2
SVZ PROGENITORS IMMATURE POSTMITOTIC Callosal Projection Neurons (CPN) Satb2, Lmo4, Hspb3, Lpl Sox5 Tbr2 Tbr1 Bhlhb5 Satb2 Fezf2/Ctip2 VZ PROGENITORS Emx2 Pax6 Sox6 Couptf1 Ngn2 Lhx2 Fezf2 Cux2 Cux2 Cux1/2 layer II/III Cux1, Cux2, Inhba, Limch1, Btg1 layer V-VI Tcrb, Dkk3, Gfra2 Visual Sensory Motor Bhlhb5, Couptf1, Plxnd1, Cdh6 Bhlhb5, Couptf1, Plxnd1, EphrinA5, Cdh6 Lmo4, EphA7, Cdh8 Corticothalamic Projection Neurons (CThPN) Expression gradients in the VZ and CP evolve into discrete domains that demarcate cortical areas Initially overlapping expression of controls over subtype identity refines as neurons differentiate Tbr1, Sox5, Darpp32, Tle4, Fog2, FoxP2, Nfib Sp8 Couptf1 Lmo4 Bhlhb5 M1 Visual E12.5 E10.5 E11.5 PP VZ VZ VZ VZ VZ Ctip2 + Tbr1 + Satb2 + Ctip2 + ; Tbr1 + Ctip2 + ; Satb2 + SCPN CThPN CPN WM I II/III IV V VI VI I II/III IV CP VZ MZ CP V V VI VI SVZ SP VZ WM I II/III IV V VI SP SP I I IV V V VI VI SP SP MZ CP SP SVZ SVZ SVZ SVZ E12.5 E13.5 E14.5 E15.5 P4 E15.5 E13.5 E15.5 P4 P4 Distinct progenitor populations generate projection neurons in an “inside-out” fashion Combinatorial transcription factor programs progressively delineate projection neuron identity Sensory Motor Couptf1 Couptf1, EphrinA5 Id2, Epha7 Pax6 Emx2 MATURE POSTMITOTIC Sox5 Couptf1 Tbr1 Tbr1 Bhlhb5 Satb2 Rorb Fezf2/Ctip2/Otx1 Lhx2 Cux1/2 Couptf1 Lmo4 Bhlhb5 SCPN Layer IV GC IV GC UL CPN RG oRG NE IP Migrating immature neurons Astrocyte DL CPN DL CPN CR SP CThPN UL CPN SCPN CThPN SP Subtype-specific Subtype specificity not known High expression Low expression M1 S1 V1 A1 CC SC dLG VP Subcerebral Projection Neurons (SCPN) Fezf2, Ctip2, Sox5, Otx1, Clim1,Csmn1, Cdh13 Visual (CTPN) Sensory Motor (CSMN) Bhlhb5, Lix1, Id2, Odz3 Bhlhb5, Cdh6, Bcl6 Crym, Diap3, Igfbp4, S100a10 OT SC See online version for legend and references. 1 Cell 151, November 9, 2012 ©2012 Elsevier Inc. DOI http://dx.doi.org/ 10.1016/j.cell.2012.10.004 SnapShot: Cortical Development Mollie B. Woodworth, 1,2,5 Luciano Custo Greig, 1,2,5 Arnold R. Kriegstein, 3,4 and Jeffrey D. Macklis 1,2 1 Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; 2 Harvard Medical School, Boston, MA 02115, USA; 3 Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; 4 Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; 5 These authors contributed equally to this work

X XX Harvard Department of X XX X XXX XX X XXXXX · Visual (CTPN) Sensory Motor (CSMN) Bhlhb5, Lix1, Id2, Odz3 Bhlhb5, Cdh6, Bcl6 Crym, Diap3, Igfbp4, S100a10 OT

Embed Size (px)

Citation preview

Page 1: X XX Harvard Department of X XX X XXX XX X XXXXX · Visual (CTPN) Sensory Motor (CSMN) Bhlhb5, Lix1, Id2, Odz3 Bhlhb5, Cdh6, Bcl6 Crym, Diap3, Igfbp4, S100a10 OT

1 Cell ???, ??MONTH?? ??DATE??, 200? ©200? Elsevier Inc. DOI XXXXXXXXX See online version for ??????.

Snap

Shot:

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

AU

TH

OR

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

AF

FIL

IAT

ION

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

X

SV

ZP

RO

GE

NIT

OR

SIM

MA

TU

RE

PO

ST

MIT

OT

IC

Ca

llo

sal

Pro

jec

tio

n N

eu

ron

s (C

PN

)

