39
Howard Matis Pixel 2005 1 A High Resolution Vertex Tracker for the STAR Experiment using Active Pixel Sensors and Recent work using APS Sensors F. Bieser, R. Gareus, L. Greiner, J. King, J. Levesque, H.S. Matis, M. Oldenburg, H.G. Ritter, F. Retiere, A. Rose, K. Schweda, A. Shabetai, E. Sichtermann, J.H. Thomas, H. Wieman, Lawrence Berkeley National Laboratory S. Kleinfelder, S. Li, University of California, Irvine H. Bichsel, University of Washington

physics motivation for a thin vertex detector

  • Upload
    jorn

  • View
    49

  • Download
    0

Embed Size (px)

DESCRIPTION

A High Resolution Vertex Tracker for the STAR Experiment using Active Pixel Sensors and Recent work using APS Sensors. - PowerPoint PPT Presentation

Citation preview

Page 1: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 1

A High Resolution Vertex Tracker for the STAR Experiment using Active Pixel Sensors

andRecent work using APS Sensors

A High Resolution Vertex Tracker for the STAR Experiment using Active Pixel Sensors

andRecent work using APS Sensors

F. Bieser, R. Gareus, L. Greiner, J. King, J. Levesque, H.S. Matis, M. Oldenburg, H.G. Ritter, F. Retiere, A. Rose, K. Schweda, A. Shabetai, E. Sichtermann, J.H. Thomas, H. Wieman, Lawrence Berkeley National Laboratory

S. Kleinfelder, S. Li, University of California, Irvine

H. Bichsel, University of Washington

F. Bieser, R. Gareus, L. Greiner, J. King, J. Levesque, H.S. Matis, M. Oldenburg, H.G. Ritter, F. Retiere, A. Rose, K. Schweda, A. Shabetai, E. Sichtermann, J.H. Thomas, H. Wieman, Lawrence Berkeley National Laboratory

S. Kleinfelder, S. Li, University of California, Irvine

H. Bichsel, University of Washington

Page 2: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 2

physics motivation for a thin vertex detectorphysics motivation for a thin vertex detector

Study initial properties of a nuclear collision

u, d, s quarks gain mass become thermalized Final state effects Measures later/cooler

times of the collision d, b quarks produced at

early time Intrinsic mass Measure of early

collision

Study initial properties of a nuclear collision

u, d, s quarks gain mass become thermalized Final state effects Measures later/cooler

times of the collision d, b quarks produced at

early time Intrinsic mass Measure of early

collision

deconfinement

Phase and Chiral transitions

u-, d-quarks and ‘bound-states’ gain mass

PART I - DETCTOR

Need to measure particles above 0.5 GeV/c High collision density - more than 2000 tracks

Measures secondary particles >100 µm from collision point

Need to measure particles above 0.5 GeV/c High collision density - more than 2000 tracks

Measures secondary particles >100 µm from collision point

Page 3: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 3

detector requirementsdetector requirements

Study D0 measurement Multiple scattering in

beam pipe sets fundamental limits

“Dream” Detector Thickness 240 µm Si

equivalent Position resolution 8

µm

Study D0 measurement Multiple scattering in

beam pipe sets fundamental limits

“Dream” Detector Thickness 240 µm Si

equivalent Position resolution 8

µm

Page 4: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 4

star micro vertex detectorstar micro vertex detector

Two layers 1.5 cm radius 4.5 cm radius

24 ladders 2 cm 20 cm each < 0.3% X0

~ 100 Mega Pixels

Two layers 1.5 cm radius 4.5 cm radius

24 ladders 2 cm 20 cm each < 0.3% X0

~ 100 Mega Pixels

Page 5: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 5

close-up viewclose-up view

Page 6: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 6

sensorsensor

Efficiency for min ionization 98%

Accidental rate < 100 /cm2

Position resolution < 10 m

Pixel dimension 30 m 30 m

Detector chip active area 19.2 mm 19.2 mm

Detector chip pixel array 640 640

•Sensor under development at IReS•First prototype made using 0.25 µm process by TSMC•Second version in production using 0.35 µm by AMS

Page 7: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 7

ladderladder

10 thinned APS detectors Top of a matching row of

thinned readout chips Three-layer aluminum

Kapton cable Silicon cable structure is

bonded to a carbon composite v, closing the beam to make a rigid structure

Wire bonding to the cable

10 thinned APS detectors Top of a matching row of

thinned readout chips Three-layer aluminum

Kapton cable Silicon cable structure is

bonded to a carbon composite v, closing the beam to make a rigid structure

Wire bonding to the cable

Page 8: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 8

ladderladder2 carrier candidates – X0 =0.11 %

Top layer = 50 µm CFC

Middle layer = 3.2 mm RVC

Bottom layer = 50 µm CFC

Outer shell = 100 µm CFC (carbon fiber composite)

