27
Stanford University Let’s Start with the MOS Capacitor Silicon dioxide Gate electrode (metal or polysilicon) t ox Silicon substrate Department of Electrical Engineering H.-S. Philip Wong EE 316 2-8

PKU EE 316 - Lecture 2 - MOS basics.ppt

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Stanford University

Let’s Start with the MOS Capacitor

Silicon dioxide

Gate electrode(metal or polysilicon)

tox

Silicon substrate

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-8

Stanford University

Metal-Oxide-Semiconductor (MOS)Silicon dioxide

Gate electrode(metal or polysilicon)

tox

( )

Vacuum Vacuum

Silicon substrate

Vacuum level

Vacuum level

Ec

= 4.10 eV

0.95 eV

= 4.05 eVqq mq s

High-k:

Eg and barrier h i ht diff t

Ec

Ev

8-9 eV

q s

Metal(aluminum)

1.12 eV

Eg q B

EiEf

Ef

height are different from SiO2

Alternative channel

Ev

v(aluminum) Silicon(p-type)

Alternative channel materials:

Eg, barrier height, and dielectric constant are different from SigE

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-9

Silicondioxide

are different from Si sg

Bq

2

Stanford University

p-type n-type

Accumulation, Depletion, Inversion

(a) (e)Ec

EEfEf

V = 0g

Ec

Ev

Ef

Ef

V = 0g

p type n-type

flatband

+ + + + + +

_ _ _ __ __ _Assume m=s:Ev

Ev

accumulationV < 0

+ + + + + + + +

(b) (f)Ec

Ev

Ef

Ef

Ec

Ev

Ef Ef

accumulationV < 0g V > 0g

+ + + + + +

_ __ __

+ +

_ _ __ ______ __

+++

+ ++ ++

(c) (g)depletion

Ec

Ev

Ef Ef

V > 0g

Ec

Ev

Ef

Ef

V < 0g

+ + + + +

_ _ _ __ __

+ +

(d) (h)inversion

Ec EcE

Ef

V < 0g

__ ___ ____ __ ___ ____

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-10

( ) ( )c

Ev

Ef

Ef

V > 0g Ev

Ef

+ + + + + +

_

++ +++++ +++

+

Stanford University

Poisson’s EquationSiliconsurface )()()()(2

2

xNxNxnxpqdxd

dxd

adi

E

Poisson s Equation

Ec

EEgq x ( )

dxdx si

kTqkTqi

kTEEi epenenxp Bfi /

0/)(/)()(

q s(> 0)

Ei

Ev

q Bq ( )

Ef

kTqkTqi

kTEEi enenenxn Bif /

0/)(/)()(

(assuming uniform doping)

0)0()0(

:neutralitycharge

NNnp Oxide p-type silicon

x

0)0()0( ad NNnp

)0()0( npNN ad

11 //2

kTqkTq enepqd x

/2

/2

kTkT nqd

For Na doped substrate ( N

)(xp )(xn ad NN

11 002 si

enepdx

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-11

11 //

2kTq

a

ikTqa

si

eNneNq

dxd

(p0=Na,

n0=ni2/Na)

(assuming complete ionization)

Stanford University

Poisson’s EquationSiliconsurface

Poisson s Equation

11 /

2/

2

2kTqikTq

a eNneNq

dd

Ec

EEgq x ( )

2asi Ndx

2

:trickaUse

q s(> 0)

Ei

Ev

q Bq ( )

Ef

2

22

21

xxxx

Oxide p-type silicon

x E

x x

2 2

/ /2

1 1 12

x x q kT q kTa iqN ndd d e ed N

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-12

22 x xsi adx N

Stanford University

Poisson’s EquationPoisson s Equation

2 2

/ /1 1 1x x q kT q kTa iqN ndd d

/ /2 1 1

2q kT q kTa i

x xsi a

qd d e e

dx N

Siliconsurface

Ex

EcE

Boundary conditions: q s(> 0)

Ei

Ev

Egq B

q x ( )

Ef

Oxide p-type silicon

0

0

x

ddx

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-13

xxdx

Stanford University

2

Solving Poisson’s Equation

112)( /

2

2/

2

kTqe

Nn

kTqekTN

dxdx kTq

a

ikTq

si

a2

E

)(xp )(xn)(xp )(xn ad NN2/1

/2

2/ 112

kTqe

Nn

kTqekTNQ skTq

a

iskTqasissis

ss E

)(p )()(p )( ad

Term related to the Debye length:

LkT

q NDsi

d

2

What is the value of ni for Si?

