U n i te d S tat e s. I n tern ati on al J ou rn al

of Cl i m atol og y, 3 5( 10 ), 2 993 300 6. h ttp s: // do i.o rg/ 1 0.10 02 /j o c.–

41 88.

Feng, Z., Houze, R.A., L eung, L .R., Song, F ., Ha rdin , J .C., W ang, J .,

Gu sta fso n , W .I. an d Ho m e yer , C. R. ( 2019 ) S pat io te mp ora l c h ar-

a c ter i stics an d la rge -s ca l e en v ir on m e nts o f m e so s cale c o n vecti v e

16 Z HO U .ET A L

Page 16 of 19Differences in tornado activities and key tornadic environments between China and ...

2021/6/27https://rmets.onlinelibrary.wiley.com/reader/content/17a26dba79f/10.1002/joc.7248/for...

Page 17: Differences in tornado activities and key tornadic

s y s te ms e a s t o f th e R oc ky m o un ta in s . J o ur n al o f C l im a te, 32 ( 21 ),

7303–7 32 8. h ttp s:/ /do i .o rg/ 10.11 75/ jcl i -d-1 9- 0137. 1.

G al wa y, J . G . (1 9 7 7 ) S o m e cl i m a t o lo g i ca l a s p e c ts o f to rn a d o o ut -

b r e aks . , 1 05 (4 ) , 4 77 4 84 . h tt ps :/ /d oi .M o n t h ly W e a t h e r R e v ie w –

o r g/ 10.1 17 5/ 15 20 -04 93 (1 97 7) 10 5 04 77: S cao t o 2 .0.C o ;2.< >

G en s i n i, V . A . a n d B r a v o D e G u en n i , L . ( 20 19 ) E n v i ro n me n t a l

c o v a r i a t e re p r e se n t a t i o n o f se a s o n a l U . S . t o rn a d o fr e q ue n c y .

J ou rn a l of A p p li e d M e t e oro lo gy a nd C l im a t ol ogy , 58 ( 6) , 135 3–

1 36 7. h t tps :/ /d oi.o r g/ 10. 117 5/ ja mc -d- 18 -03 05 .1.

G en s i n i, V . A . a n d Br o ok s, H . E. ( 20 18) Sp a ti a l tre n d s in U n it e d

S t a te s t o r n a d o f re q u e nc y . N P J C l im at e a n d A t m o s p h e r i c Sc i -

e n c e , 1( 1) , 1 5. ht tps :/ / do i .or g/ 10 .10 38/ s 41 612 -0 18 -00 48 -2.–

G lic km an , T.S . ( 20 00 ) . Bo s to n : A mer i canGlos sar y of Meteo ro log y

M e te o ro l o g i ca l So c i et y .

G ra m s, J . S., Th o mps o n , R . L . , S ni v el y , D . V. , Pr e n ti ce , J. A. ,

H od ges, G.M. a nd R e ames , L .J . ( 20 12) A c lim ato lo gy a nd c o m-

p ari s o n o f pa ra me t e r s fo r si g ni f ic a n t to rn a d o e v e n t s i n t h e

U n i t e d St a t e s . , 2 7 ( 1) , 10 6 12 3. ht tps :/ /W e at h e r an d F or e c ast i n g –

d oi.o r g/1 0.1 17 5/ w af-d -11 -0 000 8.1 .

G rü n wa ld , S . an d B ro o k s , H .E . ( 2 011 ) R e l a ti o n sh i p b e t we e n s ou n d -

i n g de ri v e d p a r a m e t e rs a nd th e s t r e n g t h o f t o rn a d oe s i n E u ro p e

a nd th e U SA fro m r e a n a l y s i s da t a . , 1 0 0A tmo spher ic R esear c h

( 4) , 47 9 48 8. h t tps :/ / do i.o r g/ 10 .10 16/ j. atm o sr e s.2 01 0.1 1.01 1.–