Fill = RVC (reticulated vitreous carbon foam)

RDO Chip

APS

Cable

Carrier

Page 9: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 9

ladder prototypesladder prototypes

Mechanical Prototype with 4 MIMOSA-5 detectors glued to the Kapton cable assembly. Tested for Vibration Stiffness

• A prototype cable (Cu) has been designed, constructed and tested.

• Prototype ladder using thinned 50 µm MIMOSA-5 detectors. Currently under test with DAQ

Mechanical Prototype with 4 MIMOSA-5 detectors glued to the Kapton cable assembly. Tested for Vibration Stiffness

• A prototype cable (Cu) has been designed, constructed and tested.

• Prototype ladder using thinned 50 µm MIMOSA-5 detectors. Currently under test with DAQ

Page 10: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 10

heavy flavor tracker (hft) parametersheavy flavor tracker (hft) parameters

Total number of pixels 98 106

Number of pixels per chip 640 x 640

Pixel Readout rate 100 ns

Readout time per frame 4 ms

Dynamic range of the ADC 10 bits

Raw data from one sensor using a 10 bit ADC 1 Gb/s

Fixed pattern noise 2000 e

Noise after Correlated Double Sampling 10 e

Maximum signal 900 e

Dynamic range after Correlated Double Sampling 8 bits

Total power consumption 90 W

Page 11: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 11

mechanical requirementsmechanical requirements

Geometry Maintain position resolution of ~ 10 µm Low mass / radiation length (X0~ 0.3% / layer) Coverage of -1 < < 1

Function

• Easy to calibrate

• Easy to align

• Easy to remove, repair and replace electronics (ladders will need to have a local survey)

• Fit easily into the existing detector and infrastructure at STAR

Geometry Maintain position resolution of ~ 10 µm Low mass / radiation length (X0~ 0.3% / layer) Coverage of -1 < < 1

Function

• Easy to calibrate

• Easy to align

• Easy to remove, repair and replace electronics (ladders will need to have a local survey)

• Fit easily into the existing detector and infrastructure at STAR

Page 12: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 12

conceptual mechanical designconceptual mechanical design

•Mounted to SVT cone

•Slides in and out on one end

•Ladders moves as beam pipe diameter increases

Page 13: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 13

kinematic support structurekinematic support structure

•Support bolts unto STAR

•Green structure provides stable support for the ladder

•Three point kinematic mounts assure accurate positioning

•Can move detector in and out with reproducibility

Page 14: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 14

studies with scanning electron microscopestudies with scanning electron microscope

12 µm

Access to 5 - 30 keV scanning electron microscopeThought needed to punch through 2-3 µm Believed could detect these electrons

PART II - APS RESEARCHPART II - APS RESEARCH

30 keV electrons

Page 15: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 15

cross sectional view(Tilt at 520)

cross sectional view(Tilt at 520)

Pt Layer

Top of ICArtifact dueto charge

Epi-layer

Top coating

Page 16: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 16

element analysiselement analysis

AlAl

TiTi

WW

PtPt

SiSi

OOGaGa

Page 17: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 17

30 kev electrons do not penetrate to the epilayer30 kev electrons do not penetrate to the epilayer

Page 18: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 18

can detect “electrons” with reasonable accuracy

can detect “electrons” with reasonable accuracy

Can see microscope Measuring

Bremsstrahlung Maximum intensity

~3000 /frame

Evaluate charge sharing of cell

Evaluate position resolution algorithms Best

Can see microscope Measuring

Bremsstrahlung Maximum intensity

~3000 /frame

Evaluate charge sharing of cell

Evaluate position resolution algorithms Best

µm

x3 x1

x1 x2 /2 x3

Page 19: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 19

track efficiency is critical with noise leveltrack efficiency is critical with noise level

Monte Carlo study two different algorithms with MIMOSA 5 Look for seed pixels Smooth data and then

look for seed pixels Real pedestal data with

imbedded electron spectrum Efficiency algorithm

dependent Algorithm choice dependent

on noise

Monte Carlo study two different algorithms with MIMOSA 5 Look for seed pixels Smooth data and then

look for seed pixels Real pedestal data with

imbedded electron spectrum Efficiency algorithm

dependent Algorithm choice dependent

on noise

Page 20: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 20

how much signal do you get out of an aps sensor?how much signal do you get out of an aps sensor?

