52
DEPFET Seminar Fermilab, July 2006 M.Trimpl DEPFET – collaboration : MPI/MPE Munich L.Andricek, P.Lechner, H.G. Moser, R.H.Richter, L.Strüder, G.Lutz, J.Treis U Mannheim P.Fischer, F.Giesen, C.Kreidel, I.Peric U Bonn M.Koch, R.Kohrs, H.Krüger, P.Lodomez, L.Reuen, C.Sandow, M.Trimpl, E.v.Törne, J.J.Velthuis, N.Wermes U Prague Z.Doležal, P Kodyš, D.Scheirich U Aachen L.Feld, W.Karpinski, K.Klein DEPFET pixels for the ILC vertex detector

DEPFET pixels for the ILC vertex detector

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 1 -

DEPFET Seminar Fermilab, July 2006

M.Trimpl

DEPFET – collaboration:

MPI/MPE Munich

L.Andricek, P.Lechner, H.G. Moser, R.H.Richter, L.Strüder, G.Lutz, J.Treis

U Mannheim

P.Fischer, F.Giesen, C.Kreidel, I.Peric

U Bonn

M.Koch, R.Kohrs, H.Krüger, P.Lodomez, L.Reuen, C.Sandow, M.Trimpl, E.v.Törne, J.J.Velthuis, N.Wermes

U Prague

Z.Doležal, P Kodyš, D.Scheirich

U Aachen

L.Feld, W.Karpinski, K.Klein

DEPFET pixels for the ILC vertex detector

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 2 -

• Introduction: ILC project, vtx-d and requirements

• DEPFET technology:principle, present production and thinning approach

• Sensor characterization: clear, rad. tolerance

• Overview: ILC DEPFET-System

• R/O - electronics (CURO- FE):

architecture, circuit realization and results

• Results with present system (lab, beam test)

• Summary and Outlook

outline

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 3 -

Activities in the SILAB

-10n 0 10n 20n 30n 40n 50n 60n 70n 80n

-1,0µ

0,0

1,0µ

2,0µ

3,0µ

4,0µ

5,0µ

6,0µ

7,0µ

8,0µ

9,0µ

10,0µ

signal current from alpha particlesat different bias voltages

Stro

m [A

]

Zeit [s]

large experience in ASIC design and

detector instrumentation

11mm

11mm

7.4 mm7.4 mm

ATLAS pixels

new materials

X-Ray Imaging

LABSilizium Labor Bonn

SI

LABSilizium Labor Bonn

SI

DEPFET ILC vtx-d

CdTe2x2 module

TCT –transient current technique

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 4 -

• linear accelerator

no synchrotron-radiation : ∆Esync ∝ E4/m4

• luminosity L = 3·1034 cm-2 s-1 , ECM up to 1 TeV

International Linear Collider

• superconducting accelerating cavities ( >25MV/m ):

• design phase: ILC - TDR 2007, starting 2017 ?

• precision measurements: δ(1/p) = 5·10-5 / GeV(1/10 LEP, LHC)

e+ e-defined initial state

• 3 detector concepts: LDC (TESLA), SiD, GLD

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 5 -

950 µs 199 ms 950 µs

2820 bunchesR/O: 50µs (20x per bunch train)

Beamstrahlung (e+e- Pairs)

bunch structure:

∆tbunch= 337ns

layer 1: 0.05 hits / mm2 / BX

occupancy: 20% (readout once !!)

[C.Hensel]

5Hz repetition rate

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 6 -

Technologies:- CCDs / ISIS- MAPS/CMOS- DEPFET

ILC Vertex Detector (LDC)

do .do .

Impact Parameter Resolution (do)

IPtrack

• 5 layers, r: 15mm … 60mm

• pixel size: 20-30 µm, spatial resolution of a few µm

• module: ~ 13 x 100 mm2, 22 x 250 mm2

• overall ~ 1GPixel

• thin sensors d=50µm: 0.1% X0 per layer• low power consumption (simple gas cooling)• radiation tolerance: 200 kRad (5 years)

<p> = 1…2 GeV

b : 300µmc, τ : 75µm

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 7 -

DEPFET principle of operation

FET-Transistor integrated in pixel(first amplification)

charge generation in whole substrate (d=50µm, ENC=100e-: S/N > 40)

charge collection due to electric field

figure of merit: internal gain (gq= ∆ID/ ∆q)

principle

internal Gate

potential distribution:

