28
Università di Roma 'La Sapienza' 28-06-20 02 Universitat de Barcelona Front End Electronics for the SPD of LHCb Electronics in Experimental High Energy Physics Xavier Vilasís-Cardona Enginyeria i Arquitectura La Salle URL - Barcelona

Front End Electronics for the SPD of LHCb

  • Upload
    umay

  • View
    69

  • Download
    0

Embed Size (px)

DESCRIPTION

Front End Electronics for the SPD of LHCb. Electronics in Experimental High Energy Physics Xavier Vilasís-Cardona Enginyeria i Arquitectura La Salle URL - Barcelona. The collaboration in Barcelona. Universitat de Barcelona Lluis Garrido Ricardo Graciani David Gascón Ernest Aguiló - PowerPoint PPT Presentation

Citation preview

Page 1: Front End Electronics for the SPD of LHCb

Università di Roma 'La Sapienza' 28-06-2002Universitat de Barcelona

Front End Electronics for the SPD of LHCb

Electronics in Experimental High Energy Physics

Xavier Vilasís-CardonaEnginyeria i Arquitectura La Salle

URL - Barcelona

Page 2: Front End Electronics for the SPD of LHCb

The collaboration in Barcelona Universitat de

Barcelona Lluis Garrido Ricardo Graciani David Gascón Ernest Aguiló Miriam Calvo Sergio Gómez Sebastià Bota Atilà Herms Angel Diéguez Xavier Cano

Enginyeria i Arquitectura La Salle Rafael Ballabriga Sonia Luengo Mar Roselló Jordi Riera Xvc

Page 3: Front End Electronics for the SPD of LHCb

Outlook

What is LHC ? What is LHCb ? The SPD Photomultipliers Very Front End Electronics The ASIC Front End Electronics

Page 4: Front End Electronics for the SPD of LHCb

LHC : the future collider at CERN

Proton-Proton Starting 2007 Find the Higgs Find new physics 4 detectors

Alice Atlas CMS LHCb

Page 5: Front End Electronics for the SPD of LHCb

LHC : some data Energy at collision: 7 TeV (1700 TeV for ions) Dipole field at 7 TeV: 8.3 T Bunch spacing: 7.5 m Bunch separation: 24.95 ns Particles per bunch: 10^11 Current: 0.56 A Luminosity: 10^34 cm^2 s Energy per beam up to 0.35 GJ Stored magnetic energy up to 1.29 GJ per

sector TOTAL STORED ENERGY = 11 GJ

Page 6: Front End Electronics for the SPD of LHCb

LHCb A single-arm

spectrometer covering min ~15 mrad

(beam pipe and radiation)

max ~300 mrad (cost optimisation)

Precise measurements of CP violation B mesons CKM matrix elements

Page 7: Front End Electronics for the SPD of LHCb

LHCb : what is CP violation ? CPT is an exact symmetry

• C charge conjugation• P parity• T time reversal

CP is almost exact CP violation explains matter-antimatter asymmetry

Page 8: Front End Electronics for the SPD of LHCb

LHCb : the trigger

LHCb = 1000k channels : too much data The multi-level trigger chain

Logging rate 200 Hz (20 MB/s) 200 TB/year All LHC experiments: 5-8 PB/year

Input rate Latency B/s

Level 0 40 MHz 3.2 μs 1 TB/s

Level 1 1 MHz 256 μs 4 GB/s

Level 2 40 kHz 10 ms

Level 3 5 kHz 200 ms

Page 9: Front End Electronics for the SPD of LHCb

SPD Scintillator Pad Detector In front of the

calorimeter Discriminates photons

from electrons at level 0 of trigger

spd ps ecal

spd ps ecal

e

Page 10: Front End Electronics for the SPD of LHCb

SPD structure 6000 Scintillator Pads Helicoidal WLS optic fibers 64 channel PMT (Hamamatsu) 1 bit per channel at 40 MHz Synchronisation issues

Send bit to PreShower

Compare to a variable threshold

Radiation hard

Page 11: Front End Electronics for the SPD of LHCb

SPD signal shape

Few photoelectrons Irregular signal shape Extended over 25 ns Non-uniform PMT gain

Page 12: Front End Electronics for the SPD of LHCb

SPD electronics design

Page 13: Front End Electronics for the SPD of LHCb

ASIC : why an ASIC ?

