20
ScreenOff Traffic Characteriza2on and Op2miza2on in 3G/4G Networks Junxian Huang 1 Feng Qian 2 Z. Morley Mao 1 Subhabrata Sen 2 Oliver Spatscheck 2 1 University of Michigan 2 AT&T Labs Research

Screen&Off)Traffic)Characterizaon) and)Op2mizaon)in)3G/4G ...hjx/file/imc12_presentation.pdf · and)Op2mizaon)in)3G/4G)Networks) Junxian)Huang1))))) ... interes2ng)yetunexplored)topic)

Embed Size (px)

Citation preview

Screen-­‐Off  Traffic  Characteriza2on  and  Op2miza2on  in  3G/4G  Networks  

Junxian  Huang1                Feng  Qian2                Z.  Morley  Mao1                  Subhabrata  Sen2            Oliver  Spatscheck2  

 

1University  of  Michigan    2AT&T  Labs  -­‐  Research  

Screen-­‐off  traffic  characteriza2on:  an  interes2ng  yet  unexplored  topic  

•  Smartphone  screen  is  switched  on  and  off  oVen  (>50  2mes/day/user)  

•  Screen  status  is  a  good  heuris2c  for  determining  whether  the  user  is  ac2vely  interac2ng  with  the  device  

•  Ba[ery  is  scarce  resource  for  smartphones  

2  

Screen-­‐off  traffic  characteriza2on:  an  interes2ng  yet  unexplored  topic  

•  Smartphone  screen  is  switched  on  and  off  oVen  (>50  2mes/day/user)  

•  Screen  status  is  a  good  heuris2c  for  determining  whether  the  user  is  ac2vely  interac2ng  with  the  device  

•  Ba[ery  is  scarce  resource  for  smartphones  

3  

Data  set  studied  

•  Collected  from  20  volunteers  in  5  months  – May  2011  ~  Oct  2011,  Android  2.2  smartphones  

•  Full  packet  payload  and  process  associa2on  is  collected  –   131.49  millions  packets  –   80.03GB  payload  

•  Screen  on/off  status  with  sampling  rate  of  1Hz  

4  

Breakdown  of  packet  count  based  on  screen  status  

0  

10  

20  

30  

40  

50  

60  

Packet  count  

Screen-­‐on  

Screen-­‐off  

Unknown  

Unknown  group:  9%  of  all  packets,  due  to  users  accidentally  termina:ng  screen  status  logger  

5  

50%  

%  

Breakdown  of  packet  count  based  on  screen  status  

0  

10  

20  

30  

40  

50  

60  

Packet  count  

Screen-­‐on  

Screen-­‐off  

Unknown  

Unknown  group:  9.02%  of  all  packets,  due  to  users  accidentally  termina:ng  screen  status  logger  

6  

50%  

•   36%  screen-­‐off  packets  •  Could  be  more  given  the  unknown  category  •  Which  applicaHons  generate  them?  •  What  is  their  energy  and  signaling  impact?  

Radio  Resource  Control  (RRC)    state  machine  

Tail  

Time  PromoHon  7  

Power  

Transfer  the  packet  

A  packet  to  transfer  

Tail  Hmer  starts  

Tail  Hmer  expires  

How  does  traffic  pa[ern  affect  energy  and  radio  resource?  

•   ScaPered  traffic  consumes  more  energy  and  radio  resource  than  Gathered  traffic  

ScaPered  traffic  

8  

Gathered  traffic  

Time  

Power  

Defini2on  of  a  “burst”  

•  A  burst  is  a  sequence  of  packets  with  inter-­‐packet  2me  ≤  BT,  and  leading/trailing  gap  >  BT  

•  BT  is  burst  threshold  selected  empirically  based  on  network  RTTs,  e.g.  BT  =  2s  

>  BT   >  BT  ≤  BT  

…  ≤  BT  

Burst  

9  

Screen-­‐on  and  screen-­‐off  traffic  comparison  

•  Screen-­‐off  traffic  has  less  packets/payload,  but  more  bursts  which  are  smaller  and  shorter  

0  

10  

20  

30  

40  

50  

60  

70  

Packet  number   Payload   Burst  number  

Screen-­‐on  Screen-­‐off  Unknown  

10  

%  

Does  screen-­‐off  traffic  ma[er  for  radio  resource  and  energy?  