Calculations show that energy loss in thin materials much less than thicker Bichsel & Saxon, Phys.

Rev. A 11, 1286 (1975).

Observed in aluminum Perez & Sevely, Phys.

Rev. A 16, 1061 (1977).

Calculations show that energy loss in thin materials much less than thicker Bichsel & Saxon, Phys.

Rev. A 11, 1286 (1975).

Observed in aluminum Perez & Sevely, Phys.

Rev. A 16, 1061 (1977).

Energy Deposited - eV

Landau

Bichsel & Saxon

0.76 µm Al1 MeV e-

Page 21: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 21

study at lbnl advanced light sourcestudy at lbnl advanced light source

Study 1.5 GeV/c electrons

Calculated expected energy Use Bichsel formalism 0.25 µm TSMC 8 µm epitaxial layer

Need to shift theory by 1.5 for good agreement

Study 1.5 GeV/c electrons

Calculated expected energy Use Bichsel formalism 0.25 µm TSMC 8 µm epitaxial layer

Need to shift theory by 1.5 for good agreement

Page 22: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 22

some checkssome checks

Epitaxial (epi) layer 8 µm (error perhaps 1 µm)

Use Bichsel formalism on 8.5 µm aluminum data 1.66 keV scales to 1.43

keV silicon (most probable)

Bichsel predicts 1.43 keV

Total systematic error 10 - 20 %

Cannot explain 50% excess

Epitaxial (epi) layer 8 µm (error perhaps 1 µm)

Use Bichsel formalism on 8.5 µm aluminum data 1.66 keV scales to 1.43

keV silicon (most probable)

Bichsel predicts 1.43 keV

Total systematic error 10 - 20 %

Cannot explain 50% excess epitaxial layer

p++

substrate

P epitaxial layer

n-wellp-well MIP

Page 23: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 23

a hypothesisa hypothesis

Extra charge equivalent to 4 µm

Electrons could be coming from upper p-well and p++ substrate

Check with Mimosa-5 data (AMS 0.6 µm) Most Probable - 996 e-

Bichsel - 746 e-

Equivalent to extra 4.7 µm over nominal 14 µm

Extra charge equivalent to 4 µm

Electrons could be coming from upper p-well and p++ substrate

Check with Mimosa-5 data (AMS 0.6 µm) Most Probable - 996 e-

Bichsel - 746 e-

Equivalent to extra 4.7 µm over nominal 14 µm

p++ substrate

P epitaxial layer

n-wellp-well MIP

Page 24: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 24

scaling of cell sizescaling of cell size

UCI design a multi-spacing chip 5 µm, 10 µm, 20 µm and

30 µm All cell sizes on one chip

Minimize systematic errors

Charge sharing very similar Can see small absorption of

charge in epitaxial layer Good scaling

UCI design a multi-spacing chip 5 µm, 10 µm, 20 µm and

30 µm All cell sizes on one chip

Minimize systematic errors

Charge sharing very similar Can see small absorption of

charge in epitaxial layer Good scaling

5 10

20 30

Linear Scale

5 10

20 30

Log Scale

Page 25: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 25

summarysummary

Proposal for a vertex detector with APS technology Awaiting funding Transmission scanning microscopes can be used

to probe sensors Software algorithms important to get high hit

reconstruction - choice very sensitive to absolute noise

Cell scales from 5 to 30 µm More charge then expected coming from APS

Proposal for a vertex detector with APS technology Awaiting funding Transmission scanning microscopes can be used

to probe sensors Software algorithms important to get high hit

reconstruction - choice very sensitive to absolute noise

Cell scales from 5 to 30 µm More charge then expected coming from APS

Page 26: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 26

A Heavy Flavor Tracker for STAR

Z. XuBrookhaven National LaboratoryY. Chen, S. Kleinfelder, A. Koohi, S. Li University of California, IrvineH. Huang, A. TaiUniversity of California, Los AngelesV. Kushpil, M. SumberaNuclear Physics Institute AS CRC. Colledani, W. Dulinski, A. Himmi, C. Hu, A. Shabetai, M. Szelezniak, I. Valin, M. WinterInstitut de Recherches Subatomique, StrasbourgM. Miller, B. Surrow, G. Van NieuwenhuizenMassachusetts Institute of TechnologyF. Bieser, R. Gareus, L. Greiner, F. Lesser, H.S. Matis, M. Oldenburg, H.G. Ritter, L. Pierpoint, F. Retiere, A. Rose, K. Schweda, E. Sichtermann, J.H. Thomas, H. Wieman, E. YamamotoLawrence Berkeley National LaboratoryI. KotovOhio State University