Ha rt , J.A . a nd K o r ot ky, W . ( 19 91 ) Th e SH ARP wo r ks tat i on v1 .50

u s e rs g u i d e . N OA A /N a t i on a l W e a t he r S e rv i ce , 3 0 p p . [ A v a i l -

a b le fro m N W S E a st er n R eg i on He adq u ar te r s, 63 0 J oh n s on

A ve . , B o h e m i a , N Y 1 1 7 1 6 . ]

Hu a, Z. an d Ch av as , D .R. ( 201 9) T h e e mp ir ica l depen den ce o f

t or n a d o g e n e s i s o n e l e v a t io n ro u gh n e ss : h i s t o ri c a l re c or d an a l y -

s i s u s in g B aye s ' s l a w i n A rk an sa s. J o u r n a l of Ap p l ie d M e t e o r o l -

o gy a nd C l im a t olo gy , 58 (2 ) , 4 01 4 11 . h tt ps :/ /d oi .o r g/ 10.1 17 5/–

j am c- d-1 8-0 22 4.1 .

Jagg er, T.H. , E lsne r , J.B . and W id en , H.M . ( 20 15 ) A sta tist i ca l

m o d e l fo r r e g i o na l to r n a d o c l i ma t e s tu d i e s . , 10 ( 8) ,P L oS O n e

e0 13 187 6. ht tps :/ / do i .or g/ 10 .13 71 /j ou r na l .po n e. 013 18 76 .

K e n d a l l , M . a n d G i b b on s , J. D. (1 9 9 0 ) .R an k C or re l at i on M e t ho ds

L o n d o n : Ed wa rd Arn o l d .

Ker r, B.W . a nd D ark ow , G. L . ( 19 96 ) St o rm -rela tive w i n ds an d

h e l i ci t y i n th e t o r n a d i c t h u n d e rs t o r m e nv i ro n m e n t . W e ather

a nd F ore c ast i ng , 11 (4 ), 4 89 5 05. h tt ps: / /do i.o rg /1 0.1 17 5/ 152 0-–

0 43 4( 19 96) 0 11 0 489 :S r wa hi 2. 0.C o; 2.< >

Lan d sea, C .W. an d F ran klin , J .L. ( 2 013 ) At l an tic h u rr ic an e d ata -

b a se un c e rt a i n t y an d p re s e nt a t i o n of a n e w d a t a b a s e f o rm a t .

M o nt h ly W e a t h e r R e v i e w , 14 1( 10 ), 3 576 3 59 2. h ttps : // do i .o rg/–

1 0.1 17 5/ mw r- d-1 2- 002 54 .1.

Lee, J., S on , S .-W. , C ho , H.-O ., K im, J ., C h a, D .-H ., Gya kum, J .R.

a nd C h e n , D. ( 20 19 ) E x tr a tr o p i ca l c y c lo n e s o v e r Ea st Asi a : cl i -

m a t ol o g y , s e a s o na l cy cl e , a n d l on g - t e r m t re n d . C lima te D y na m -

i c s, 54 (1 2 ) , 11 31 1 144 . h ttp s: // do i.o rg /1 0.1 007 /s 0 038 2- 019 -– –

0 50 48- w .

Long, J .A., St oy , P .C. and G e rken, T. ( 20 18 ) Tor nado sea sonality i n

t h e s o ut h ea st e rn U n i te d St ate s . ,W e a t he r a nd C l i m a t e Ex t re m e s

2 0, 81 9 1. ht tps :/ / do i .or g/ 10 .10 16 /j .w ace .2 01 8.0 3.00 2.–

L u , M. , T i p p e t t , M. an d L a l l , U . (2 0 1 5 ) C ha ng e s i n th e se a so n a l i t y

o f t o r n a do an d f a v o r ab l e ge n e s i s c o n d i t i o n s i n t h e C e n t r a l

U n i t e d S t a te s. , 4 2( 10 ), 42 24 4 23 1.Geophysica l Resea rch L etters –

h t tps :/ /d oi.o r g/ 10. 100 2/ 20 15 gl06 396 8.