Drain

Source

rear contact

[TeSCA-Simulation]

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 8 -

DEPFET Fabricationdesign, fabrication and testing of DEPFETs at the HLL MPI Munich:

direct wafer writer (UV laser):

HLL located at the Siemens plant in Neu-Perlach (founded 1992)

• 800m2 clean room (class 1),• 6‘‘ process line, • min. feature size 1.5µm

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 9 -

DEPFET Applications

particle trackingHEP

1.3 x 10 cm² (x 8)520 x 4000 pixels (x 8)

1GPix

25 µm

50 µm

~100 el. ENC

50 µs / frame50 ns / line

imaging spectroscopyXray astronomy

7.68 x 7.68 cm²1024 x 1024 pixels

1 MPix

75 µm

300 ... 500 µm

< 4 el. ENC

1.2 ms2.5 µs

XEUS pixels on same PXD4 wafer run as ILC

ILC

energy resolution: 126 eV FWHM @ Fe55 - kα line

corresponding to 4.9 e- ENC

0 1 2 3 4 5 6 71

10

100

1000

10000

Si-KαAl-Kα

Mn-KβMn-K

α

Cou

nts

Energy (keV)

Escape Peak

T = -50° C

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 10 -

sensor production for the ILC

gate

clear

drai

nfabricated: matrices with up to 128x64 pixel, 450µm thick

linear double pixel structures (22x36 µm2 pixels) (high density layout)

• new production started recently 03/2006:• matrices up to 512x512 pixel• full ILC length column & row test structures

special clear gate to support clear operation

gate

clear

source

drain 1 drain 2

also: clear gate

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 11 -

DEPFET clear operation

remove charge via „clear“ contactremove all charge complete clear

no „reset-noise“, needed at the ILC

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 12 -

source drain

channel

internalgate

clear gate

clear (n+)

high-E(some devices)

DEPFET clear operation (details)

perpendicular to channel along the channel

• ‘clear gate’ to lower the clear barrier Clocked and static operation possible

• deep high-E n-implantation in some devices to lower clear voltages

Deep nDeep p

Poly 1Poly 2

Metal 1

Oxyd Metal 1

Metal 2

Poly 2Oxyd

high-E

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 13 -

• complete clear achieved with static clear gate!• required voltages small (5 – 7 V) –

important for future SWITCHER!• clear (gate) operation does not decrease after irradiation (1MRad)

(Clear off = 2V)0 20 40 60 80 100 120 140 160 180 200 220

14

15

16

17

18

19

20

21

22

UClear-on = 8V UClear-on = 10V UClear-on = 14V σ N

OIS

E [n

A]

∆ t (Clear) [ns]

Complete clear in only 10 ns:• Measurements on mini matrix devices• ‘noise’ becomes minimal if

clearing is complete!

UClear-off = 3 Vregion of

complete clear

high-E

clear efficiency

• various designs (high-E, no high-E)• geometries (length of clear gate) • operating conditions (static or clocked clear gate)

static!

[C.Sandow, Bonn]

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 14 -

radiation tolerance: sensor

200krad

shift of threshold voltage of MOSFETs(oxide thickness ~200nm)

• shift: - 4…- 6 V• saturation after 200 kRad

shaping-time = 6µs, @ RT

single pixel spectrum

from iron-peak: ENC ~ 15 e-

(comparable with preirrad. structures)

55Fe

~ 1MRad

irradiation up to 1MRad using 60Co

[L.Andricek, MPI Munich]

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 15 -

matrix operation

signalpedestal

pedestal + signal

• low powerconsumption,

• low multiplescattering

but line rate: ≥ 20MHz

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 16 -

r=15

mm

8 modules

frame: ~300µm

sensor: ~50µm

readout

steering

ILC – DEPFET module (L1)

cavities in frame can save material

thick supportframe (~300 µm)

material budget (1st layer, incl. steering chips and frame) ~ 0.11 %X0

13mm 1mm3mm

thinned sensor (50 µm) in active area

chips 50µm thick & bump bonded

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 17 -

Producing thin DEPFETs

wafer bonding:

‘holes’ to reduce material

thinned silicon sample

[L.Andricek, MPI Munich]

sensor wafer

handle wafer

1. implant backsideon sensor wafer

2. bond wafers withSiO2 in between

3. thin sensor sideto desired thick.