Sat

b2,

Lm

o4,

Hsp

b3,

Lp

l

Sox5

Tbr2

Tbr1Bhlhb5

Satb2

Fezf2/Ctip2

VZ

PR

OG

EN

ITO

RS

Emx2Pax6Sox6

Couptf1Ngn2Lhx2

Fezf2Cux2

Cux2

Cux1/2

laye

r II

/III

Cux

1, C

ux2,

Inh

ba,

Lim

ch1,

Btg

1

laye

r V

-VI

Tcr

b,

Dkk

3, G

fra2

Vis

ua

lS

en

sory

Mo

tor

Bhl

hb5,

Co

uptf

1,P

lxnd

1, C

dh6

Bhl

hb5,

Co

uptf

1,P

lxnd

1, E

phr

inA

5,C

dh6

Lmo

4,E

phA

7,C

dh8

Co

rtic

oth

ala

mic

Pro

jec

tio

n N

eu

ron

s (C

Th

PN

)

Exp

ress

ion

gra

die

nts

in

th

e V

Z a

nd

CP

evo

lve

in

to d

isc

rete

do

ma

ins

tha

t d

em

arc

ate

co

rtic

al

are

as

Init

iall

y o

verl

ap

pin

g e

xpre

ssio

n o

f c

on

tro

ls o

ver

sub

typ

e i

de

nti

tyre

fin

es

as

ne

uro

ns

dif

fere

nti

ate

Tb

r1,

So

x5,

Dar

pp

32,

Tle

4,F

og

2, F

oxP

2, N

�b

Sp

8C

oup

tf1

Lmo

4B

hlhb

5

M1

Vis

ua

l

E12

.5

E10

.5E

11.5

PP

VZ

VZ

VZ

VZ

VZ

Cti

p2+

Tb

r1+

Sat

b2+

Cti

p2+

; T

br1

+

Cti

p2+

; S

atb

2+

SC

PN

CT

hPN

CP

N

WM

I II/III

IV V VI

VI

I II/III

IV

CP

VZ

MZ

CP

VV

VI

VI

SV

ZS

P

VZ

WM

I II/III

IV V VI

SP

SP

I

I

IV V

V

VI

VI

SP

SP

MZ

CP

SP

SV

ZS

VZ

SV

ZS

VZ

E12

.5E

13.5

E14

.5E

15.5

P4

E15

.5

E13

.5

E15

.5

P4

P4

Dis

tin

ct

pro

ge

nit

or

po

pu

lati

on

s g

en

era

te p

roje

cti

on

ne

uro

ns

in a

n “

insi

de

-ou

t” f

ash

ion

Co

mb

ina

tori

al t

ran

scri

pti

on

fa

cto

r p

rog

ram

s p

rog

ress

ive

lyd

elin

ea

te p

roje

cti

on

ne

uro

n id

en

tity

Se

nso

ryM

oto

r

Co

uptf

1C

oup

tf1,

Ep

hrin

A5

Id2,

Ep

ha7

Pax

6E

mx2

MA

TU

RE

PO

ST

MIT

OT

IC

Sox5

Couptf1Tbr1Tbr1

Bhlhb5Satb2

Rorb

Fezf2/Ctip2/Otx1

Lhx2Cux1/2

Couptf1

Lmo

4B

hlhb

5

SC

PN

Laye

r IV

GC

IV G

C

UL

CP

N

RG

oR

G

NE

IPMig

rati

ngim

mat

ure

neur

ons

Ast

rocy

teD

L C

PN

DL

CP

N

CR

SP

CT

hPN

UL

CP

N

SC

PN

CT

hPN

SP

Sub

typ

e-sp

eci�

cS

ubty

pe

spec

i�ci

tyno

t kn

ow

nH

igh

exp

ress

ion

Low

exp

ress

ion

M1

S1

V1A

1

CC

SC

dLG VP

Su

bc

ere

bra

l P

roje

cti

on

Ne

uro

ns

(SC

PN

)

Fez

f2,

Cti

p2,

So

x5,

Otx

1,C

lim1,

Csm

n1,

Cd

h13

Vis

ua

l(C

TP

N)

Se

nso

ryM

oto

r(C

SM

N)

Bhl

hb5,

Lix1

, Id

2,O

dz3

Bhl

hb5,

Cd

h6,

Bcl

6

Cry

m,

Dia

p3,

Igfb

p4,

S10

0a10

OT

SC

VP

dLG

dLG

See online version for legend and references.1 Cell 151, November 9, 2012 ©2012 Elsevier Inc. DOI http://dx.doi.org/ 10.1016/j.cell.2012.10.004

Snap

Shot:

Cort

ical

Deve

lopm

ent

Mo

llie

B. W

oo

dw

ort

h,1,

2,5 Lu

cian

o C

usto

Gre

ig,1,

2,5 A

rno

ld R

. Kri

egst

ein,

3,4

and

Jef

frey

D. M

ackl

is1,

2

1 Dep

artm

ent

of

Ste

m C

ell a

nd R

egen

erat

ive

Bio

log

y an

d H

arva

rd S

tem

Cel

l Ins

titut

e, H

arva

rd U

nive

rsity

, Cam

bri

dg

e, M

A 0

2138

, US

A; 2 H

arva

rd

Med

ical

Sch

oo

l, B

ost

on,

MA

021

15, U

SA

; 3 Eli

and

Ed

ythe

Bro

ad C

ente

r o

f R

egen

erat

ion

Med

icin

e an

d S

tem

Cel

l Res

earc

h; 4 D

epar

tmen

t o

f N

euro

log

y, U

nive

rsity

of

Cal

iforn

ia, S

an F

ranc

isco

, San

Fra

ncis

co, C

A 9

4143

, US

A; 5 T

hese

aut

hors

co

ntri

but

ed e

qua

lly t

o t

his

wo

rk

Page 2: X XX Harvard Department of X XX X XXX XX X XXXXX · Visual (CTPN) Sensory Motor (CSMN) Bhlhb5, Lix1, Id2, Odz3 Bhlhb5, Cdh6, Bcl6 Crym, Diap3, Igfbp4, S100a10 OT

2 Cell 151, November 9, 2012 ©2012 Elsevier Inc. DOI http://dx.doi.org/ 10.1016/j.cell.2012.10.004

SnapShot: Cortical DevelopmentMollie B. Woodworth,1,2,5 Luciano Custo Greig,1,2,5 Arnold R. Kriegstein,3,4 and Jeffrey D. Macklis1,2

1Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; 2Harvard Medical School, Boston, MA 02115, USA; 3Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research; 4Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA; 5These authors contributed equally to this work

This SnapShot summarizes current knowledge of mammalian cortical development, with a particular focus on the molecular controls that orchestrate the stepwise decisions leading from multiple types of undifferentiated forebrain progenitors to fully mature projection neurons with correctly targeted axons and carefully elaborated dendritic trees, as well as appropriate electrophysiology and gene expression, reflective of precise subtype and area identity.

Neocortical ProgenitorsEarly in development, the telencephalic wall is composed of undifferentiated neuroepithelial (NE) cells, which give rise to diverse progenitor populations. Radial glial cells (RG) divide asymmetrically to self-renew and generate intermediate progenitor (IP) cells or neurons. IP cells divide symmetrically to produce two neurons. In the mouse, small numbers of neurons are produced by radial glia-like (oRG) cells, but oRG cells are abundant in the outer SVZ of human fetal cortex, where they generate transit-amplifying cells that in turn produce most cortical neurons.

Projection Neuron DiversitySpecific subtypes of neocortical projection neurons are generated by neural progenitors during distinct temporal windows, beginning in mice at ?E11.5 and continuing through late embryonic development. These young postmitotic neurons migrate away from the ventricular zone to populate progressively more superficial positions in the cortical plate. Projection neurons can be classified on the basis of their mature axonal projections: corticothalamic projection neurons (CThPN) are located in layer VI and send axons to thala-mus; subcerebral projection neurons (SCPN) are located in layer V and send axons to optic tectum, brainstem, or spinal cord; and callosal projection neurons (CPN) are located in layers II/III, V, and VI and send axons to contralateral cortex. Importantly, neurons of each subtype are further specialized based on their positions in specific cortical areas. For example, CThPN establish area-specific connections with thalamic nuclei (motor cortex CThPN with VL; sensory cortex CThPN with VP; visual cortex CThPN with dLG).

Molecular Controls over Subtype and Area IdentityBoth subtype and area identity are specified in a stepwise fashion, with early overlapping expression of critical controls resolving over the course of development to specific subtypes and areas. Area identity begins to be imparted embryonically by smooth gradients of transcription factors in progenitors and postmitotic neurons, but during the first postnatal week, expression of critical controls, such as Lmo4 and Bhlhb5, becomes restricted to domains that sharply delineate cortical areas. Similarly, subtype identity is progressively specified, as molecular controls that are initially coexpressed by newly generated postmitotic neurons later refine to a single subtype or to high levels in some subtypes and low levels in others. Several central identified controls over subtype development, including Fezf2, Ctip2, Satb2, and Tbr1, interact combinatorially (although not linearly) as part of a broader molecular network and nested molecular logic that directs subtype identity acquisition.