Ma nney , G .L., H e gglin, M.I. , D affer , W.H ., S c hw ar tz , M.J.,

S an t e e , M . L . a n d P a w s o n , S . ( 20 1 4 ) C l i m a t o l o g y o f up pe r

t r op os p h e r ic lo w e r s t r a t o s p h e r i c ( U T L S ) j et s a n d tr o p o p a u s e s–

i n ME R RA. , 27 (9 ) , 3 24 8 32 71. h tt ps :/ /do i .J o u r n a l of C li m a t e –

o rg/ 10 .11 75 /j cli-d -13 -0 024 3.1 .

M ark ow s ki , P . M . an d R ic h ar d so n , Y . P. ( 20 10 ) Org an iza tion o f Is o-

la t e d C on ve c t i on . M e so sc al e Me t e oro log y in M idl at i t ude s. Ch i ch -

e st e r: J oh n W il e y .

M ark ow s ki , P . M . a n d Ri c h ar d so n , Y .P . ( 20 14 ) Th e i n fl u e nc e o f

e n v i ro n m e n t a l l o w- l ev e l sh e a r a nd c ol d p o ol s o n

t o rn a do g e n e si s : i n si g h t s fr om i d e a l i z e d si m ul a t i o ns . J o u rn a l of

t h e At m o s p h e r ic Sc i e nc e s , 71( 1 ), 24 3 27 5. h ttp s: // do i.o rg /1 0.–

11 75/ j as- d-1 3- 015 9.1 .

M cc au l, E.W . (1 99 1) Bu o yanc y and s hea r cha rac ter i st ic s o f

h ur ric an e-to r n ado e nv iro n men ts . , 1 19M o n t h l y W e a t h e r R e v ie w

( 8) , 1 95 4 19 78 . h tt ps :/ /do i .o r g/1 0.1 17 5/ 15 20- 04 93( 1 991 )–

11 9 19 54: B asc o h 2 .0.C o ;2 .< >

M er ce r , A. E. , Sh a fe r, C. M . , D os w e l l, C. A . , L e s li e , L . M . a n d

Ric hm an , M .B. ( 201 2) S yn o pt ic c o mpo s ites o f to r na dic

and nontor n adic out b reak s. , 1 40 (8 ),M o n t h l y We a t h e r R e v i e w

25 90 2 608 . h tt ps :/ /d oi.o r g/ 10.1 17 5/ mw r -d- 12- 00 029 .1.–

M ol i n a , M .J. a nd A ll e n , J. T . ( 2 0 1 9 ) O n th e m o i st ur e or i g i n s of t o r-

n adic th u n ders to r ms . , 32( 1 4) , 432 1 43 46 .J o u rn a l o f C l im at e –

h ttp s: // do i.o rg/ 10 .11 75 /j cli-d -18 -0 784 .1.

N o w ot a rs k i , C . J. an d Je n s e n, A . A . ( 2 0 1 3 ) Cl a ss i f y i n g p ro x i m i t y

so u n d i n g s w i t h se l f - o rga ni z i n g ma p s to w a r d im p r o v i ng

super cell and torna do f or e ca st in g . W e a t h e r an d F o r e c a s t in g , 2 8

( 3) , 7 83 8 01 . h ttp s: // do i.o rg /1 0.1 175 /w af -d- 12- 00 12 5.1.–

P o tvi n , C. K . , E l m or e , K . L . a nd W e i s s, S . J . ( 20 10 ) A s se s s in g th e

i m p a ct s of pr o x i m i t y s o un d i n g cr i t e ri a o n t he cl i m a t o l o g y o f

si g ni f i c a n t to r n a d o e nv i ro n m e n t s . W e ather an d For ecasti n g, 2 5