4. process DEPFETson top side

5. etch backside upto oxide/implant

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 18 -

Current Readout CURO II

Gate Switcher

ClearSwitcher

DEPFET Matrix (450µm thick)64x128 pixels, 36 x 28.5µm2

ILC DEPFET-System

USB 2.0 based digital interface

boardAnalog board with

ADCs, DAQ …

Hybrid-PCB[H.Krüger, Bonn]

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 19 -

steering chip SWITCHER4.6 mm

4.8

mm

[I.Peric, Mannheim]

1 0 1 1

∆U = 20V ν = 30 MHz

20ns

20V !

Switching 20V @ 30MHz

Pads for daisy chain

controlinputs

2x64 outputs

• functionality proven • RAM & sequencer (digital) tested up to 80 MHz• power consumption ~ 1mW / channel @ 30MHz

Features:• produced 1/2003 • 2 x 64 channels (‘A’ and ‘B’)• switches up to 25 Volts• ground levels arbitrary• internal sequencer (flexible pattern)• daisy chaining of several chips

for modules possible• 0.8 µm AMS HV – technology• radiation tolerance may be problematic!

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 20 -

SWITCHER: speed4.6 mm

4.8

mm

0 2 4 6 8 10 12 140

50

100

150

200

250

300

350

400

VDDA = 10V VDDA = 15V VDDA = 20V

Wid

erst

and

NM

OS

[ Ω]

VLO - GNDA [V]

typical value: < 200 Ω

nmos (Vlow):

PMOS

GNDA

Out VDDA/GNDA

VDDA/GNDA

NMOS

Vhigh

Vlow

>50% Layout size !

Crow=15pF

τ = 3ns( fast steering ! )

[I.Peric, Mannheim]

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 21 -

DEPFET readout: drain vs sourcesource (follower) R/O drain R/O

voltage is “keptconstant”

• keep VDS constant, measure IDrain directly

• fast response: limited by RC time

of Rin (CURO) and CL

• constant bias current IB provided• charge in internal gate translates

into source voltage node change

no option for ILC

→ few ns @ CL =40pF

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 22 -

advantage: - 0-suppression while processing one row- fast CDS (suppresses 1/f noise)

needed: - complete „clear“ (demonstrated !)

readout mode @ ILC

ILC: no „trigger“ hit detection / 0-suppression in readout chip

„normal“„ILC“

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 23 -

cascode currentbuffer A

currentbuffer B

HIT-Finder

HIT-RAM

storage:Iped + Isig

currentcompare

serial-out

1/0

hit-address

analogFIFOcells

(Iped + Isig) or Iped

IsigIsig

outA

outB

DIGITAL - Part

ANALOG - channel

Output MUX

Mixed Signal FIFO

• current based readout→ low input impedance by regulated cascode

• Hit-Finder finds up to 2 hits per cycle:- analog currents to outA, outB- digital hit position stored in HIT-RAM

• FIFOs digital part is scanned by HIT-Finder

• signal current buffered (alternating) in 2 cells

→ hit-identification, FIFO storage

• pedestal current is subtracted at input node after reset (fast CDS)

• pedestal + signal is stored in current memory cell

overview: CURO-ArchitectureCURO – CUrrent ReadOut

DEPFET-current

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 24 -

CURO I (testchip)

4 mm

1.5

mm

TSMC 0.25µm5metal layercontains all building blocks of CURO-Architectureradiation tolerant layout rules with annular nmos05/2002

r/o concept proven !