For details, see C.Y. Chang, S.M. Sze, ULSI D i Wil Ch t 3

LD=41 nm for Nd = 1016cm-3 at 300K

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-14

ULSI Devices, Wiley, Chapter 3.

Stanford University

Depletion Charge, Inversion Charge

id QQQ ids QQQ Depletion Charge

Inversion Charge

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-15

Stanford University

Condition for Strong InversionSiliconsurface

ainvkT N

( ) ln

2 2

Condition for Strong Inversion

EcE

s Bi

invq n

( ) ln

2 2

q s(> 0)

Ei

Ev

Egq B

q x ( )

Ef

i.e., (ni2/Na

2)exp(qs/kT) = 1.

v

Oxide p-type silicon

And the electron concentration at the surface equals the hole concentration

xin the bulk Si.

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-16

Stanford University

Carrier Generation Transient – Example: Photo-Generation

Electrons generated in the depletion region will be collected in the VG>0

Depletion region

eg o be co ected t epotential well

Electrons generated in the neutral region will

R bi ith h l P Si

G

– Recombine with holes– Diffuse to depletion region and get

collected in the potential well if it is within the diffusion length of the

i it i

P-Si

0 xp Lminority carriers

Holes will be collected in the substrate

How many of the photo generated

p

How many of the photo-generated carriers are collected depends on:– Diffusion length of minority carriers– Location and length of the depletion

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-17

Location and length of the depletion region

Stanford University

qN

Qd = -qN Wd

Depletion Approximation: 1-D Uniform Doping

Wdx

qNaQd qNaWd

E = -qNa(Wd - x)/si

E-E = qNa(Wd - x)2/2si

N W 2/2x

Wd

s = qNaWd2/2si

W si s2

xWd

WqNd

a

x1

2

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-19

s

dW1

Stanford University

In contrast to p-n junctions, Wd10

Maximum Depletion Width in MOS (1D Uniform Doping)

When MOS theory In contrast to p n junctions, Wdreaches a maximum value Wdmat the onset of strong inversion when

1

ion

Wid

th (µ

m)

Today’s device

was developed

k4 l ( / )

s = 2B = 2(kT/q)ln(Na/ni): 0.1

Max

imum

Dep

leti Today s device

W kT N nq Ndm

si a i

a

4

2 ln( / )

1.0E+14 1.0E+15 1.0E+16 1.0E+17 1.0E+18 1.0E+190.01

Substrate Doping Concentration (cm )M

-3

This defines the threshold condition of a MOSFET.Wdm also plays a key role in the short-channel scaling of a MOSFET, namely, LminWdm.

We will discuss that later

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-20

g , y, min dm

“minimum” channel length

Stanford University

Strong Inversion

ddx

kTN qkT

nN

ea

si

i

a

q kT

2 2

2/

1.2E+19

N 1016 3m

)-3 Inversion charge per

g

8E+18

1E+19Na 1016 3cm

s 088. V

on,

n(x)

(cm

g parea:

QkTn

eisi i q kTs

2 22 /

4E+18

6E+18

s 085. V

conc

entra

tio

Electron conc. at surface:

QN

eia

0 50 100 150 2000

2E+18

Elec

tron

c surface:

nnN

ei

a

q kTs( ) /02

Distance from surface, x ( )Å Inversion layer thickness: Qi /qn(0) = 2sikT/(qQi)

Large change in carrier concentration with small changes in surface potential ( ) →

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-21

i q ( ) si (q i)small changes in surface potential (s) →“pinning” of surface potential at 2B Tinv=0.4 nm for Qi = 8×1012cm-2 at 300K