Page 27: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 27

endend

Page 28: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 28

backup slidesbackup slides

Page 29: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 29

precision tie points coupling the hft system to the star support coneprecision tie points coupling the hft system to the star support cone

Page 30: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 30

thin beam pipethin beam pipe

Central beryllium region 14.5 mm radius

10 beam size 500 µm thick walls

Outer region 30 mm radius aluminum

Exoskeleton caries load

Central beryllium region 14.5 mm radius

10 beam size 500 µm thick walls

Outer region 30 mm radius aluminum

Exoskeleton caries load

Page 31: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 31

end view showing the hft ladders between spokes of the inner beam pipe supportend view showing the hft ladders between spokes of the inner beam pipe support

Page 32: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 32

data flow and processing stages in the readout chipdata flow and processing stages in the readout chip

Each stage can be bypassed to allow raw or partially unprocessed data to be routed to the DAQ

The first stage is a CDS preprocessor which is followed by pedestal subtraction and a pixel masking filter

Further processing allows us to sum up the value of 1, 4 or 9 pixels before a threshold cut is applied.

The last stage includes zero suppression and transcoding to hit positions.

Each stage can be bypassed to allow raw or partially unprocessed data to be routed to the DAQ

The first stage is a CDS preprocessor which is followed by pedestal subtraction and a pixel masking filter

Further processing allows us to sum up the value of 1, 4 or 9 pixels before a threshold cut is applied.

The last stage includes zero suppression and transcoding to hit positions.

Page 33: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 33

readout layoutreadout layout sketch of the

readout-topology on a detector ladder

one of ten APS and the corresponding readout chip layout.

sketch of the readout-topology on a detector ladder

one of ten APS and the corresponding readout chip layout.

Page 34: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 34

rdo asicrdo asic

• ADC – 10 bit ADC for signals from sensor chip

• CDS – Chip will perform correlated double sampling

• High speed LVDS output

• Configuration, control, clock, synch functions

• ADC – 10 bit ADC for signals from sensor chip

• CDS – Chip will perform correlated double sampling

• High speed LVDS output

• Configuration, control, clock, synch functions

• Both chips thinned to 50 µm thickness.

• X0 = 0.053 % each

Page 35: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 35

daqdaq

Figure5:

ladders can be combined to one optical link.

Page 36: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 36

hit loadinghit loading Au+Au Luminosity 1 1027 cm-2s-1

dN/d (min bias) 170

Min bias cross section 10 barns

Interaction diamond size, σ

30 cm

Outer Layer Inner Layer

Radius 5 cm 1.5 cm

Hit Flux 4.3 kHz/cm2 18 kHz/cm2

Hit Density 4 ms Integration 17/cm2 72/cm2

Projected Tracking Window Area 0.6 mm2 0.15 mm2

Probability of Tracking Window Pileup

10 % 10 %

HFT Hit Resolving Area 0.001 mm2 0.001 mm2

Probability of HFT Pileup 0.14% 0.58%

Page 37: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 37

Comparison with mimosa-5Comparison with mimosa-5

Parameter Detector MIMOSA-5

Detection efficiency 98% @30 – 40 C ~ 99% ≤ 20 C

resolution < 10 µm ~ 2 µm

pixel pitch) 30 µm 17 µm

Read-out time 4 – 10 ms 24 ms ( 20 ms possible)

Ionizing radiation tolerance

2.6 kRad/yr 100 kRad

Fluence tolerance 2 1010 neq/cm2 ≤ 1012 neq/cm2

Power dissipation 100 mW/cm2 ~ 10 mW/cm2

Chip size ~2 2 cm2 1.9 1.7 cm2

Chip thickness 50 m 120 m

Page 38: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 38

material budgetmaterial budget

MaterialMaterial Thickness

(µm of Si)% X0

Beryllium beam pipe 500 µm of Be 0.1417

MIMOSA detector 50 0.0534

Adhesive 13 0.0143

RDO chip 50 0.0534

Adhesive 13 0.0143

Cable assembly 84 0.0896

Adhesive 13 0.0143

Carbon fiber / RVC beam 103 0.1100

Total for the ladder components

327 0.349

Page 39: physics motivation for a thin vertex detector

Howard Matis Pixel 2005 39

using an aps as a camerausing an aps as a camera