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 25 -

CURO II

128 input channel(DEPFET - Matrix)

12x 8bit DACsBiasing, test currents, thresholds

pads (communication):fast signals: LVDS

steering unit:~ 20 steering signals• TSMC 0.25µm

• 5 metal layer• 4.5 x 4.5 mm2

• 11/2003

analog part:current memory cells,comparator

digital part:Hit-Finder, RAM, FIFO

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 26 -

input cascode

τ ≈ CL. Rin

present-matrices : 7.5pF; final ILC-matrices: ≈ 40pF !!

cascode compensates load capacitance

0 20 40 60 80 100 120 140 160 180 200

26

28

30

32

34

36

38

40

42

44 same power (1.5mW /channel)same load (10pF)

I DEP

FET [

µA]

time [ns]

control dynamic behavior(pole-zero cancellation)

L

mgr C

ν2

2=

CUROIIb: power down feature

IBias = 1µA static operation → fix input potential

500µA → high speed operation

higher gm by higher IBias → speed vs. power

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 27 -

charge: input (S1) and sample-switch (S2) closedcharge gate-capacitance of M1

Iin

transfer: close output-switch (S3) (right after “sampling”)

Iout = - Iin at output node

sample: open input (S1) and sample-switch (S2)voltage at capacitance „same“

current „same”I = I in + IB

store current ??

I = I in + IB

current memory cell (principle)

[Hughes/Toumazou]

(use of cascode techniques !)

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 28 -

I1 I2

Iout= I1 – I2

current memory cell (advantages)

advantages:

• high dynamic range (with reduced supply voltage)• precise current subtraction easy

• drivers not neededIin

I = I in + IBI = I in + IB

[Hughes/Toumazou]

(use of cascode techniques !)

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 29 -

Gm C

kTgi 22 >≈<1/gS

CG

CBUS

Iinput

CRSwitch

Vinput

(independent of R)

CkTvc >=< 2

ν∆>=< RKTvth 42

⎟⎟⎠

⎞⎜⎜⎝

⎛+

+>=<

GBUS

GBUS

Gm CC

CCCkTgi 3222

noise contribution time response

m

BUSG

gCC +

=τ• switch optimizes time response• noise vs. bandwidth• minimize bus capacitance

• gm small, Cg large, CBUS minor importance

noise vs. time response

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 30 -

layout:

two stage sampling cell

25 µ

m

40µm(+) improves linearity(non-linearity due to charge injection)

(-) more complex steering ! (all signals generated „on-chip“)

M1

IinS1

S2S3=S2

IB

M2

Iout

S4S5=S4

IB

coarsestage

finestage

calculated noise: ~ 25nA, bandwidth: 50MHz

different designs: coarse stage: fast, noise does not contributefine stage: „slower“, optimized for noise

schematic:

coarse sampling:

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 31 -

Linearity + Pedestal Subtraction

• linearity:

• pedestalsubtraction:

transfer gain: 1.00± 0.01

INL= 2,3 %(Integral Non Linearity)

0 2 4 6 8 10 12

-2

0

2

4

6

8

10

-0,4

-0,2

0,0

0,2

0,4

I in [µA]

I out

[µA

]

gain : 1.0005

non-lin. : 0.287µAoffset : -1.67 µA

inte

gral

non

-line

arity

[µA

]

e.g.5µA (10%)pedestal dispersion

→ 75nA after pedestal subtraction

30 40 50 60 70 804,6

4,8

5,0

5,2

5,4

5,6

I out

[µA

]

Iped [µA]

slope = 1.53%

all analog measurements @ 24MHz line rate (sampling with 48MHz)

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 32 -

Noise & Dispersion

• noise:

• Dispersion:

DEPFET r/owith CURO:

ENC ~ 90e-

(gq=500pA/e-)

σ ~ 35nAafter calibration

dispersion < noise

0 50 100 150 200 250

0

20

40

60

80

100

σ = 43 ± 1nAco

mpa

rato

r res

pons

e [%

]

I thresh [nA]

5700 5900 6100 6300 6500 6700 6900 71000

10

20

30

40

# en

tries

threshold

calibratedσ = 32nArange = 160nA

uncalibratedσ = 425nArange = 1385nA

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 33 -

fast 0 - suppression

0

1

1

0

0

1

0

0

0

1

1

0

0

1

0

0Address = 2, 6, (3)

parallel tree architecture

• finds up to 2 hits per clock cycle

• propagation delay:

2log(#channels) = 7 only !

serial hit finding

• clock > 2 GHz needed• „aggressive“ even with 0.09 µm !

Hit-Finder:

out

back

up

downdown_back

up_back

leaf („lower“ part)

[P.Fischer]

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 34 -

Hit-Finder: Layout

challenge: 128 leaves of the tree in linear layout

7 level ≅ 128 leaves

overall: 3200 x 85 µm2

85µm

25 µm

rad. tolerant design !