Stanford University

MOSFET Charge and Potential

1.2 1E-6

V) )

t = 10 nmoxN = 10 cma17 -3

2

Oxide p-type silicon

q s

Ec

Metal

Vox

g

0.6

0.8

1

6E-7

8E-7

oten

tial

(

V

nsity

(C

/cm

s s

2

Qs

Qi

B

q sEi

Ev

q B

Vg 0Deple-tion

Neutral region

Ef

0.2

0.4

2E-7

4E-7

Surfa

ce P

o

Cha

rge

Den

Qd

Qitionregion

Inversionregion

regionEf

0 0.5 1 1.5 2 2.5 3 3.50 0E+0

Gate Voltage (V)Vg

QM

0xt

Wdm Gate voltage equation (Vfb=0):Qd

QiQs QM

xtox Gate voltage equation (Vfb 0):

V VQ

Cg o x ss

o xs

Note C /t 2/1

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-23

Note: Cox=ox/toxand oxEox=siEs

2/1

/2

2/ 112

kTqe

Nn

kTqekTNQ skTq

a

iskTqasissis

ss E

Stanford University

Inversion Charge in Log Scale

1E 7

1E-5 1E-6cm

)

cm )22

g g

1E-9

1E-7

6E-7

8E-7

sity

(C

/c

sity

(C

/c

1E-13

1E-114E-7

rge

Den

s

rge

Den

s

Qi

Qi

1E-15 2E-7

Inv.

Cha

Inv.

Cha

Qi

B

0 0.5 1 1.5 2 2.5 3 3.51E-17 0E+0

Gate Voltage (V)Vg

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-24

t = 10 nmoxN = 10 cma17 -3

Stanford University

MOS Capacitances Oxide p-type ili

Metal

Differentiate w.r.t. -Qs

sQVV

GateGate

Vg Vg Cd Q

dVs

( )

silicon

q s

Ec

Ei

Ev

q B

Vg 0

Vox

Deple- Neutral

Ef

sox

ssoxg C

QVV

CoxCox

Qs Qs

dVg

Cd Q

dsis

( ) QM

Depletionregion

Inversionregion

Neutral region

Ef

C C

(inversion)

C

d s

QdQi

0

Qs QM

xtox

Wdm

Csi Ci

(low freq.)

CdQs Qd Qi

)(11

s

s

ox Qdd

CC

p-typesubstrate

n+channel

p-typesubstrate

sox

siox CC11

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-25

substrate channelsubstrate

Through carrier generation/recombination

Stanford University

Capacitance-Voltage Characteristics - Accumulationg

low freq.

high freq.

Deep depletion

In accumulation, Qsexp(-qs/2kT), so C i=-dQ /d =(q/2kT)Q

1 11

2kT q

/

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-26

so Csi=-dQs/ds=(q/2kT)Qs=(q/2kT)Cox|Vg-s|.

1C C Vox g s

Stanford University

Capacitance-Voltage Characteristics – Flatbandg

low freq.

high freq.

Deep depletion

At flatband voltage, qs/kT<<1, DLkT

111

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-27

therefore, Qs=(siq2Na/kT)1/2s. sioxasioxfb CNqCC 2

Stanford University

In depletion,

Capacitance-Voltage Characteristics – Depletion

wheredox CCC

111 low freq.

where

Cd Q

dqN

Wdd

s

si a

s

si

d

( )

2

high freq.

Deep depletion

Note that

VqN W

CqN

Cga d

ssi a s

s

2

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-28

C Cgox

sox

s Solving the quadratic equation for ψsand will give Cd as a function of Vg

Stanford University

Capacitance-Voltage Characteristics – Inversion Inversion, high freq.:Inversion charge cannot respond,

g

cannot respond,

1 1 4

2C CkT N n

q Nox

a i

si amin

ln( / )

low freq.

Inversion, low freq., or connected to a reservoir:

high freq.

where

1 1 1C C C Cox d i

d Q Q( )

Deep depletion

is the inv. layer cap.