6000 channels : minimal area /ch Processing speed 40 MHz Power consumption < 2 W / 64 channels Analog Processing + Digital Control Signal range. 0 to 5 MIP (0 to 650 mV) Electronics resolution 5% of 1 MIP Dynamic range: 40 dB (7 bits)

Page 14: Front End Electronics for the SPD of LHCb

ASIC Structure

AD

+

- 17 %

+

m bits

Serial interfacefor thresholdprograming

PMT chan. 1

PMT chan. 2

Vref (or DAC range)

Digital differentiallink to PS FE

AD

+

+ n/2 links

PMT chan. n

IntegratorSingle to

differential

SPD VFEcontrol unit

Track & Hold Pile-upsubtract Comparator

Digitalmultiplexer

- 17 %

- 17 %

- 17 %

Channel clocks

generation(CMOS & ECL)

Clock frequency

division by 2

Bunch crossing

clock (40 MHz) Clock delay(about 2 ns)

ECL internal CLock

(20 MHz)

- 17 %

Page 15: Front End Electronics for the SPD of LHCb

ASIC characteristics

ProgrammableProgrammable Thresholds per sub-channel Subtraction: from 0% up to 40% of the signal T0: done externally with a delay unit (LAL design)

0.8 m AMS BiCMOS Technology Dual channel Fully differential Working at 3.3V SEU and SEL protection

Triple voting Guard rings

Page 16: Front End Electronics for the SPD of LHCb

Review of ASIC runs RUN1 (Sep 2000)

Test separate blocs 1 full channel

RUN2 (Jun 2001) 4 full channels ECL vs CMOS output

RUN3 (Jan 2002) New tunnable substractor 1 full channel with digital control On-chip DAC to program thresholds

RUN4 (Sep 2002) 1 Complete processing channel Separate blocs + digital control Works at 3.3 V to reduce power consumption Fully differential preamplifier added before the integration

stage to meet PMT DC current limit requirements

Page 17: Front End Electronics for the SPD of LHCb

ASIC : RUN 4 layout

Page 18: Front End Electronics for the SPD of LHCb

ASIC : integrator

Page 19: Front End Electronics for the SPD of LHCb

ASIC : Track and Hold

Page 20: Front End Electronics for the SPD of LHCb

ASIC : substractor

Page 21: Front End Electronics for the SPD of LHCb

ASIC : latched comparator

Page 22: Front End Electronics for the SPD of LHCb

Offset ( (Output Zero Error): ): <OZE> = + 38.6 mV<OZE> = + 38.6 mV ioio = 70 mV r.m.s. = 70 mV r.m.s. Gain: <Vo/Vi> = 16.51 (for a<Vo/Vi> = 16.51 (for a typical input pulse) typical input pulse) ioio = = 0.091 0.091 r.m.s.r.m.s. (0,55%)(0,55%) Treset = = 5.5 ns (for 1 V output)5.5 ns (for 1 V output) Noise EEnono < 2 mV r.m.s < 2 mV r.m.s (Using scope, C.F. 6)(Using scope, C.F. 6)

EEnono < 1 mV r.m.s < 1 mV r.m.s (Discriminator sweep of thresholds)(Discriminator sweep of thresholds)

-1500

-1000

-500

0

500

1000

1500

-100,0 -90,0 -80,0 -70,0 -60,0 -50,0 -40,0 -30,0 -20,0 -10,0 0,0

Threshold [mV]

Histogram for threshold sw eepDifferentiated histogram

-66 -64 -62 -60 -58 -56 -54

0

200

400

600

800

1000

Data: Data1_B'Model: Gauss Chi^2= 2081.19889R^2 = 0.98682 y0 51.68159 ±23.05052xc -61.70164 ±0.05011w 1.62784 ±0.11995A 1609.67905±130.96337

Diff

eren

tial h

isto

gram

Threshold [mV]

B'

ASIC : integrator measurements 10 circuits

Page 23: Front End Electronics for the SPD of LHCb

-2500,00

-2000,00

-1500,00

-1000,00

-500,00

0,00

500,00

1000,00

1500,00

2000,00

2500,00

-4000,00 -3000,00 -2000,00 -1000,00 0,00 1000,00 2000,00 3000,00 4000,00

Input Signal [mV]

Th

resh

old

[m

V]

R2B02

R2B04

R2B05

R2B06

R2B07

R2B08

R2B09

R2B01

R2B10

ASIC : integrator linearity

Page 24: Front End Electronics for the SPD of LHCb

ASIC : programmable substractor

Gain of the controlable block of the subtractor = f(Vb) (10 samples)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

3,5 3,7 3,9 4,1 4,3 4,5 4,7 4,9

0102030405060708091001_soldat

Page 25: Front End Electronics for the SPD of LHCb

VFE Board description

100 boards7x12 cmMultiplexed LVDS

Page 26: Front End Electronics for the SPD of LHCb

Very Front End Board

Test beam boards

Sep 2001: RUN 2, 4 full channels/ 4-layer board•ECL vs CMOS output•Clock signal distribution•Power Supply distribution

June 2002: RUN 2, 4 full channels / 4-layer board•Improvements in board design•Signals distribution

June 2002: RUN 3, 1 full channel and digital control/ 6-layer board

•Digital signal distribution vs analog signal distribution•Noise effect vs number of layers

Page 27: Front End Electronics for the SPD of LHCb

Front End Board

Control Unit : •Bus Bridge•Programmable Delays

1 Control Unit every 4 VFE Boards5 Control Units in a Front End Board6 Front End Boards

Page 28: Front End Electronics for the SPD of LHCb

Conclusions