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 35 -

works fine up to: 110MHz

total power consumption:digital tests:

→ 250W for whole vtx-d(continuous operation)

bunch structure 1 :199→ pulsed mode (1:30) ~ 10W

CURO II measurements (cont‘d)

Hitscanner

HIT-RAM

serial-out

hit-address: rowstamp, column

Input-FIFO

alternating testpatternw_clk

s_clk

s_ptr

w_ptr

w_clk

counter

rowstamp0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

expected mean rate (1. layer): 1-2 hits @ 20MHz

0 20 40 60 80 100 120200

250

300

350

400

450

500

550

2.15mW / channel @ 20 MHz

@ 2.5 V, RT

P [m

W]

frequency [MHz]

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 36 -

System Measurements

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 37 -

CMOS matrixHybrid with CMOS-Imager Matrix in AMS 0.35µm

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 38 -

zero suppressed matrix r/o worksnext CURO: neighbor logic

zero suppressed r/o (CMOS matrix)lightspot of a desk lamp

Hybrid with CMOS-Imager Matrix in AMS 0.35µmfull analog frame

zero suppressed analog readout

[R.Kohrs, Bonn]

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 39 -

35 40 45 50 55 60 65 70 75 80 850

250

500

750

1000

1250

1500

1750

2000

2250

# en

tries

Eγ [keV]

FAUST100 um 50 um 25 um75 um

2 m

m

3 mm

ILC DEPFET-System in the lab

irradiation with 55Fe(6keV γ, 1700 e-)

75 µm thick Tungsten-Mask

10 15 20 25 30 35 40 45100

200

300

400

500

600

-4

-2

0

2

4

sign

al [A

DU

]

Eγ [keV]

Ag/Cd

Ba

Tb

Rb

Mo

INL = 0.75% (8500e- dyn. Range)

non-

linea

rity

[AD

U]

gq = 280 pA / e-

system performance:

• speed: line rate ~2 MHz• noise: 220 e- (from noise peak)

Integral-Non-Linearity = 0.75% for 8500e-

241Am

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 40 -

noise contributions: system• Sensor

(shot noise) 8e- (50µs), 45e- (current r/o)(1/f noise) 1.6e- (after CDS)(thermal noise) 26e- (after CDS)

• SWITCHER (kT/C) 0.92nA 3.3e-

• CURO (sampling) 45nA 160e-

• External transamp. 26.5nA 94e-

total: ~190e- (measured ~220e-) …

thermal

1/f

noise after CDS

switching noise:

cx νν=

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 41 -

influence of internal amplification:

(when noise is dominated by readout chain)

scaling potential of the DEPFET

effective channel length L (µm)

g q(p

A/e-

)presentdevices

DIOS/ToSCA-Simulation

simple MOSFET model

S/N ~ gq

• ILC operation lower than room temperature• redesign of CURO • new DEPFET sensors (higher gq)

noise improvement:

→ ENC = 100 e- achievable

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 42 -

Test Beam ResultsScintillator Telescope-

ModulesDEPFETSystem

Beam T24 @ DESY, Electrons @ 6 GeV

Reference telescope: 4 Si-strip planes

• noise ~ 16 ADU• S/N ~110 (450µm sensors !)• position resolution:

CERN test beam in August 2006[J.J. Velthuis, Bonn]

5σ seed,2σ neighbor

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 43 -

summary

• DEPFET pixel based vtx-d presented- features: high S/N due to fully depleted bulk- present production (~30x30µm2 pixels, matrices: 128x64 pixels, 450µm thick)- clear, radiation tolerance demonstrated, thinning concept established

• Readout ASIC (CURO) using current mode techniques:- pedestal subtraction, fast CDS, on chip hit-detection and 0-suppression

• CURO II performance:- noise: < 45nA → ∼ 160 e- (gq=280pA/e-) / 90e- (gq=500pA/e- ≅ design value)- analog speed: 24 MHz line rate (48MSPS) , sufficient for ILC !- hit-identification and 0-suppression : > 100MHz , sufficient for ILC !