Cd Q

dQ

kT qii

s

i

( )

/ 2

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-29

1 1

12

C CkT q

Vox g s

/

Like accumulation, )( di CC

Stanford University

Split C-V Measurement Measures the inversion

charge (Qinv) and depletion c a ge (Qinv) a d dep et ocharge (QD) separately and directly

Required to extract carrier mobilitymobility

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-30

C. Sodini, T. Ekstedt, J. Moll, Solid-State Electronics; Sept. 1982; vol.25, no.9, p.833-4

Stanford University

Split C-V Basics

ddQ

)2(

)1(1

ddQI

dtd

ddQI

SB

S

S

N

)2(2 dtdI

S

Q

)6()4()6(

oxS

NBS

CddQ

ddQdQ

QQQ

getanduse )9/()8/()7()5()1(

oxN

dQdQdVC

ddQ

dV

get,and , , Use

)4(

)3(

S

Sox

ox

G

S

ox

SFBGS

ddQC

CdVd

CQVV

)8(

)7(

oxS

B

SBB

S

B

S

Nox

S

G

S

S

S

G

S

dQdQ

CddQ

ddQdQ

ddQ

ddQC

ddVd

ddQ

dVdQ

)10(

)10(1

BBGox

S

B

G

G

N

G

NG

S

B

S

Nox

SG

dQdQdVC

ddQ

dVI

dVdQ

dVdQ

dtdV

ddQ

ddQC

ddt

dVI

)5(1 ox

G

G

SGS

S

CdtdV

dVdQ

dtdV

dtd

)9(

)8(

BN

oxS

N

G

S

S

N

G

N

S

B

S

Nox

GSG

dQdQC

CddQ

dVd

ddQ

dVdQ

ddQ

ddQCdVddV

)10(2

G

B

G

BG

S

B

S

Nox

SG

dVdVdtddQ

ddQCdt

I

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-32

S

B

S

Nox

GSG

dQ

dQC

C. Sodini, T. Ekstedt, J. Moll, Solid-State Electronics; Sept. 1982; vol.25, no.9, p.833-4

Stanford University

C-V Measurement

When performing CV meas rements start from When performing CV measurements, start from inversion and sweep the gate voltage to accumulation

Inversion layer build up is a slower process than collapsing the inversion layer and forming the

l ti l ( T & Ni 28accumulation layer (see Taur & Ning p. 28, Chapter 2.1.4.6)

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-33

Stanford University

Flatband Voltageg

ox

ssoxsg C

QVV Zero flatband

voltage:

Vacuum level

Vacuum level

Ec0.95 eV

c

Ec

= 4.10 eV = 4.05 eVqq mq s

Eg EEf

Ev

8-9 eV Metal(aluminum)

Silicon(p-type)

1.12 eVgq B

EiEf

f

Ev

Silicondioxide

QVVVV

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-34

ox

ssFBoxsFBg C

QVVVV

Stanford University

Effect of Gate Work Function V V V V Q

Ct fb B ox fb Bd

ox

2 2

Q

Vacuumlevel

Vacuuml l

ox

oxsmfb C

QV )(

gE level level

Ec

= 4.10 eV

0.95 eV

= 4.05 eVqq mq s

sg

Bq

2

Ec

Ev

8-9 eV Metal(aluminum)

Silicon

1.12 eV

Eg q B

EiEf

Ef

poly) (n m

( id )Eg

Ev

Silicon

(p-type)

poly)(p Eg

m

(midgap) 2q

gm

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-35

dioxidep y)(p

qm

Stanford University

Example: n+ polysilicon gate on p-type silicon

Effect of Gate Work Function

msg

Ba

i

Eq

kTq

Nn

2

0 56. ln

q ms

Vg V fb ms Vg 0

B q msEc

Ev

Ei

Ec

Ev

EiEf

Ef

Ef Ef

oxide

p-type siliconn+ polyn+ poly p-type silicon

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-36

oxide

oxide

Stanford University

p-type siliconOxiden+ poly

QGate eq. becomes:

Polysilicon Gate Depletion Effect

Ec

E

Vox

s

V VQCg fb s p

s

ox

and,Ei

EvEcVg

p

Ef

Ef

1 1 1 1C C C Cox si p

Ei

Ev

pf

0.6

0.8

1

C

Actual CV curve Why does capacitance fall with increasing gate bias?

tanc

etox

Typically, tinv is 0.7-1.0 nm thicker than t 0

0.2

0.4Cinv

Cap

acit

tinv

Department of Electrical EngineeringH.-S. Philip Wong EE 3162-37

thicker than tox. -2 -1 0 1 20

Gate voltage