( 3) , 9 21 9 30 . h ttp s: // do i.o rg /1 0.1 175 /2 01 0w af2 22 23 68.1 .–

R asm u ss e n , E.N . ( 200 3) R e fi n e d s up e rc el l an d t or n ad o f or e ca st

par am e ters . , 18 ( 3) , 530 5 35 . h t tps :/ /W e at h e r an d Fo re c as t in g –

do i.o rg/ 10 .11 75 /1 520 -0 43 4( 20 03) 1 8 53 0: Rsa tfp 2 .0.C o ;2 .< >

R asm u ss e n , E . N . an d B l an ch ar d , D . O. (1 99 8) A b as e li n e cl i ma to l -

ogy o f sou nding-der i ved s u perc ell and t ornado forec ast pa ram e -

ter s. , 1 3( 4) , 11 48 1 164 . h t tps :/ / do i.Wea t her an d F o recas t in g –

o rg/ 10 .11 75 /1 52 0-0 43 4( 19 98) 0 13 1 14 8:A b co s d 2.0. Co ;2 .< >

S h e rb u rn , K . D. an d P ar ke r , M. D . ( 2 0 1 4 ) C l i m a t o l o g y a nd i n g r e d i -

e n t s of si g ni f ic a n t s e v e re c o n v e ct io n i n hi g h- sh e a r , l o w - C A P E

e n v i ro n m e n t s . , 2 9 (4 ) , 8 5 4W e a t h e r an d F o r e c a s t i ng –8 77 .

h ttp s: // do i.o rg/ 10 .11 75 /w af -d- 13- 00 041 .1.

S m i t h, B . T . , T h om p s o n, R. L . , G ra m s , J . S . , B r o y le s , C . an d

Br ook s, H .E. ( 20 12 ) Convec tive modes for s ignifica nt s e ver e

t h u nd e rs t o rm s i n t h e c on t ig uo u s U n i t e d S t a t es . P a rt I: s t o r m

clas s i ficat i on a n d clim atology. , 2 7(5),Wea t her and Foreca stin g

11 14 1 135 . h tt ps :/ /d oi.o r g/ 10.1 17 5/ w af-d -11 -0 011 5.1 .–

Ta n g, Y ., X u, X., Xu e, M., Ta ng , J . an d W a ng , Y . ( 20 20) C h ar act e ri s -

t i c s o f l ow - le v e l m e so - - s ca l e v or t i c e s i n t h e w a r m s e a s on o v e r

E as t Ch in a. , 2 35, 104 76 8. h tt ps: // do i.o rg /A tmo spher ic R esear c h

10 .10 16/ j .atm o sr es.2 01 9.1 047 68 .

T a s z a r e k , M. , B ro o k s , H . E . a nd C ze r ne c ki , B . ( 2 0 1 7 ) S o u n d i n g -

d e ri v ed pa ra me t e r s as so c i a t e d w i t h c o n v e ct i v e h a z a r d s i n

eur o pe. , 14 5( 4) , 15 11 1 52 8. ht tps :/ /M o nt h ly W e a t h e r R e v ie w –

do i.o rg/ 10 .11 75 /m w r-d -16 -0 384 .1.

T h o m p so n , R. L . , Ed wa rds , R . , Ha r t, J . A . , E l mo re , K . L . a n d

M a r k o w sk i , P . ( 20 03 ) Cl o se pro x i mi t y s o un d i n g s w it h i n

su p e r ce l l e n v i ro n m e nt s o b t a i n e d f r om t h e ra pi d u p d at e c y c le .

Wea t her an d F orec asti ng , 18 (6 ) , 124 3 12 61 . h t tps :/ / do i.o r g/ 10 .–

11 75/ 1 520 -0 434 ( 200 3) 01 8 12 43 :C ps ws e 2.0 .Co ;2 .< >

ZH OU .ET A L 17

Page 17 of 19Differences in tornado activities and key tornadic environments between China and ...

2021/6/27https://rmets.onlinelibrary.wiley.com/reader/content/17a26dba79f/10.1002/joc.7248/for...