•  Yes!  Actually,  screen-­‐off  traffic  has  higher  impact  than  screen-­‐on,  though  with  less  packets  

Energy   Signaling  overhead  

Screen-­‐on  

Screen-­‐off  

Unknown  

11  

Top  screen-­‐off  applica2ons  based  on  packet  count  

Applica2on  category   screen-­‐off  packets  /  total  packets  

Homescreen  widget   3.80%  

Mul2media  streaming   3.30%  

U2lity   2.69%  

Mul2media  streaming   2.66%  

Mul2media  streaming   2.37%  

U2lity   2.07%  

Social  network   1.95%  

News   1.94%  

Email   1.33%   12  

Energy  impact  of  top  screen-­‐off  applica2ons  

•   ScaPered  group  has  more  bursts  than            Gathered  group,  incurring  higher  energy  impact  

ApplicaHon  category   Group  

Homescreen  widget   Gathered  

MulHmedia  streaming   Gathered  

UHlity   ScaPered  

MulHmedia  streaming   Gathered  

MulHmedia  streaming   Gathered  

UHlity   ScaPered  

Social  network   ScaPered  

News   ScaPered  

Email   ScaPered  

0   0.02   0.04   0.06   0.08  

Energy  impact  Burst  count  

13  

Energy  impact  of  top  screen-­‐off  applica2ons  

•   ScaPered  group  has  more  bursts  than            Gathered  group,  incurring  higher  energy  impact  

ApplicaHon  category   Group  

Homescreen  widget   Gathered  

MulHmedia  streaming   Gathered  

UHlity   ScaPered  

MulHmedia  streaming   Gathered  

MulHmedia  streaming   Gathered  

UHlity   ScaPered  

Social  network   ScaPered  

News   ScaPered  

Email   ScaPered  

0   0.02   0.04   0.06   0.08  

Energy  impact  Burst  count  

14  

Energy  impact  of  top  screen-­‐off  applica2ons  

•   ScaPered  group  has  more  bursts  than            Gathered  group,  incurring  higher  energy  impact  

ApplicaHon  category   Group  

Homescreen  widget   Gathered  

MulHmedia  streaming   Gathered  

UHlity   ScaPered  

MulHmedia  streaming   Gathered  

MulHmedia  streaming   Gathered  

UHlity   ScaPered  

Social  network   ScaPered  

News   ScaPered  

Email   ScaPered  

0   0.02   0.04   0.06   0.08  

Energy  impact  Burst  count  

15  

•  Traffic  paPern  has  significant  impact  on  resource  consumpHon  

1.95%  packets  +  5%  energy  (ScaPered)  2.37%  packets  +  0.1%  energy  (Gathered)  

Screen-­‐aware  traffic  op2miza2on  •  Apply  more  aggressive  serngs  to  screen-­‐off  traffic  – Reason  1:  high  energy  and  signaling  impact  – Reason  2:  traffic  pa[ern  is  more  “sca[ered”  – Reason  3:  less  user  interac2on  and  more  tolerance  in  delay  

16  

Case  study:  screen-­‐aware  fast  dormancy  

•  Fast  dormancy  reduces  the  tail  length  by  ac2vely  no2fying  the  network  for  early  demo2on  

Fast  dormancy  

17  

Time  

Power  

Default  tail  Hmer   Fast  dormancy  tail  Hmer  

Case  study:  screen-­‐aware  fast  dormancy  

•  Fast  dormancy  reduces  the  tail  length  by  ac2vely  no2fying  the  network  for  early  demo2on  

Fast  dormancy  

18  

Time  

Power  

•  Screen-­‐aware  fast  dormancy:  a  shorter  tail  Hmer  for  screen-­‐off  traffic  

•  For  the  same  signaling  overhead,  screen-­‐aware  fast  dormancy  increases  energy  saving  by  15%  compared  with  basic  fast  dormancy  

Summary  

•  Screen-­‐off  traffic  incurs  more  energy  overhead,  with  fewer  packets  and  less  payload  than  screen-­‐on  traffic  

•  Screen-­‐aware  op2miza2on  improves  the  resource  efficiency  and  is  simple  to  implement  

•  Other  screen-­‐aware  traffic  op2miza2on  techniques  studied  in  the  paper,  e.g.,  batching  

19  

Thank  you!  Q  &  A  

Contact:  Junxian  Huang  ([email protected])  

20