AbbreviationsA1, primary auditory cortex; Bhlhb5, basic helix-loop-helix domain-containing, class B5; Btg1, B cell translocation gene 1, antiproliferative; Cdh6, cadherin 6; Cdh8, cadherin 8; Cdh13, cadherin 13; Clim1, carboxyl-terminal LIM domain-binding protein 1; Couptf1, chicken ovalbumin upstream transcription factor I; CC, corpus callosum; CP, cortical plate; CPN, callosal projection neuron(s); CR, Cajal-Retzius cell(s); Crym, mu crystallin; CSMN, corticospinal motor neuron(s); Csmn1, zinc finger protein 703; CThPN, corticothalamic projection neuron(s); CTPN, corticotectal projection neuron(s); Ctip2, Couptf-interacting protein 2; Cux1, cut-like homeobox 1; Cux2, cut-like homeobox 2; Darpp32, dopamine- and cAMP-regulated neuronal phosphoprotein; Diap3, diaphanous homolog 3; Dkk3, dickkopf homolog 3; DL, deep layer (layers V and VI); dLG, dorsal lateral geniculate nucleus of thalamus; E, embryonic day; Emx2, empty spiracles homeobox 2; Epha7, Eph receptor A7; Fezf2, Fez family zinc finger 2; Fog2, friend of GATA 2; FoxP2, forkhead box P2; GC, granule cell(s); Gfra2, glial cell-line-derived neurotrophic factor family receptor α 2; Hspb3, heat shock protein 3; Id2, inhibitor of DNA binding 2; Igfbp4, insulin-like growth factor binding protein 4; Inhba, inhibin β-A; IP, intermediate progenitor; Lhx2, LIM homeobox protein 2; Limch1, LIM and calponin homology domains 1; Lix1, limb expression homolog 1; Lmo4, LIM domain-only 4; Lpl, lipoprotein lipase; M1, primary motor cortex; MZ, marginal zone; NE, neuroepithelial cell; Nfib, nuclear factor IB; Ngn2, neurogenin 2; Odz3, odd Oz/ten-m homolog 3; oRG, outer radial glia; OT, optic tectum (superior colliculus); Otx1, orthodenticle homolog 1; P, postnatal day; Pax6, paired box gene 6; Plxnd1, plexin D1; PP, preplate; RG, radial glia; Rorb, RAR-related orphan receptor beta; S1, primary sensory cortex; S100a10, S100 calcium-binding protein A10; Satb2, special AT-rich sequence binding protein 2; SC, spinal cord; SCPN, subcerebral projection neuron(s); Sox5, SRY box-containing gene 5; Sox6, SRY box-containing gene 6; SP, subplate neuron(s); Sp8, trans-acting transcription factor 8; SVZ, subventricular zone; Tbr1, T box brain gene 1; Tbr2, T box brain gene 2; Tcrb, T cell receptor β chain; Tle4, transducin-like enhancer of split 4; UL, upper layer (layers II/III and IV); V1, primary visual cortex; VL, ventral lateral nucleus of thalamus; VP, ventral posterior nucleus of thalamus; VZ, ventricular zone; WM, white matter.

RefeRences

Hansen, D.V., Rubenstein, J.L.R., and Kriegstein, A.R. (2011). Deriving excitatory neurons of the neocortex from pluripotent stem cells. Neuron 70, 645–660.

Lui, J.H., Hansen, D.V., and Kriegstein, A.R. (2011). Development and evolution of the human neocortex. Cell 146, 18–36.

Leone, D.P., Srinivasan, K., Chen, B., Alcamo, E., and McConnell, S.K. (2008). The determination of projection neuron identity in the developing cerebral cortex. Curr. Opin. Neurobiol. 18, 28–35.

MacDonald, J.L., Fame, R.M., Azim, E., Shnider, S.J., Molyneaux, B.J., Arlotta, P., and Macklis, J.D. (2012). Specification of cortical projection neurons: Transcriptional mechanisms. In Developmental Neuroscience: A Comprehensive Reference, Volume 1, P. Rakic, J.L. Rubenstein, eds. (Oxford: Elsevier).

Molyneaux, B.J., Arlotta, P., Menezes, J.R., and Macklis, J.D. (2007). Neuronal subtype specification in the cerebral cortex. Nat. Rev. Neurosci. 8, 427–437.

O’Leary, D.D.M., Chou, S.-J., and Sahara, S. (2007). Area patterning of the mammalian cortex. Neuron 56, 252–269.

Shoemaker, L.D., and Arlotta, P. (2010). Untangling the cortex: Advances in understanding specification and differentiation of corticospinal motor neurons. Bioessays 32, 197–206.