Page 18: Differences in tornado activities and key tornadic

T h o m p s o n , R. L . , S m it h , B . T . , G r a m s , J.S . , De a n, A . R . a n d

B ro y le s , C . ( 2 012 ) Co n v e c ti v e m o de s f o r si g n i f i c an t s e v e r e t h u n -

d er s t o rm s i n th e co n t i g u o us U n it e d S t a te s . P a r t I I : Su p e r ce l l

a nd Q L C S to r n ado e nv i ro n me n ts . Wea t her an d For ecasti n g, 2 7

( 5) , 11 36 1 154 . h tt ps :/ /d oi.o r g/ 10. 117 5/ w af-d -11 -0 01 16.1 .–

Tipp et t, M .K., S obel, A.H. an d C ama rg o, S. J. ( 20 12 ) Ass o cia tio n o f

U . S . t o r na do oc cu r re n ce w i t h mo n t h l y e n v i ro n m en t a l pa r a m e -

t e rs . , 3 9( 2) , L 02 801 . h t tps :/ / do i.Geo ph ys ical R esea rch L etters

o r g/ 10.1 02 9/ 20 11 gl 05 036 8.

T i p p et t , M .K . , S ob e l , A . H . , C a m a rg o, S . J . a n d Al l e n , J. T. (2 0 1 4 ) An

e m p i ri c a l re l a t i o n b e t w e e n U . S . to r na do ac ti vi ty a nd m o nt h ly

en vir o nm en tal par amet ers . , 2 7( 8) , 298 3J o u r n a l of C li m a t e –

2 99 9. h t tps :/ /d oi.o r g/ 10. 117 5/ J cli-D -1 3-0 03 45 .1.

T o c h im o to , E . a n d N i i n o , H . ( 2 01 6) S tru c tu ra l a n d e n v i r o nm e n ta l

c h ara ct e ri s ti cs o f e xtra tr op ic al cy cl o n e s t ha t ca us e to rn ad o o ut -

b r e a k s i n t he w a r m se c t o r: a c o m p o s i t e s t u d y . M o n t h l y W e a t h e r

R e vi e w , 144 ( 3) , 94 5 96 9. h ttps : // do i.o rg/ 10 .11 75 /m w r-d -15 -–

0 01 5.1 .

W e r n li , H . an d Sc h w ie r z, C. ( 20 06) S ur f a c e cy c l o n es i n t h e E R A -4 0

d atas e t ( 195 8 20 01 ). P ar t I: n o ve l i de nt i fi ca ti o n m et h od an d–

g l o b a l c l i m a to l o g y . , 63 (1 0) ,J o u r n a l o f t h e A t m o s p h e r ic Sc i e n c e s

24 86 2 507 . h tt ps :/ /d oi.o r g/ 10.1 17 5/ ja s3 766 .1.–

Zh o u , R., M e ng , Z. a nd Ba i, L. ( 202 0) . To rn a do dat abas e in C h in a

( 200 7 2 01 6) . V 2 e d.: P ekin g U n iv e rs i t y Op e n Re s e a rc h D a t a

Pl a tfo r m. h t tp s :/ / d o i. or g/ 10 . 18 170 /D V N /Q K QH T G.

SUPPORTING INFORMATION

A dd i t i o n a l s u p p o r t i n g in f o r m at i o n m a y be fo u n d o n l i n e

i n t h e S u pp o r t i n g In fo r m a t i o n s e c ti o n a t th e e n d o f t h i s

a r t i c l e .

How to cite this article: Z ho u , R . , M e ng , Z . , &

B a i, L . (20 2 1 ). Di ffe r e n ce s i n to r n a do a ct iv i ti e s a nd

k e y to r n a di c e n v i r o n m e n ts b e t w e e n C h i n a a n d t h e

U n i t e d S t a t e s . ,I n t e r n a t i o n al J o ur n a l o f C l i m a to l o g y

1 18.– https :/ /doi.org/10 .1002/ joc . 7248

18 Z HO U .ET A L

Page 18 of 19Differences in tornado activities and key tornadic environments between China and ...

2021/6/27https://rmets.onlinelibrary.wiley.com/reader/content/17a26dba79f/10.1002/joc.7248/for...

Page 19: Differences in tornado activities and key tornadic

Page 19 of 19Differences in tornado activities and key tornadic environments between China and ...

2021/6/27https://rmets.onlinelibrary.wiley.com/reader/content/17a26dba79f/10.1002/joc.7248/for...