• ILC-DEPFET-System:- operated at ≈ 2MHz line rate, noise: 220e-

- 6GeV e- test beam at DESY: S/N ∼ 110 (450µm sensors)

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 44 -

outlook

System:• increase system speed (2MHz → 20MHz !!)• reduce noise (190e- possible, next system should achieve <100e- )• beam test @ CERN -> spatial resolution and establish pixel telescope

CURO IIb:• on-chip common mode computation/correction (easy with currents)• cluster logic (keeping at least the closest neighbor)• improve input cascode (readout larger matrices)• implement (fast) power down feature (pulsed mode configuration)• on chip ADC (IP from nordic semiconductor)

New sensors:• 512x512 matrices, 25x25µm2

• production of thin DEPFETs (longer time scale)

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 45 -

referencesReferencesCURO / System: „Design of a current based readout chip and development of a DEPFET pixel

prototype system for the ILC vertex detector“, PhD thesis, M.Trimpl, http://hss.ulb.uni-bonn.de/diss_onlineThinning: „Processing of ultra thin silicon sensors for future linear collider experiments“, L.Andricek et al.,

IEEE TNS (51), No3, pp.1117-1120Sensor: „Design and Technology of DEPFET Pixel Sensors for Linear Collider Applicatons“, R.H.Richter,

NIM A511, pp.250-256Rad Tolerance: „The MOS-type DEPFET Pixel Sensor for the ILC Environment“, L.Andircek et al.,

Pixel 2005, submitted to NIM (A)

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 46 -

Potential during collection - 3D Poisson equation (Poseidon)(50µm thick Si, NB=1013cm-3,VBack=-20V)

Depth 10µmDepth 7µmDepth 4µmDepth 1µm

Sources

Drain

External (internal) Gates

n+ c

lear

cont

acts

Cell size 36 x 27 µm²

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 47 -

Along the channel Perpendicular to the channel

Metal 2

Metal 1

Oxyd Poly 2

Clear Gclear Channnel

pDeep nn+

Deep p

Poly 1

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 48 -

d) anisotropic etching from backside (TMAH)

open backside passivation

c) process passivation

b) wafer bonding and grinding/polishing of top wafer

a) oxidation and back side implant of top wafer

Handle <100> Wafer

Top Wafer

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 49 -

Multiple Scattering

• During passage through matter Coulomb scattering on nuclei⇒deviation from original track

• Deflection distribution Gaussian with width θ0( )[ ]000 /ln038.01/6.13 XxXxzcp MeV

+=β

θ

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 50 -

Uncertainty in predicted position

• Remember: σMS2~1/Etot

2

• Using these scans both errors can be estimated and corrected for assuming:– Resolution proportional to pitch– Telescope performance equal in X and Y

• Note:– August: error MS + intr=8-9µm– January: error MS + intr≈6.2µm– (Daniel: 6.94µm)

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 51 -

Position resolutions

4.65.23.86.2GCG4.66.64.97.5Mun15.15.55.15.81B4.05.24.25.81A3.25.33.06.22AYη

corrXηcorrYCoG

corrXCoGcorrHybrid

• Note that these values are estimated. Expected to be better. However, subtracting 6.2 or 6.9 make huge difference.

• η-distributions in Y asymmetric, magnitude depending on seed odd or even

Fermilab, 17.07.2006 LABSilizium Labor Bonn

SIMarcel Trimpl, University of Bonn- 52 -

Estimated Power Dissipation

• For VDrain = 5V and IDrain = 100µA (conservative values): PDEPFET = 0.5mW per active device

• Layer1 (8 Modules x 2 sides x 512 = 8192 pixels), duty cycle = 1/200 (idealistic case):Sensor: only active pixels dissipate power ⇒ 8192 x 0.5mW / 200 = 20 mWSWITCHER: 6.3mW per active channel at 50MHz (measured)

⇒ 16 x 6.3mW / 200 = 0.5 mWCURO: 5 mW / channel (extrapolated) ⇒ 8192 x 2.8mW / 200 = 220 mW

Sum: ~ 240 mW

• Scaling up from 18.7 Mpixels (L1) to ~493 Mpixels for 5 layers gives: Total:~6.3 W

• Note: Largest dissipation (CUROs) is outside active area where cooling is less problematic!

• This calculation assumes that all chips can be switched into a stand-by mode with ~zero power dissipation between bunch trains. This feature must be included in future chip versions.

• given a safety margin total power still < 10W